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Abstract

Chapter 1: Identifying the finite dimensionality of curve
tim e series

The curve time series framework provides a convenient vehicle to 
model some types of nonstationary time series in a stationary frame­
work. We propose a new method to identify the finite dimensionality 
of curve time series based on the autocorrelation between different 
curves. Based upon the duality relation between row and column 
subspaces of a data matrix, we show that the practical implementa­
tion of our methodology reduces to the eigenanalysis of a real matrix. 
Furthermore, the determination of the dimensionality is equivalent 
to indentifying the number of non-zero eigenvalues of this same ma­
trix. For this purpose we propose a simple bootstrap test. Asymp­
totic properties of our methodology are investigated. The proposed 
methodology is illustrated with some simulation studies as well as an 
application to IBM intraday return densities.

Chapter 2: M ethodology and convergence rates for factor 
modeling of multiple tim e series

An important task in modeling multiple time series is to obtain some 
form of dimension reduction. We tackle this problem using a factor 
model where the estimation of the factor loading space is constructed 
via eigenanalysis of a matrix which is a simple function of the sample 
autocovariance matrices. The number of factors is then equal to the 
number of “non-zero” eigenvalues of this matrix. We use the term 
“non-zero” loosely because in practice it is unlikely that there will 
be any eigenvalues which are exactly zero. However, our theoretical



results suggest that the sample eigenvalues whose population counter­
parts are zero are “super-consistent” (i.e. they converge to zero at a n 
rate) whereas the sample eigenvalues whose population counterparts 
are non-zero converge at an ordinary parametric rate of root-n. Here 
n denotes the sample size. This striking result is supported by simu­
lation evidence and consequences for inference are discussed. In ad­
dition, we study the properties of the factor loading space under very 
general conditions (including possible non-stationarity) and a simple 
white noise test for empirically determining the number of non-zero 
eigenvalues is proposed and theoretically justified. We also provide 
an example of a heuristic threshold based estimator for the number of 
factors and prove that it yields a consistent estimator provided that 
the threshold is chosen to be of an appropriate order. Finally we 
conclude with an analysis of some implied volatility datasets.
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Chapter 1

Identifying the finite 
dim ensionality of curve tim e  
series

1.1 Introduction

A curve time series may consist of, for example, annual weather record charts, 
annual production charts or daily volatility curves (from morning to evening). In 
these examples the curves are segments of a single long time series. One advantage 
to view them as a curve series is to accommodate some nonstationary features 
(such as seasonal cycles or diurnal volatility patterns) into a stationary framework 
in a Hilbert space. There are other types of curve series that cannot be pieced 
together into a single long time series; for example, daily mean-variance efficient 
frontiers of portfolios, yield curves and intraday asset return distributions. The 
goal of this chapter is to identify the finite dimensionality of curve time series in 
the sense that the serial dependence across different curves is driven by a finite 
number of scalar components. Therefore the problem of modeling curve dynamics 
is reduced to that of modeling a finite-dimensional vector time series.

Throughout this chapter we assume that the observed curve time series, which 
we denote by Y\ (•), "  • , Yn('), 3X6 defined on a compact interval J and are subject
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1.1 Introduction

to errors in the sense that

Yt(u) = X t(u) + et{u), u e l ,  (1.1)

where X t(-) is the curve process of interest. The existence of the noise term 
e(-) reflects the fact that curves X t(-) are seldom perfectly observed. They are 
often only recorded on discrete grids and are subject to both experimental error 
and numerical rounding. These noisy discrete data are smoothed to yield the 
‘observed’ curves Yt(-). Note that both X t(-) and et(-) in (1.1) are unobservable.

We assume that £*(•) is a white noise sequence in the sense that E{et{u)} = 0 
for all t and Cov{£t(u),ss(v)} =  0 for any u,v  G 3 as long as t ^  s. This is 
guaranteed since we may include all of the dynamic parts of Yt(-) into X t(-). 
Likewise, we may also assume that no parts of X t(') are white noise since these 
parts should be absorbed into £*(•)• We also assume that

J  B {X t(u)2 + et{u f}du  < oo, (1.2)

and both

=  E {X t(u)}, Mk(u,v) = Cov{X t(u),X t+k(v)} (1.3)

do not depend on t. Furthermore, we assume that X t(-) and st+k{-) are uncorre­
lated for all integer k. Under condition (1.2), ^t(-) admits the Karhunen-Loeve 
expansion

oo

X t{u) -  n(u) =  (1.4)
j=i

where £tj = — fi(u)}(pj(u)du are a sequence of scalar random variables
with E(gtj) = 0, Var(fy) =  Aj and C o v (^ ,^ j) =  0 if i =tj. We rank {^tj, j  > 1}  
such that Xj is monotonically decreasing as j  increases.

We say that X t{-) is d-dimensional if Â  ^  0 and A^+i =  0, where d > 1 is 
a finite integer; see Hall h  Vial (2006). The primary goal of this chapter is to 
identify d and to estimate the dynamic space JVC spanned by the (deterministic) 
eigenfunctions <£i(-)5 • • • , <£<*(')•

Hall & Vial (2006) tackle this problem under the assumption that the curves 
TT(*), * * * ,y n(.) are independent. Then the problem is insoluble in conventional
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1.1 In tro d u c tio n

terms as one cannot separate X t(-) from £*(•) in (1.1). This difficulty was resolved 
in Hall & Vial (2006) under a ‘low noise’ setting which assumes that the noise 
£*(•) goes to zero as the sample size goes to infinity. This condition is reasonable 
under an infill asymptotic scheme, i.e. when the observations on each curve are 
relatively dense. However, when dealing with a sparse design the condition is 
far from adequate and penalties are incurred in terms of the convergence rates 
of the resulting estimators; see Hall et al. (2006). Our approach is different and 
it does not require the low noise condition, since we identify d and JVC in terms 
of the serial dependence of the curves. Our method relies on a simple fact that 
Mfc(u, v) = Cov{y*(u), Yt+k(v)} for any k ^  0, which automatically filters out the 
noise see (1.3). In this sense, the existence of dynamic dependence across 
different curves makes the problem tractable without the low noise argument.

Dimension reduction plays an important role in functional data analysis. The 
most frequently used method is functional principal component analysis in the 
form of computing the spectral decomposition of the empirical covariance opera­
tor. The literature in this field is vast and dates back to the early work of Besse 
& Ramsay (1986), Dauxois et al. (1982), Ramsay &; Dalzell (1991) and Rice & 
Silverman (1991). Much of the work is described in Ramsay & Silverman (2005). 
However, despite the methodological advancements in functional data analysis 
with independent observations, the work on functional time series has been of a 
more theoretical nature; see e.g. Bosq (2000). The available inference methods 
focus mostly on nonparametric estimation of some characteristics of functional 
series (Part IV of Ferraty & Vieu (2006)). As far as we are aware, this work 
represents the first attempt on the dimension reduction based on dynamic de­
pendence. Although we confine ourselves to square integrable curve series in this 
chapter, the methodology may be extended to a more general functional frame­
work including, for example, a surface series which is particularly important for 
environmental studies; see Guillas & Lai (2008).

The rest of the chapter is organized as follows. Section 1.2 introduces the pro­
posed method for identifying the dimensionality d and for estimating the dynamic 
space M. Although an empirical analogue of the Karhunen-Loeve decomposition 
in (1.4) serves as a starting point of our approach, computationally our method 
boils down to an eigenanalysis of a finite matrix thus requiring no computing of
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1.2 M ethodology

eigenfunctions in a functional space directly. The theoretical results of the esti­
mation are presented in Section 1.3. Numerical illustration using both simulated 
and real datasets is provided in Section 1.4 and Section 1.5 closes with a brief 
discussion. We relegate all of the technical proofs to Section 1.6.

1.2 M ethodology

1.2.1 C haracterization of d and 3VC via  serial dependence

Let £/2p ) denote the Hilbert space consisting of all square integrable curves de­
fined on J equipped with the inner product

( f , 9 )  =  J f ( u ) g { u ) d u , f , g G  C 2(J). (1.5)

Now Mk defined in (1.3) may be viewed as the kernel of a linear operator acting 
on £ 2 p), i.e. for any g £ £ 2(3), Mk maps g(u) to g(u) =  J0Mk(u:v)g(v)dv. For 
notational economy, we will use Mk to denote both the kernel and the opera­
tor. Some relevant facts about operators acting on Hilbert spaces are listed in 
Appendix A.

For Mo defined in (1.3), we have a spectral decomposition of the form

00

Mo(u, v) =  ^  Xjipj(u)ipj(v), u , u £ j ,  (1.6)
j = 1

where Ai > A2 > • • • > 0 are its eigenvalues and </?i, (p2, • • • are the corresponding 
orthonormal eigenfunctions (((/?*, tpj) = 1 for i = j ,  and 0 otherwise), i.e.

/Mo(u,v)ipj(v)dv = A j  > 1.

Furthermore the random curves X t(•) admit the representation (1.4). We assume 
in this chapter that X t(-) is d-dimensional (i.e. A^+i =  0). Therefore

d d
Mo(u, v) = ^ 2 \ j ‘pj {u)ipj (v), X t{u) = n(u) + Y^€tj<Pj(u). (1.7) 

j=1 j=1

4



1.2 M ethodology

It follows from (1.1) that

d
Yt(u) = n(u) + ̂2StjViM  + £<(“ )- f1-8)

j=i

Hence the serial dependence of Ff(-) is entirely determined by that of the d- 
vector process £t = (£ti, • • • ,€td)' since £*(•) is white noise. By the virtue of the 
Karhunen-Loeve decomposition E(£t) = 0 and Var(£t) =  diag(Ai, • • • , A<*). 

Denote our estimator of Mk in (1.3) by

n - p

Mk(u,v) = ——  5 ]  { ^ ( U) - ? ( « ) } { l5 +i(« )- ? ( « ) } ,  (1.9)
"  pj=i

where y(-) =  n~l 5Zi<j<n an<̂  P > 1 is a prescribed integer. The reason for 
truncating the sums in (1.9) at n — p as opposed to n — k is to ensure a duality 
operation which simplifies the computation of the eigenfunctions; see Remark
2.2 at the end of Section 1.2.2.2. The conventional approach to estimate d and 
M = span{</?i(-), • • • pd(-)} is to perform an eigenanalysis on M0 and let d be the 
number of non-zero eigenvalues and M be spanned by the d corresponding eigen­
functions; see for example, Ramsay & Silverman (2005) and references therein. 
However this approach suffers from complications due to fact that Mo is not a con­
sistent estimator for Mo since Cov{Yt(u), Vt(w)} =  Mo(u, v) + Cov{et(u), et(v)}. 
Therefore Mo needs to be adjusted to remove the part due to et(•) before the 
eigenanalysis may be performed which is a non-trivial matter. An alternative is 
to let the variance of et(-) decay to zero as the sample size n goes to infinity; see 
Hall & Vial (2006).

We adopt a different approach based on the fact that Cov{y4(ii), Yt+k{v)} = 
Mk(u,v) for any k ^  0, which ensures that Mk is a legitimate estimator for Mk; 
see (1.3) and (1.9).

Let =  E(€t€'t+k) =  (aij^) ke the autocovariance matrix of £t at lag k. It 
is easy to see from (1.3) and (1.7) that Mk(u,v) = Ylij=i (Tij^iPi(u)cPj{v)- Define 
a non-negative operator

5



1.2 M ethodology

where =  {wff) = is a non-negative definite matrix. Then it holds for
any integer k that

J  Nk(u,v)((v)dv = 0, for any £(•) G JVCJ_, (1-H)

where M-1 denotes the orthogonal complement of M in /C2P). Note (1.11) also 
holds if we replace Nk by the operator

v
K (u ,v )  = y ^ N k(u,v)  (1.12)

fc=i

which is also a non-negative operator on .C2P).

Proposition 1.1 Let the matrix Hk be full-ranked for some k > 1. Then the 
assertions below hold.

(i) The operator Nk has exactly d non-zero eigenvalues, and JVC is the linear 
space spanned by the corresponding d eigenfunctions.

(ii) For p > k, (i) also holds for the operator K.

R em ark 1.1 (i) The condition that rank(Efc) =  d for some k > 1 is implied by 
the assumption that Yt(-) is d-dimensional. In the case where rank(Sjt) < d. for 
all k, the component with no serial correlations in X t(-) should be absorbed into 
the white noise term £*(•); see similar arguments on modeling vector time series 
in Pena & Box (1987) and Pan & Yao (2008).

(ii) The introduction of the operator K  in (1.12) is to pull together the infor­
mation at different lags. Using a single Nk may lead to spurious choices of d; see 
Section 1.2.2.3

(iii) Note that f 3K(u, v)Q{v)dv =  0 if and only if f 0 Nk(u, v)£(v)dv = 0 for all 
1 < k < p. However, we cannot use Mk directly in defining K  since it does not 
necessarily hold that $j'Yji<k<pMk(u,v)g(v) ^  0 for all g G M. This is due to 
the fact that Mk are not non-negative definite operators.

6



1.2 M ethodology

1.2.2 Estim ation of d and M

1.2.2.1 Estim ators and fitted dynamic models

As we have stated above, Mk for k ^  0 may be directly estimated from the 
observed curves Yt\ see (1.9). Hence a natural estimator of K  may be defined as

K(u,v) = Y
k= 1

= E EW(«) - - y ),
'  t,s=  1 fc=l

see (1.12), (1.10), (1.9) and (1.5).
By Proposition 1.1 we define d to be the number of non-zero eigenvalues 

of K  (see Section 1.2.2.3 below) and M to be the linear space spanned by the 
d corresponding orthonormal eigenfunctions tpi( ■ ) > • * ' This leads to the 
fitting

d
Yt(u) = Y (u) + Y  u e 3 ,  (1.14)

3 = 1

where
%  =  f { Y t{u )-Y {u )}^ j(u )d ur j  = l,--- ,d. (1.15)

See (1.8). Although M =  span{^i(-)5 • • • is a consistent estimator for
M =  span{</?i(-), • • • , (Theorem 1.2 in Section 1.3 below), -ipj are the esti­
mators for the eigenfunctions of K  defined in (1.12), which are different from the 
eigenfunctions <fj of M0 defined in (1.6). Therefore rjt = (rfti, • • • ,rjt^)' is not an 
estimator for £t used in (1.8).

Now in order to model the dynamic behavior of Vf(-), we only need to model 
the d-dimensional vector process rjt which may be done using VARMA or any 
other multivariate time series models. See also Tiao & Tsay (1989) for applying 
linear transformations in order to obtain a more parsimonious model for rjt.

1.2.2.2 Eigenanalysis

To perform an eigenanalysis in a Hilbert space is not a trivial matter. A popular 
pragmatic approach is to use an approximation via discretization, i.e. to evaluate

Mk(u, z)Mk{y,z)dz (1.13)

7



1.2 M ethodology

the observed curves at a fine grid and consequently replace them with the resulting 
vectors. This effectively transforms the problem to the eigenanalysis of a finite 
matrix. See, e.g. Section 8.4 of Ramsay & Silverman (2005). Below we also 
transform the problem into the eigenanalysis of a finite matrix but not via any 
approximations. Instead we make use of the well-known duality property that 
AB' and B'A share the same non-zero eigenvalues for any matrices A and B of 
the same sizes. Furthermore if 7  is an eigenvector of B'A, A7 is an eigenvector 
of AB' with the same eigenvalue. In fact this duality also holds for operators 
acting on function spaces. This scheme was adopted in Kneip & Utikal (2001) 
and Benko et al. (2009) but the adaptation to our setting is more involved so we 
provide a detailed exposition.

We present a heuristic argument first. To view the operator K (•, •) defined in 
(1.13) in the form of AB', let us denote the curve V̂ (-) — V" (*) a s a n o o x l  vector 
Y t with Y;Ys =  {Yt — Y ,Y S -  Y); see (1.5). Put y k = (Y1+fc, • • ■ , Yn_p+fe). 
Then K(-, •) may be represented as an 00 x x  matrix

Applying the duality stated the above with A = y0 and B' = K
shares the same non-zero eigenvalues with the (n — p) x (n — p) matrix

(1.16)

where the (£, s)-th element of y'ky k is Y't+kY s+k = (Yl+k -  Ys+k -  Y) and
k =  1, ••• ,p. Furthermore, let 7  ̂ =  (7^, • •• ,7n- p,j)', j  = 1, ••• ,d, be the 
eigenvectors of K* corresponding to the d largest eigenvalues. Then

' E ' l t A Y t ( - ) - ? ( ■ ) } ,  (1.17)
t= 1

are the d eigenfunctions of K(-, •). In practice, it is likely that the functions 
in (1.17) may not be exactly orthogonal. Thus the orthonormal eigenfunctions 
V hO )"' 5̂ si ') used in (1-14) may be obtained by applying a Gram-Schmidt 
algorithm to (1.17).
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This heuristic argument is justified by the result below. The formal proof is 
relegated to Section 1.6.

P roposition  1.2 The operator •) shares the same non-zero eigenvalues with 
matrix K* defined in (1.16) with the corresponding eigenfunctions given in (1.17).

R em ark  1.2 The truncation of the sums in (1.9) at (n — p) for different k 
is necessary to ensure the applicability of the above duality operation. If we 
truncated the sum for Mk at (n — k) instead, would be of different sizes for 
different A;, and K* in (1.16) would not be well-defined.

1.2.2.3 D eterm ination  of d v ia s ta tistica l tests

Although the number of nonzero eigenvalues of the operator K(-, •) defined in 
(1.12) is d (see Proposition 1.1), the number of nonzero eigenvalues of its es­
timator K {-, •) defined in (1.13) may be much greater than d due to random 
fluctuation in the sample. One empirical approach is to take d to be the number 
of ‘large’ eigenvalues of K  in the sense that the (d+  l)-th largest eigenvalue drops 
significantly; see Figure 1.1. A more formal method of determining the value of 
d is given in the bootstrap test below.

Let 6\ > 02 > • • • > 0 be the eigenvalues of K. Suppose we are interested in 
testing the null hypothesis

Hq . Odo+i 0)

where do is a known integer, obtained, for example, by visual observation of the 
estimated eigenvalues 6\ > O2 > •• • > 0 of K. Hence we reject Ho if 0do+i > la, 
where la is the critical value at the a E (0,1) significance level. To evaluate the 
critical value la, we propose the following bootstrap procedure.

1. Let Yt(') be defined as in (1.14) with d =  do. Let £*(•) =  Yt(-) — Yt(').

2. Generate a bootstrap sample from the model

!?(•) =  «(•) +  <£(•). 

where are drawn independently (with replacement) from {ei, • ■ • , en}.

9



1.3 T heo re tica l p ro p e rtie s

3. Form the operator K* in the same manner as K  with {!*} replaced by {Yt*} 
and compute the (do + l)-th largest eigenvalue 0 ^+1 of K*.

Then the conditional distribution of 0JO+1, given the observations {Yi, • • • , Yn}, 
is taken as the distribution of 6̂ + i under Ho- In practical implementation, we 
repeat steps 1 and 2 above B  times for some large integer B , and we reject H0 
if the event that 0^+1 > 6̂ + i occurs no more than [aB] times. The simulation 
results reported in Section 1.4.1 below indicate that the above bootstrap method 
works well. A full theoretical justification of the bootstrap is beyond the scope 
of this current work.

1.3 T heoretical properties

We introduce some regularity conditions for model (1.8) first.

Cl. {!«(•)} is strictly stationary and satisfies the condition E[{J3 Yt(u)2du}2+S] < 
oo for some 8 > 0.

C2. For p given in (1.12), the sequence {>*(•),..., Yt+P(-)} is strongly mixing in 
the sense that a(m) — * 0 asm  — * oo, where

a (m )=  sup sup \P{U n  V) -  P(U)P(V ) \ , 
i>i ue?

and = a{ Yj(-),. . . ,  Vj+P(-)}. In addition, it holds that J j j l i  a(j)s^ 2+ŝ  < 
oo with 8 given in Cl above.

C3. Cov{X s(u),£t(v)} = 0 for all s, t and u, v E J.

C4. The d non-zero eigenvalues of K  defined in (1.12) satisfy 0i > • • • > Od > Q, 
i.e. they are all unique.

Rem ark 1.3 (i) Strong mixing is one of the weakest mixing conditions for weakly 
dependent random variables but since probability measure on function spaces 
are complex objects (see Delaigle & Hall (2009) and Hall & Heckman (2002)) 
one may wonder about it’s validity in this context. However, in light of the

10



1.3 T heore tical p ro p ertie s

Karhunen-Loeve expansion of X t(•) in (1.4) (with an analogous representation 
readily available for £«(•))> we may think of the mixing condition on the random 
function y*(-) as being equivalent to placing mixing conditions on it’s (scalar) 
Karhunen-Loeve coefficients.

(ii) We note that conditions Cl and C2 are in fact stronger than required (see 
Merlevede et al. (1997)). However, the necessary and sufficient conditions in this 
context would be messy and perhaps unintuitive so we have stated only a set of 
sufficient conditions here.

(iii) The condition that all eigenvalues of K  are different ensures that its 
eigenfunctions are identifiable. It is still possible to obtain a form of consistency 
of the empirical eigenfunctions without this assumption but the proofs become a 
lot more technical and little further insight is to be gained.

We now solidify some notation before presenting the asymptotic results. De­
note by and (Oj,ipj) the (eigenvalue, eigenfunction) pairs of K  and K
respectively (see (1.12) and (1.13)). We will always arrange the eigenvalues in 
descending order, i.e. Bj > Bj+i and Bj > Bj+1- As the eigenfunction of K  and K  
are only unique up to sign changes, in the sequel it will go without saying that 
the right versions are used. Finally, for any operator L acting on £ 2(J), denote 
by ||jL|[x  the sum of the absolute eigenvalues of L; see also Appendix A. All of 
the results in this section require that p is a fixed and finite integer.

Theorem  1.1 Let conditions Cl - C3 hold. Then as n —► oo, it holds that 
\\K — K\\jj = Op(n~J/2) and s u p ^  |Bj — Bj| =  Op(n~ _1/2). In addition, if C4 also 
holds, then

Note that the results of Theorem 1 hold even if d = oo, i.e. when the dynamic 
space M is infinite dimensional.

1.2.2.1.) To measure the error in estimating M by 3VC, we introduce a measure 
for the discrepancy of any two d-dimensional subspaces Ni and N2 in £ 2(J). Let

1 < j < d .

With d known, put M =  span{^i(-), • • • ,^d(-)} where t/>i(-)> • * • , V>d(*) are the 
eigenfunctions of K  corresponding to the d largest eigenvalues. (See also Section

11



1.3 Theoretical properties

{C i i (*))' ’ ’ >Cid(')} be an orthonormal basis of N*, i = 1, 2. Then the projection 
of Cifc onto !N2 may be expressed as

d

It is clear that this is a symmetric measure between 0 and 1. It is independent

and only if Ni = 3Sf2. Let Z be the set consisting of all d-dimensional subspaces 
of £ 2p). Then (Z, D) forms a metric space in the sense that D is a well defined 
distance measure on Z (see Lemma 1.4 in Section 1.6 below).

We are now in a position to state consistency results about M. We also 
consider the asymptotic properties of M =  span{-0i , . . . ,  ■0^} where d is some 
estimator of d. Since d may differ from d, we use a modified version of D (D' 
given in (1.19)) to measure the distance between M and M.

T heorem  1.2 Let conditions Cl - C4 hold. In addition, suppose that the condi­
tions of Proposition 1.1 are satisfied and d is fixed, finite and known, (i) Then as 
n — > oo, it holds that D(3Vf, M) =  Op(n~1̂ 2) ■ (H) In addition if d d, then it 
holds that -  D(M,M)| =  o^n "1/2).

A remarkable feature of Theorem 1.2 is the adaptivity property, i.e. we do 
not suffer any penalty in our estimation of M when d is unknown provided that 
it can be estimated consistently. Thus it is reasonable to assume that d is known 
when considering the asymptotic properties of our estimation of M. As remarked 
earlier, it is beyond the scope of this current work to provide a full theoretical 
justification of the bootstrap method for determining d given in Section 1.2.2.3.

}  ^ (C2j>Clfc)C2j(^)-
j=1

Its squared norm is 2 j L i ( ( C 2 j 5 Cifc))2 < 1- The discrepancy measure is defined as

(1.18)

of the choice of the orthonormal bases used in the definition and it equals 0 if

12



1.4 N um erical p ro p e rtie s

1.4 N um erical properties

1.4.1 Sim ulations

We illustrate the proposed method simulating data generated from model (1.1) 
with d 100 g

x <(“ ) = e<(“ ) = e [o, i.],
i=l j=1

where { ^ , t > 1} is a linear AR(1) process with the coefficient (—l)l(0.9—0.5i/d),
the innovations Ztj are independent N ( 0, 1) variables and

<Pi(u) = v/2cos(7riu), (j(u) = \/2sin(7rju).

We set the sample size to be n = 100, 300 or 600, and the dimension parameter 
d =  10, 20 or 40. For each setting we repeated the simulation 200 times. We used 
p = 5 in defining the operator K  in (1.13) and for each of the 200 simulations, 
we replicated the bootstrap method 200 times. Note that for this simulation 
experiment, the conditions of Proposition 1.1 are satisfied even if p =  1 so by 
taking p > 1 in constructing K  we are accumulating estimation error. However, 
when analyzing a real dataset we would not know whether or not such a small 
value of p would be sufficient so taking p =  1 may lead to a spurious choice of d. 
Thus our aim in taking a value of p that is larger than necessary is to demonstrate 
that the methodology still performs well even when this is the case.

The average of the ordered eigenvalues of K  obtained from the 200 replica­
tions are plotted in Figure 1.1. For better illustration, we only plotted eleven 
eigenvalues (i.e. five on the each side of the d-th largest eigenvalue). It is clear 
that drop from the d-th largest eigenvalue to the (d + l)-st is very pronounced. 
We applied the bootstrap method to test the hypothesis that the d-th or the 
(d + l)-st largest eigenvalue of K (0d and Oj+i respectively) are 0. The results 
are summarized in Table 1.1 and Figure 1.2. The bootstrap test could not reject 
the true null hypothesis 6d+\ = 0. In fact among the 200 replications for all the 
settings, the P-value was invariably greater than 10%; see panel (b) of Figure 1.2. 
The false null hypothesis 9d =  0 was routinely rejected by the bootstrap when 
n = 600 or 300; see panel (a) of Figure 1.2 and Table 1.1. However the test does 
not work when the sample size is as small as 100.

13



1.4 Numerical properties

Null hypothesis
d 10 20 40

n  =  100 
n  =  300 
n — 600

0.35 (0.30) 
0.02 (0.09) 
0.00 (0.00)

0.33 (0.24) 
0.14 (0.20) 
0.00 (0.03)

0.36 (0.28) 
0.02 (0.04) 
0.05 (0.12)

Null hypothesis @d+1 — 0
d 10 20 40

n =  100 
n = 300
n  =  600

0.95 (0.12) 
0.96 (0.10) 
0.97 (0.09)

0.99 (0.05) 
1.00 (0.01) 
1.00 (0.00)

0.82 (0.16) 
1.00 (0.00) 
1.00 (0.00)

Table 1.1: The means and standard deviations (in parentheses) of the P-values 
of the bootstrap test.

To measure the accuracy of our estimation of the factor loading space M, we 
need to modify the metric D defined in (1.18) as d may be different from d. Let 
Ni, N2 be two subspaces of <C2(J) with dimension d\ and d2 respectively. Let 
{Ciij • • • , Qdi} be an orthonormal basis of Ni, i =  1,2. The discrepancy measure 
between the two subspaces is defined as

D'(Xl 5N2) = \
d\ d,2

It can be shown that Df(N i ,  N2) G [0, 1]. It equals 0 if and only if Ni =  N2, and 1 
if and only if Ni flN 2 =  0. Obviously D'^Ni, N2) =  D(Ni, 3\f2) when d\ = d2 = d. 
We set d = min{fc : 9k =  0} — 1 where we use the bootstrap test at the 5% level 
to determine whether or not 9k =  0. We computed the M) in the 200
replications for each setting. Figure 1.3 presents the boxplots of those D' values. 
It is noticeable that the Df measure decreases as the sample size n increases. It 
is also interesting to note that the accuracy of the estimation is independent of 
the dimension d.

14
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(a) d=10, a verages of the 5th to the 15th largest e igen va lu es

-------------------1---------------------------------------------------- i i-------------------------------------------------1---------------------------------------------------1-------------------

6 8 10 12 14

(b) d=20, averages of the 15th to the 25th largest e igen va lu es
CM

COO

o

od
16 18 20 22 24

(c) d=40, averages of the 35th to the 45th largest e igen va lu es

CO

CMd
oo

36 38 40 42 44

Figure 1.1: The average estimated eigenvalues of the operator 6j over 200 replica­
tions with sample sizes n =  100 (solid lines), 300 (dotted lines) and 600 (dashed 
lines). Recall that by Proposition 1.1 6j =  0 for all j  > d + 1.
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1.4 N um erical p ro p ertie s

(a) The P -v a lu e s  for testing the d -th  largest e igen va lu e

i
i =

d=10 d=10 d=10 d=20 d=20 d=20 d=40 d=40 d=40
n=100 n=300 n=600 n=100 n=300 n=600 n=100 n=300 n=600

(b) The P -v a lu e s  for testing the (d + 1)-th  largest e igen va lu e

o

ood

CDd

•M-d

CMd

d=10 d=10 d=10 d=20 d=20 d=20 d=40 d=40 d=40
n=100 n=300 n=600 n=100 n=300 n=600 n=100 n=300 n=600

Figure 1.2: The boxplots of the P-values for the bootstrap tests of the hypothesis 
that (a) the d-th largest eigenvalue of K  is 0, and (b) the (d +  l)-th largest 
eigenvalue of K  is 0. In (a), the solid horizontal line marks the position of the 
5% significance level, and the dotted line marks the 1% significance level. In (b), 
the solid horizontal line marks the position of the 10% significance level.
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d=10 d=20 d=40
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oooo
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n=100 n=300 n=600
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n=100 n=300 n=600
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so n=100 n=300 n=600

Figure 1.3: Boxplots of the estimated error ) defined in (1.19).

1.4.2 Intraday return densities

To illustrate the methodology developed in this chapter, we set upon the task of 
modeling the intraday return densities for the IBM stock in 2006. To this end, we 
have obtained the intraday prices from NYSE TAQ via the WRDS database. We 
have only used prices between 09:30 - 16:00 since the market is not particularly 
active outside of these times. There are n = 251 trading days in the sample and 
a total of 2786650 observations. The dataset is 73.7 MB in total.

Since high frequency prices are not equally spaced in time, it is worth men­
tioning how we compute the returns. We adopt a standard ‘clock tim e’ scheme 
for which we have decided to work with 5 minute returns. The clock time strategy 
samples the prices as follows. Let Xi(Uj) denote the observed stock price on the 
«-th day, i =  1 , . . . ,  n, a t time j  =  1 , . . . ,  n*. Put  X i0 =  Xi(tn).  Now let 77, 
I =  1 , . . .  ,m  be the times at which we would like to collect prices. In our case 
with the requirement of 5 minute returns we would have T\ =  09:35, T2 =  09:40,

• • • ? Tm = 16:00 and m = 78. Now for day i , define the previous tick time

Tu =  max{^j : Uj < 7], I =  1 , . . . ,  rii}, I =  1,__ , m.

17



1.4 Numerical properties

Let Xu =  Xi(ru)- Then the Z-th return on day i is given by Zu — lo g p ^ /A ^ -i) , 
I = 1, . . .  ,m. Note that sampling at 5 minutes in clock time for this dataset 
yields a total of n  x m  =  19578 effective observations.

One may also sample the prices based on some activity based scheme. For 
example, rather than sampling the prices every few minutes, an alternative may 
be to perform the sampling every few ticks. This type of strategy is known as 
sampling in ‘business time’. We performed the analysis using the business time 
sampling strategy as well but we have not reported the results here since they 
were very similar to the clock time based method.

Now given a set of high frequency returns, we estimate the intraday return 
densities by using a simple kernel density estimator

Yt(u) = (nht) - ' ^ K ( ? ± ^ y  t =  (1.20)

where K(u) = ( \ / 2 7 r ) _1  exp(—u2/ 2) is a Gaussian kernel and ht is a bandwidth. 
For all values of t , we take the support of Yt(-) to be 0 = [—0.002,0.002].

Let dt be the sample standard deviation of Z tj  and ht = 1.06^m-1/5 be 
Silverman’s rule of thumb bandwidth choice for day t. Then for each Z, we 
employ three different levels of smoothing (low, medium and high) by setting ht 
in (1.20) equal to 0.5ht, ht and 2ht. More elaborate smoothing techniques are 
the subject of further study; see also the discussion in Section 1.5. Figure 1.4 
displays the observed densities for the first 8 days of the sample.

Using the observed densities, Yt(-), we apply the methodology developed in 
this chapter. In defining the operator K  in (1.12), we take p =  5 for all levels of 
smoothing. Estimation results for different values of p are very similar and thus 
not reported here.

Figure 1.5 displays the estimated eigenvalues of the operator K. A feature 
that stands out from this graphic is that the eigenvalues are uniformly smaller 
when larger bandwidths are used. Since the size of the eigenvalues determines 
the strength of the dynamics in their corresponding eigensubspace, this finding 
is intuitive as one would expect that the more the data is smoothed, the less 
dynamics there will be.

18
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t=1 t=2

i i i I l i | i i |
-0 .002 -0.001 0.000 0.001 0.002 -0 .002 -0.001 0.000 0.001 0.002

Figure 1.4: Observed densities, Yt(-), using bandwidths ht = 0.5ht (solid lines), 
ht (dashed lines) and 2ht (dotted lines).

It is clear from Figure 1.5 that for all levels of smoothing, the first two eigen­
values are much larger than the remaining ones. Indeed, from the third eigenvalue 
onwards it appears that there is no clear cut-off. This would lead one to conclude 
that for all levels of smoothing, we have two factors driving the dynamic behavior 
in the density functions. These findings are supported by Table 1.2 which con­
tains the P-values from 100 replications of the bootstrap test in Section 1.2.2.3. 
For all levels of smoothing, we reject the null H0 : 02 = 0 but cannot reject the 
hypothesis that dj — 0 for j  = 3,4,5. We can of course continue to test dj = 0 
for j  > 6 but there is little point in doing so since if dj = 0 this automatically 
implies that @j+1 — 0; recall these eigenvalues are always arranged in descending 
order. Indeed, we only proceeded beyond testing #3 =  0 for illustrative purposes. 
Collating all these findings, we set d = 2 for all levels of smoothing in proceeding 
analysis.
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eigenvalues_1:10

lr>
+
0o
co

oo
+0o

eigenvalues_2:11

eigenvalues_3:12

Figure 1.5: Estimated eigenvalues 6j using bandwidths ht =  0.5ht (solid lines), 
ht (dashed lines) and 2ht (dotted lines).

Figure 1.6 displays the first d = 2 estimated eigenfunctions 'ipj in (1.14) for 
all three levels of smoothing. A striking feature of this graphic is that although 
the observed densities, Yt(-) in Figure 1.4 look very different for each level of 
smoothing, the estimated eigenfunctions appear to be very insensitive to the 
level of smoothing in terms of their general shape. Of course, for smaller values 
of ht the estimated eigenfunctions will appear more wiggly. The intuition behind 
this finding is fairly simple; estimation of the eigenfunctions can be thought of 
as a standard semi-parametric estimation problem where the density functions 
themselves are nuisance parameters. In this sense, it is fairly well known that 
the feasible set for ht in (1.20) is larger when our parameters of interest are the 
eigenfunctions rather than the density functions themselves. Another possible 
reason behind this finding which is unique to our methodology is discussed in 
Section 1.5.
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ht = 0.5 ht 5- II >9 h = 2ht
Ho : 0i =  0 0.00 0.00 0.00
Ho : #2 =  0 0.00 0.00 0.00
Ho : 03 =  0 0.35 0.15 0.18
Ho : 04 =  0 0.62 0.73 0.74
Ho : 05 =  0 0.68 0.91 0.93

Table 1.2: P-values from applying the bootstrap test in Section 1.2.2.3 to the 
intraday return density example.

Figure 1.7 displays time series plots of the estimated loadings fjt\ and fjtj in 
(1.15). Again, a remarkable feature of this graphic is that although the observed 
densities in Figure 1.4 are clearly dissimilar for different choices of ht, the esti­
mated loadings are almost indistinguishable from one another. Furthermore, the 
ACF and PACF of the series fjt = are also virtually identical for all
three levels of smoothing. These graphics are displayed in Figure’s 1.8 and 1.9.

Next we fit some VAR models to the estimated loadings, rjt;
T

V t = +  e* (L21)
k=i

Since the estimated loadings have mean zero by construct, we do not fit an inter­
cept term. We choose the order of the VAR models, r  in (1.21), by minimizing 
the AIC. The AIC values for the order r  = 0 ,1, . . . ,  5 are given in Table 1.3. For 
all three levels of smoothing, the AIC criterion chose r  =  3 and the multivari­
ate portmanteau test (with lag values 1, 3, and 5) of Li & McLeod (1981) for 
the residuals of the fitted VAR models are insignificant at the 10% level. The 
Yule-Walker estimates of the parameter matrices, A*, = (u^ij) in (1.21), with the 
order r  =  3 are given in Table 1.4.

To summarize, we found that the dynamic behavior of the IBM intraday 
return densities in 2006 was driven by d = 2 factors. These factors are modeled 
well using VAR models of order r  = 3. A striking feature of this analysis was that 
for all three levels of smoothing that we applied, these conclusions were identical 
and much of the resulting inference was also very similar. Some further insights 
on this last point are given in Section 1.5.
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(a) eigenfunction_1 (b) eigenfunction_2
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Figure 1.6: Estimated eigenfunctions (a) ipi and (b) using bandwidths ht =
0.5ht (solid lines), ht (dashed lines) and 2ht (dotted lines).

r  =  0 r  =  1 T = 2 T  = 3 T = 4 r  =  5

II O Ui >*
)

131.33 40.39 9.98 0.00 7.86 10.38
ht — ht 133.04 41.32 9.53 0.00 7.47 10.08

II to >-> 135.47 40.83 9.58 0.00 7.00 8.94

Table 1.3: AIC values from fitting the VAR model in (1-21). The figures in this 
table have been centered at the minimum AIC value.
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(a) loading_1

0 50 100 150 200 250

(b) loading_2

CN

O

0 50 100 150 200 250

Figure 1.7: Estimated loadings (a) rjt\ and (b) fft2 using bandwidths ht =  0.5ht 
(solid lines), ht (dashed lines) and 2ht (dotted lines).

j 1 2

ht 0.5/if ht to 1 >
*) 0 .5^ ht 2 ht

Ul,lj 0.08 0.07 0.01 -0.14 -0.16 -0.22

al,2j -0.08 -0.05 0.03 0.24 0.26 0.33

a2,lj 0.35 0.39 0.38 0.06 0.09 0.08

a2,2j -0.36 -0.43 -0.43 -0.05 -0.10 -0.11

a3,lj 0.08 0.05 0.02 -0.13 -0.15 -0.18

f l3,2j -0.16 -0.13 -0.11 0.14 0.15 0.17

Table 1.4: Estimated parameter matrices A*. =  (a^ij) from fitting the VAR model 
in (1.21).
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loading_1 loading_1 & loading_2

Mi-t - t - t i l ' t I 'IH :

loading_2 & loading_1 loading_2

Figure 1.8: ACF of rjtj using bandwidths h =  0.5ht (solid lines), ht (dashed lines) 
and 2ht (dotted lines).
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Figure 1.9: PACF of r)tj using bandwidths h =  0.5ht (solid lines), ht (dashed 
lines) and 2ht (dotted lines).
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1.5 D iscussion

1.5 D iscussion

In this chapter, we have developed a method for identifying the finite dimen­
sionality of curve time series for the realistic setting where the curves of interest 
are observed with error. Based upon a computational shortcut we have devel­
oped, the practical implementation of our methodology is trivial even for higher 
dimensional applications.

We conclude with some remarks which may spur future research. As we saw 
in the IBM density function example in Section 1.4.2, much of our inference was 
unaffected by the level of smoothing we applied to the observed densities. In 
particular, the estimated eigenfunctions had an identical shape for the different 
bandwidth values we applied.

Consider the standard observational setting

Yij = Xi{Uij) -)- £y, i = 1, . . . , 72, j ' — 1, . . . , 77ij, (1.22)

where Sij is some random noise. Now let Yfy) be a local polynomial estimate 
of Aj(-). Then in traditional functional data analysis, one is typically interested 
in estimating the eigenfunctions of A/0(u,u) =  Cov{Xj(u), for which we
often use the eigenfunctions of Mo = n _1 Ya =i ( ^ ( u) — — ^"(u)} as
our estimates. In this case, it was shown in Hall et al. (2006) that the result­
ing estimates are root-n consistent, in the £ 2(3) sense, provides m = minm* 
diverges with n. However, if the observations on each function are sparse, i.e. 
m  is fixed, and provided that tij are random enough, then the minimax optimal 
rate of convergence empirical eigenfunctions is n~r^ 2r+1\  Here r is the order of 
the local polynomial estimator used and thus the number of derivatives assumed 
on the population functions. The intuition behind this result is simple; under 
an appropriate set of regularity conditions, if m — > oo, Yfy) is consistent for 
Xi(-) and thus M0 is root-n consistent for M0. From here, one can use standard 
techniques (see Hall & Hosseini-Nasab (2006) and Hall & Hosseini-Nasab (2008)) 
to show that the corresponding eigenfunctions are also root-n consistent. How­
ever, when the observations on each function are sparse, the problem becomes a 
nonparametric one and the familiar rates of convergence from this paradigm are 
obtained.
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Our setting is different in that we do not require our estimate Yi(•) to be consis­
tent for Xf(-). In fact to obtain root-n convergence of the eigenfunctions and thus 
the dynamic space JVC, all we require is that !*(•) has the same auto-correlation 
structure as Xi(-) or more generally that Mk in (1.9) is root-n consistent for Mk 
in (1.3). This leads to an open question;

Given the discrete data design in (1.22), is it possible to construct a 
root-n consistent estimate of JVC for the setting where the observations 
on each curve Xi(-) are sparse, i.e. m is fixed?

We believe that if this can be achieved, then it would be a significant achievement 
in the modern era of high dimensional data analysis.

1.6 P roofs

In this section we provide the proofs of the propositions in Section 1.2 and the 
theorems in Section 1.3. Throughout the proofs we may use C to denote a 
positive and finite constant which may vary from line to line. We refer the reader 
to Appendix A for some background on operator theory which is required for the 
proofs. We introduce some technical lemmas first.

Lemma 1.1 Let L be a finite dimensional operator such that for some sequences 
of orthonormal vectors {e^}, {fj}, {gj} and {hj} and some sequences of decreas­
ing scalars {dj} and {Aj}, L admits the spectral decompositions L = Y^=i &jej ® 
fj = Ylj=i A j gj hj. Then it holds that d! = d.

P roof of Lemma 1.1 Note that if d ^  d' then both Im(L) and Im(L£) will 
be of different dimensions under the alternative characterizations due to linear 
independence of {e^}, {fj}, {gj} and {/&j}. Thus it must hold that d = d' . □

Lemma 1.2 Let L be a linear operator from Tt to CK, where % is a separable 
Hilbert space. Then it holds that Im(LL*) = Im(L).
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1.6 Proofs

P ro o f of Lem m a 1.2 First note that Ker(L*) =  (Im(L))x , Ker(L) =  (Im(L*))± 
and Ker(L*) = Ker{LL*). Thus

Im(LL*) =  (Im (LL*))X\

= (Im((Lr)*))xx
=  (Ker(Li*))x 

=  (Ker(L*))x

=  (Im(L))xx

= Im(L),

which concludes the proof. □

For the sake of the simplicity in presentation of the remaining proofs, we adopt 
the standard notation for operators acting on Hilbert spaces. For any /  G £ 2 p ) ,  

we write ||/ || =  y/ (/, / )  (see (1.5)), and denote M kf G .C2P) the image of /  
under the operator Mk in the sense that

(Mkf)(u) = J  Mk(u,v)f(v)dv.

The operators ATfc, K , Mk and K  may be expressed in the same manner. Note 
now that the adjoint operator of Mk is

Furthermore Nk =  MkM% in the sense that N kf = MkM^f; see (1.10). In the 
same way K  =  J2k=i and K  = 1 see (1-12) and (1.13).

P ro o f of P roposition  1.1 (i) We only need to show Im(iVfc) =  M. Since 
Nk =  MfcM£, it follows by Lemma 1.2 that Im (Nk) =  Im(MkM^) = Im(M^) 
since both Nk and Mk are finite dimensional and thus their images are closed. 

Now, recall from Section 1.2.1 that Mk may be decomposed as

d
M k = Y l  ® Vi- (L23)

i j=1
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Thus from (1.23), we may write

=  (1-24)

where

Pik

2—1

(fc) ct

-  ^ h e ^ h.
5 ^ i < V J  t=t

From (1.23), it is clear that Im (Mk) C M, which is finite dimensional. Thus Mk 
is compact and therefore admits a spectral decomposition of the form

Mk = i ^ e f )i>f) ®<t>f\ (1.25)
3 = 1

with (<jfp, ) forming an adjoint pair of singular functions of Mk corresponding
to the singular value 9jk\  Clearly dk < d. Thus if dk < d, lm(Mk) C 3VC since 
from (1.25), Im(Mfc) =  span{V>jfĉ : j  =  1 , . . . , d k} and any subset of dk(< d) 
linearly independent elements in a d-dimensional space can only span a proper 
subset of the original space.

Now to complete the proof, we only need to show that the set of {p^}  in 
(1.24) is linearly independent for some k. If this can be done then we are in 
a position to apply Lemma 1.1. Let (3 be an arbitrary vector in Md and put 
cp = (<pi,. . . ,  ifd)' and p k =  (Pifc\  • • •, Pd^y» then the linear independence of the 
set {p^} can easily be seen as the equation

Ppk = P'ZkV = 0,

has a nontrivial solution if and only if /3S*, =  0. However since E*, is of full rank 
by assumption, it follows that it is invertible and the only solution is the trivial 
one (3 = 0. Thus Lemma 1.1 implies dk = d and the result follows from noting 
that any linearly independent set of d elements in a d-dimensional vector space 
forms a basis for that space.

(ii) Similarly to the proof of part (i) above, we only need to show Im(A') =  M. 
Note that for any /  6 L2p), < MkM%f, f  > = < M {f, M £ f > = \\M%f\\2 > 0, 
thus the composition Nk = MkM^ is non-negative definite which implies that
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1.6 Proofs

K  = Ylk=i Nk is also non-negative definite. Therefore, Im(iir) =  U^=1Im(ATfc). 
Prom here, the result given in part (i) of the proposition concludes the proof. □

P ro o f of P roposition  1.2 Let Qj be a non-zero eigenvalue of K*, and 7  - =  
(7 1  j , • • • , 7n-pj)' be the corresponding eigenvector, i.e. K*7 j = Writing
this equation component by component, we obtain that

{Yt+k -  Y , Ys+k -  Y)(Y , - Y , Y i -  Y )yij = 7^ ,  (1.26)
^  Pl i,,=i k=i

for t =  1 , . . . ,  n — p; see (1.16). For ipj defined in (1.17),

(£&)(») = J  K(u,v)ipj(v)dv

=  2  “  ? (U) } ( Y* ~  Y & H Y t + k  ~  Y ,  Ys+k ~  Y )
 ̂ t ,s= l fc=l

n—p p

(n — p)2 'V t,a,i=1 fc=l
5 3  £ { y t(u) -  y(u)b«<n ~ y , y , ~  ?){Yt+k -  ? , Ys+k -  y>,

see (1.13). Plugging (1.26) into the right hand side of the above expression, we 
obtain that

n—p

t=1
i.e. ipj is an eigenfunction of K  corresponding to the eigenvalue dj. □

Before presenting the proof of Theorem 1.1, we present a further technical 
results which proves useful in the derivations.

Lemma 1.3 Let A ,B  £ §. Then it holds that \\AA* — BB*\\jj < {||^4||s +  
||B ||g}||4-B ||g .

Proof of Lemma 1.3 First note that for any 4 , B € S, || 4̂*||§ =  ll^lls and by 
the Cauchy-Schwarz inequality ||4B||>r < ||4||g||B||g. Thus

||4 4* -B B * ||*  =  | |(4 -B )4 *  + B (4 * -B ‘)||N
< ||(4 — B)j4*||ff+ || B(j4* — B*)||k

< ||4*||s ||4 -B ||s+ ||B ||g ||4 * -B * ||s  

= {||4||s + ||B ||g } ||4 -B ||s ,
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as required. □

P ro o f of Theorem  1.1 First notice that
v

II*-*11* = \\J2Nk-Nk\\n
k=l

p

< -  MkM'k U
fc=1 

p

k=l

where the final inequality follows from Lemma 1.3. Now if Mk Mk in the 
topology of S, then ||Mjb||g ||Mfc||§ < oo since the existence of E(Yt2) guaran­
tees that Mk is Hilbert-Schmidt. Thus we may write

p
| | £ - t f | U < A £ | | M * - M t ||*, (1.27)

fc=l

where A =  maxfc>i{||A/fc||s +  ||Mfc||§}. From (1.27) it is clear that we are only 
required to control ||Mk — Mk\\s since if this quantity converges to zero, then A 
will be bounded in probability and K  will be consistent in the || • ||n sense.

Now, some straightforward calculations show that

n —p

Mk =  - A -  Y l(Y t - ? ) ® ( Y t+k- Y )
n - V T lt= l  

n —p

= —  y '(V 1- ^ ) ® ( y m - ^ )  +  Op(n -1), (1.28)
n ~ P t (

since n ~  n — p (as p is fixed and finite). Put Ztk =  (Yt ~  f1) ® (Yt+k ~ v) ~ Mk. 
Then in light of (1.28), it holds that (n — p)_1 Y!d=i Ztk =  Mk — Mk +  Op(n_1). 
Furthermore, since Cov{Xs, et} = 0 for all s, t, it holds that E(Ztk) =  0. Now by 
using the fact that {Yt} (and thus also {Zkt}) is strictly stationary, Lemma B.3 
yields



1.6 Proofs

as Ztk £ 2loo (which, by conditions Cl and C2, guarantees integrability of 
o;~1(u)Q|Ztfclls (u)). Thus via an application of the Chebyshev inequality to (1.29) 
it follows that

n —p

Mk - M k = ( n -  p )-1 Ztk + Op(n~l ) =  O ^ tT 1/2). (1.30)
t= 1

Now (1.27) and (1.30) together yield \\K — i f  ||n =  Op(n~1//2). This concludes the 
first part of the assertion.

Given \\K — if  ||>f =  Op(n~^2), Lemma B.l implies that supJ>:l \6j — 6j\ = 
Op(n-1/2). Finally, condition C4 implies that tjjj is an identifiable statistical 
parameter from which Lemma B.2 in yields \\ipj — ip j  || =  Op(n_ly/2) for j  =  1 , . . . ,  d 
since we always assume that the right versions (in terms of sign) of ip j  and ip j  are 
used. □

Lemma 1.4 The function D defined in (1.18) is a well defined distance measure 
on Z.

Proof of Lemma 1.4 Non-negativity, symmetry and the identity of indis- 
cernibles are obvious. It only remains to prove the subadditivity property. For 
any L G §, note that ||L||g =  y/tr(L*L), where tr denotes the trace operator. 
Now, for any X* E Z, i = 1, 2,3, let II Xj denote its corresponding d dimensional 
projection operators defined as follows

d

n x ,  =  ^   ̂Ci j  ®  Ci j  j

3 = 1

where {£y : j  =  1, . . . ,  d} is some orthonormal basis of X*.
Now the triangle inequality for the Hilbert-Schmidt norm yields

l|nXl -  fix3 ||s < ||nXl -  nx2||s + ||nx2 -  nx3||s-

Since the projection operators are self adjoint, we have 

\A r(n ^ )  +  t r ( n ^ )  -  2 tr(nXlIIx3)

< ^tr(n2Xi) + tr(n2Xa) -  2tr(nXlnx2) + ^tr(n2X2) + tr(n2X3) -  2tr(nX2nx3).
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Now tr(II^) =  trQnxJ =  d and t r ^ I I x , )  =  Tfi,k=1 (CihCjkf for i , j  = 1,2,3. 
These last facts along with the definition of D in (1.18) give

D{X1:X3) < D(X1,X2) +  D(X2,X3),

which concludes the proof. □

P ro o f of Theorem  1.2 (i) First note that from (1.18)

VMD(MI3VC) =  ||n3;t - n M||s> (1.31)

where ILj  ̂ =  52j=1 ipj <8> ipj and IIm =  <pj ® 4>j with 0i , . . . ,  fa  forming any 
orthonormal basis of M. Now if 11^ and 11^ are any projection operators onto 
M, then by virtue of Lemma 1.4 it holds that HII^ — II^Hs =  y/2D(M, M) =  0. 
Thus we may proceed as if Iljvt in (1.31) was formed with eigenfunctions of K ,  

i.e. <j)j =  ipj for j  =  1, . . . ,  d.
Now we have

d d d

I I ® ^ l | s  < (1*32)
j=i j=i j=i

i.e. ipj <8> ipj (resp. ipj <g> ipj) is the projection operator onto the eigensubspace 
generated by 6j (resp. 6j) .  Now by Theorem 1.1, | | K  — K \ \ jj >  \ \ K  — K \\§ =  

Op(n-1/2). Thus an application of Lemma B.4 yields \\ipj ® ipj — ipj ® ipj\\% — 
Op(n~1/2) for j  = 1 , . . . , d .  This last fact along with (1.31) and (1.32) yield 
D(M,M) =  Op(n-1/2).

(ii) It remains to prove the adaptivity property. For any constant C > 0

P {n1/2\D '(U ,M ) -  D(M,M)| > C}

=  P {n1/2\D'{M,M) -  DpVt,M)| > C, d = d}

+ P{nl/2\D'(M,M) -  D(jfC,M), d ^  d}

= P{n1/2\D \M ,M )-D (M :M )\> C \d  = d}P(d = d) 

+ P{n1/2\D'(M,M) -  P(M,3VC)| > C \ d ^  d}P(d ^  d)

< P {n1/2\D'(M,M) -  D (M ,U )\ > C \ d  = d}P(d = d) +  P(d ±  d)(1.33)

Now by assumption P(d = d) — > 1 and thus P{d ^  d) = o(l). Furthermore, if 
d = d it holds that P(3Vt, M) =  D(M, M). These last relations along with (1.33) 
yield P {n 1̂ 2\D(M,M) — D(M,M)| > C} =  o(l) as required. □
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C h ap te r 2

M ethodology and  convergence 
ra te s  for factor m odeling of 
m ultip le tim e series

2.1 In troduction

When modelling a time series Y t G Mp, a crucial task in any pre-analysis is to 
try and reduce the dimensionality if p is large. To see why, if one tries to fit 
a VAR model to Y t then we are required to estimate 0{p2) parameters and in 
many modern statistical data sets we may have p «  n or even p »  n, where n 
is the sample size. In these settings, our estimation is likely to be inaccurate and 
we may end up making misleading inferences as a result. This is the so called 
“curse of dimensionality” and is at the forefront of modern statistical research; 
see Donoho (2000) and Fan & Li (2006).

There have been many attempts in reducing the dimensionality for multiple 
time series which include principal component based approaches (Preistley et al. 
(1974) and Stock & Watson (2002)), canonical correlation based methods (Box 
& Tiao (1977) and Tiao & Tsay (1989)) and factor models (Bai (2003), Engle k  
Watson (1981), Forni et al. (2000), Lam k  Yao (2009), Pena & Box (1987) and 
Pan k  Yao (2008)).

As suggested by the title, the focus of this chapter will be on factor models for 
multiple time series. The form of the model that we consider is identical to that in
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Pan & Yao (2008) who identified the factor loading space by expanding the white 
noise space step by step and used portmanteau tests as a stopping rule. Although 
our estimation procedure is based upon the same principle as Pan & Yao (2008), 
our implementation is much more efficient and can handle cases with very large 
p. See also Lam & Yao (2009). An interesting feature of our methodology is that 
nonstationarity is permitted and does not necessarily have to be driven by unit 
roots. The latter was consider in Ahn (1997) and Pena & Poncela (2006). In fact, 
all that is required to obtain consistency of the factor loading space is that the 
sample autocovariance matrices are consistent for their population counterparts. 
This is often implied by ergodicity of a stationary process and may also be fulfilled 
by some non-stationary mixing processes; see the remarks made in Section 2.3.

The main focus of this chapter is on identifying the number of latent factors. 
To this end, we present a simple white noise test and provide some theory to 
support it. In particular, we argue that the number of factors is equal to the 
number of non-zero eigenvalues of a p x p matrix, which is simply a function of 
the population autocovariance matrices. Although the sample analogue of this 
matrix is likely to be full ranked, we prove a striking result which is unique to 
our methodology; the eigenvalues whose population counterparts are truly zero 
are “super-consistent” under an ideal set of condition, i.e. they converge to zero 
at the rate n -1. An example of a consistent threshold based estimator of the 
number of latent factors is also given.

The rest of this chapter is organized as follows. Section 2.2 introduces the 
methodology for estimating the factor loading space and the white noise test for 
determining the number of latent factors. The theoretical results are presented 
in Section 2.3 and some simulations investigating the white noise test and also 
demonstrating the fast convergence rate of the eigenvalues are given in Section 
2.4. We conclude with the analysis of some implied volatility surface data. All 
of the technical proofs are relegated to Section 2.6.
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2.2 M ethodology

2.2 M ethodology

2.2.1 Factor m odels

Let Y t be a p x 1 time series generated by the factor model

Y t =  A X t +  £i, t =  l , . . . , n ,  (2-1)

where X* is a d x 1 time series with d < p unknown, A is a p x d unknown constant 
matrix and et is a p x 1 white noise process in the sense that E ( e se ,t) = 0 for 
any s ^  t. Note that we do not lose any generality by assuming that et is a 
white noise sequence since if this was not the case then any parts of et which 
possess serial correlation should be absorbed into X*. Conversely, we may also 
assume that there exists no linear combination of X* which is a white noise process 
otherwise such a linear combination may be absorbed into et. We only observe 
Y i , . . . ,  Y n from the factor model (2.1). To simplify the presentation, we assume 
that E {Y t) = 0. In practice this amounts to replacing Y* by Y t — Y  before the 
analysis, where Y  =  n~l Ylt=i Yt-

The components of Xt are called the common factors and A is called the 
factor loading matrix. We may assume that the rank of A is d since if this is 
not the case then (2.1) may be expressed equivalently using a smaller number of 
factors. Note that model (2.1) is unchanged if we replace A and X* by AH  and 
H - 1X* for any invertible d x d matrix H. Therefore, we may assume that the 
columns vectors of A =  (a i , . . . ,  a^) are orthonormal, i.e.

A 'A  =  Id, (2.2)

where Id denotes that d x d  identity matrix. Note that even with the constraint in 
(2.2), A and X* are still not uniquely determined in (2.1) as the aforementioned 
replacement is still applicable for any invertible H. However, the linear space 
spanned by the columns of A, denoted M and called the factor loading space, is 
a uniquely defined d-dimensional subspace of Rp; see the arguments in Section 
2 .2 .2 .
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2.2.2 E stim ation  o f JVC

Let £„(*) =  E (Y tY't+k) and Hx(k) =  £ (X tXJ+fc) denote the lag autocovari­
ance matrices of Y t and Xt respectively. We impose the following identifiability 
conditions:

Al. £s is a white noise sequence uncorrelated with X* for all s, t.

A2. rank{Ex(A;)} =  d for some 1 < k < q.

Then under conditions Al and A2, Proposition 1.1 in Chapter 1 implies that 
the matrix Lq defined by

L, =  £ £ „ ( * ) £ # ) ' ,  q>  1, (2.3)
k= 1

has exactly d non-zero eigenvalues and M is the linear space spanned by the 
corresponding eigenvectors.

A formal proof of this result is given in Chapter 1 in the more general setting 
where the observations are functional. However, in the vector case it is much 
easier to see the reasoning behind this result. Under the assumption that X s and 
et are uncorrelated for all s, t it follows that

£„(*)£»(*)' = A £ x(fc)£x(/c)'A', (2.4)

since A 'A =  1̂ ; see (2.2). Thus from (2.4) it is clear that the eigenvectors of 
S y(A;)Sy(k)' are elements of M. In addition, it is clear that rank{Sy(/[;)Ey(/c)/} 
< d with equality if and only if rank{Sa;(A:)} =  d. Thus if rank{Xx(A;)} =  d, 
it holds that Ey(fc)Sy(/c)/ has exactly d uniquely determined eigenvectors (up to 
sign provided that the eigenvalues are all different) corresponding to d non-zero 
eigenvalues. By noting these last few facts, the result above follows by recalling 
that d linearly independent vectors in a d-dimensional space form a basis for that 
space.

The reason for considering the matrix Lq in (2.3) is because in practice we 
do not know which values of k for which £ x(/c) is full ranked. Thus by using 
Lq we effectively aggregate the information over q different lags. Also note that
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S y(A:)Sj/(A:)/ may be replaced by 'Zy(k) in all of the discussion in the preceding 
paragraph. However it does not necessarily hold that Y ll=1 has exactly d
non-zero eigenvalues due to the fact that the matrices E y(A;) are not non-negative 
definite.

Rem ark 2.1 (i) Al is relaxed in Pan & Yao (2008) to allow for correlations 
between Xs and et. Their methodology relies on estimating M-1 =  spanje^ G Mp : 
e' fj = 0 Vfj G M} via a stepwise expansion algorithm. However, the minimization 
problem implicit to their algorithm is p dimensional at each step. Thus if p is 
large the methodology developed there may not be computationally feasible.

(ii) The condition that rank{£x(/c)} =  d for some k > 1 holds without loss 
of generality since if this was not the the case then the parts of X* without any 
serial correlation should be confounded into et.

In light of the arguments above, we may estimate JVt as follows. Let £ y(fc) = 
(n — k )-1 Ylt=i then we define our estimator of Lg by

L, = ^ S „ ( fc ) S y(fc)'. (2.5)
k=1

Now our estimator of d is the number of “non-zero” eigenvalues of Lq (see Section
2.2.3 below) and our estimator of M is the linear space spanned by the corre­
sponding eigenvectors. Note that both L9 in (2.3) and Lq in (2.5) are non-negative 
definite, thus all of their eigenvalues will be greater than or equal to zero.

2.2.3 W hite noise test for d

Let Ai > • • • > Xp > 0 denote the ordered eigenvalues of Lq in (2.3) and recall 
that under identifiability conditions Al and A2, it holds that rank{Lg} =  d, 
that is A j =  0 for all j  > d +  1; see the discussion in Section 2.2.2. Thus if 
Ai > • • • > Ap denote the eigenvalues of our estimate Lq in (2.5), then a simple 
method of determining d would be to plot these ordered eigenvalues, Â , and 
decide how many of them are “large”. Formally, for some threshold e decided 
from graphically observing the estimated eigenvalues, we may estimate d by # { j  :
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Aj > e}. Provided e tends to zero at ah appropriate rate, Theorem 2.3 shows 
that such a method for estimating d is consistent. Further theoretical evidence 
in favor of this method is supported by the striking result in Theorem 2.2 which 
suggests that the convergence rates of the eigenvalues Aj for j  > d +  1 is n -1 
when an ideal set of conditions are satisfied; i.e. the estimated eigenvalues whose 
population counterparts are truly zero are “super-consistent” . Some intuition 
behind this result is given in Section 2.3 and simulation evidence is provided in 
Section 2.4.

A more useful data driven method of estimating d is given by the following 
“white noise test” . Suppose that we are interested in testing the hypothesis

Ho : d = do, 1 < do < p. (2.6)

Then since rank{Lg} =  d, testing the hypothesis in (2.6) is equivalent to testing 
how many non-zero eigenvalues the matrix h q in (2.5) has. Therefore, we may 
transfer our attention to testing

H o  : Ado+i =  0, (2.7)

then it turns out that testing the hypothesis in (2.7) is in fact quite simple based 
upon the proceeding argument. Let f G Mx. Then it holds that YJf =  XJA'f + 
e'tf  = e'tf  which is simply a scalar white noise; see (2.1), condition Al and recall 
that M is the linear space spanned by the columns of A so that A 'f =  0 for any 
f G M 1. Now let ed0+i be the eigenvector of Lg corresponding to the eigenvalue 
0do+i- Then under H0 in (2.7), Theorem 2.1 implies that ed0+1 — ► fd0+i G M1- 
and thus Zt = YJed0+i YJfd0+i, which is a white noise sequence. Hence we 
may reject the hypothesis that Ad0+i =  0 if the Ljung-Box-Pierce statistic

ko
n{n  +  2) Pk/(n  ~ k )> (2-8)

k=1

is greater than the upper a percentage point of the x l0 distribution. In (2.8), pk 
is the sample correlation coefficient of Zt at lag k  and k o  is a prescribed integer. 
Effectively, we reject the hypothesis that A^+i =  0, if the series Zt possesses a 
significant amount of autocorrelation.
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In practice, we may decide upon the value of do by graphical observation of 
the estimated eigenvalues, A j. However, determination of d may also be done in 
a data driven way by performing the white noise test sequentially until we find 
an integer i such that A* ^  0 and Xi+i = 0.

2.2.4 M odeling via common factors

Let A G Mpxd be the matrix whose columns are formed by the eigenvectors of Lq 
corresponding to the d largest eigenvalues. Then from (2.1) we have

with Ip denoting the p x p identity matrix. Now in order to model the dynamic 
behavior of the p x 1 time series Yt, we only need to model the d x 1 process X t. 
Thus if d «  p our task is substantially simplified.

Let A* G M.pxd  be the matrix whose columns are the eigenvectors of L q corre­
sponding to the d non-zero eigenvalues. Then although the linear space spanned 
by the columns of A is consistent for the linear space spanned by the columns 
of A (see (2.12)), A is only an estimator of the particular rotation A*. In the 
same spirit, X* is then an estimate of X£ = A*'Yt. Thus, analogously to our 
remarks earlier, for any invertible matrix H G M.dxd, A and X t may be replaced 
by AH and H _1Xf without altering (2.9). This indeterminism may be exploited 
to further simplify our analysis by choosing the rotation matrix H so that a more 
parsimonious model is obtained for the estimated common factors; see Tiao & 
Tsay (1989).

The data XJ may be thought of as the “oracle dataset”, i.e. the data about 
which we would like to make inferences. However, we note that there are some 
complications that are worth mentioning when using X t to make inferences about 
X£. To see this, we consider the following simple example. Suppose that X£ 
follows the VAR(r) process

Y t = A X t + et (2.9)

where
Xt =  A 'Yt =  A'AX* + A!eu et = (l„ -  A A ') Y,

r

(2.10)
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where C*, are d x d coefficient matrices and U* is a d x 1 white noise. Put 
CT = (Ci , . . . ,  CT) G Rd2xd. Then for a fixed r, the least squares estimator of Cr 
is given by

n  t

e T = argmin £  ||X* -  £ C t X J _ J |2. (2.11)
W  t = T + l  j f  =  l

where ||H|| =  trd H 'H })1/2 for any H E Raxb, a, 6 > 1. Now if the characteristic 
polynomial of the VAR model in (2.10) has no roots on or inside the complex unit 
circle and .E||U*||4 < oo, it holds that n1/2(Cr — Cr) converges in distribution to a 
zero mean Gaussian random variable (see Proposition 3.1 in Lutkepohl (2005)). 
However, in practice we do not have access to the oracle data, thus we may 
replace in (2.11) with Xt and denote the resulting estimate by CT. Now 
provided that supt ||Yt|| < oo and d is known (thus we set d = d), supt ||XjT — 
Xt || =  Op(n-1/2) from which some straightforward calculations lead to ||CT — 
CT|| =  Op(n-1//2). Here is where the problem lies, in that although the preceding 
arguments imply ||CT — CT|| =  Op(n-1/2), CT is not first order asymptotically 
equivalent to CT. In fact, the limiting distribution of n1/2(CT — Cr) will have 
an inflated variance due to the additional estimation error in approximating Xjf 
with X t. Thus standard asymptotic distribution approximations for least squares 
estimators of VAR models would not be valid in this context. An example of 
where this may cause a problem would be when constructing forecast confidence 
intervals of X£ using X t as a proxy since the traditional intervals would be too 
narrow. We remark that in this setting, tailor made bootstrap methods should 
be employed to suit the task at hand. However, if we are only interested in point 
estimates of CT, then the approximation CT is fine. Of course, the problem is still 
there when d is unknown and is actually even more complicated since it may hold 
that d ^  d in which case the difference Cr — Cr will not be defined.

2.3 T heoretica l results

We first solidify some notation. Let (Aj ,ej)  (resp. (Aj,ej) form (eigenvalue, 
eigenvector) pairs of Lq (resp. L9). Note that A j = 0 for all j  > d +  1. With 
d known, we may set M = span{ei.... ,ed}. Let ||H|| =  (trjH 'H })1/2 be the 
norm of any vector or matrix H. Now if X is a subspace of Mp, we will use Px
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to denote its orthonormal projection matrix, i.e. if X G Rpxd is a matrix whose 
columns form an orthonormal basis of X then we may set Px = XX'.

Throughout the presentation in this section, we will always assume that d (the 
number of common factors), q (the number of lags taken in defining Lg) and p 
(the dimension of Yt) are fixed integers. The first two are reasonable conditions 
and the third was relaxed in Bai (2003), Lam & Yao (2009) and Fan et al. (2008), 
to name a few, in order to allow for the modern “big p” asymptotic setting in 
deriving the properties of the estimated factor loading space, M.

Some regularity conditions are now in order.

Cl. Ai > • • • > Xd > 0.

C2. For A; =  1, . . .  ,q it holds that and ||Sy(A;)|| =  0(1) and ||Ey(fc) — Ey(A;)|| =
0 p(n-7) for some 7 > 0.

Rem ark 2.2 (i) The condition that the eigenvalues of Lq are all different is made 
in order to simplify the proofs of the theoretical results given in this section. 
Straightforward (but tedious) adjustments can be made if Cl is not met.

(ii) Condition C2 is satisfied by causal linear processes as well as many well 
studied weakly dependent processes. In these cases, the rate is likely to be 
7 = 1/2. If the factors X* exhibit long range dependence, then it is likely that 
7 < 1/ 2. In particular note that Y t does not need to be stationary in order
for C2 to hold. For example, it may hold when EYiy(k)  — » E y(&) and Yt
is a non-stationary ^-mixing process; see Zhengyan & Lu (1997). Examples of 
non-stationary ^-mixing processes include, amongst others, stationary ^-mixing 
processes plus non-constant trends and standardized random walks. However, we 
note that common types of structured non-stationarity (such as unit roots) are 
not permitted in this setting. See Lam & Yao (2009) and references therein for 
dealing with these types of processes.

Now under conditions Al, A2, Cl and C2, an identical set of manipulations 
to those used in the proof of Theorem 1.2 in Chapter 1 may be used to show that

H P ft- Pm|| = Op(n~y), (2.12)
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i.e jvt is converges in probability to M with rate n-7 . Furthermore if M = 
span{ei,. . . ,  e^} where d is some estimator of d satisfying P(d ^  d) = o(l) then 
it holds that

llp st -  p 5tH =  (2-13)

i.e. our estimation of M is adaptive to d. The next few results provide a theoret­
ical basis on how we may estimate d and justify much of the discussion in Section
2.2.3.

Theorem 2.1 Let Pm (resp. P ^ i ) be the projection matrix onto M (resp. 'MA). 
Suppose that conditions A l, A2, Cl and C2 hold. Then under H0 in (2.7), it 
holds that

||P;M«db+i|l =  ||edb+i ~ PM^ed0+i|| =  Op(n~J).

Furthermore, if ||Y*|| =  Op{ 1) for all t  > 1, then it holds that |YJe<io+i — 
YJPMxedo+il =  Op(n~7).

Since P^iedo+i G M1 , it follows from Theorem 2.1 that under Ho in (2.7), 
the series YJe^+i converges in probability to a white noise sequence; see the 
discussion of the white noise test in Section 2.2.3. Analogously, (2.12) implies 
that under Hq in (2.7), the series Y c o n v e r g e s  in probability to a sequence 
with significant autocorrelation. However, we note that some caution should be 
exercised when using the white noise test in practice since the YJe^+i is only 
asymptotically a white noise series under Ho. Here is where the problem lies 
in that the \ 2 approximation to the Ljung-Box-Pierce portmanteau statistic in 
(2.8) requires that the series under question is exactly white noise under the 
null. Indeed, some simulation results presented in Section 2.4 suggest that the 
white noise test for the null that an eigenvalue is equal to zero has a larger 
than desired false positive rate. However, when the null is false and provided 
the autocorrelation in the latent factors Xf is not too weak, the test performs 
extremely well.

Our next result concerns the convergence rates of the empirical eigenvalues of 
Lg. To this end, we require some more specific regularity conditions than those 
given in Cl and C2 above. Let Z t (k) = Y tY 't+k. For k  =  1 , . . .  ,q  the required 
regularity conditions on Z t (k)  are stated below.
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C3. {Zt(k)} is strictly stationary and /3-mixing with /3-mixing coefficients given 
by

0 (1) = sup E  {\P(A\5 °_
Ae3f°

where S f1 =  a{Zi(k) , . . . ,  Zm(k)} and /3(/) =  0(l~^2+s'^ s') for some 5' > 0. 

C4. It holds that supfj- E {\\Zi(k)Zj(ky\\2+6} < oc and

J||Z # )Z j(^ ||2+ifU<iZiM )a(dZ < oo,

where 6 > 8' given in Al above and Pk is the distribution function of Zt(k).

We note that Al, A2, Cl, C3 and C4 together imply that 7 =  1/2 in both (2.12) 
and (2.13).

Theorem  2.2 Let conditions A l, A2, C3 and C4 hold, (i) Then for i — 1, . . . ,  d 
it holds that |Aj — Xj\ = Op(n~1̂ 2). (ii) If in addition Cl is satisfied, then for 
j  > d +  1 it holds that A j = Op(n^~1'"ŷ 2) where 7 = min {l, §7^ ^  }•

Prom Theorem 2.2 it is clear that the convergence rate for A j is strictly faster 
than n_1//2 when j  > d + 1. This is perhaps surprising and deserves some ex­
planation. Consider the following simple example. Let A \ , . . . ,  An be a sample 
scalar random variables. Suppose we are interested in estimating n2 = E(Ai)2 for 
which we use the estimator A2 = (n_1 Ylt=1 ^<)2 = n~2 t=i A* A*. Then un­
der an appropriate set of regularity conditions, it follows that for some constant 
c € (  0, 1]

I A2 -  1?  | < \n\\A -  /i| +  | A2 -  | =  \fi\ • Op(n~1/2) +  Op(n("1_c)/2), (2.14)

since | A — /x| =  Op(n-1/2) by an according central limit theorem and | A2 — A/i| =  
Op(n(-1_c)/2) by a simple [/-statistic argument; see Lee (1990). Thus from (2.14) 
it is clear that |A2 — /z2| =  Op(n-1//2) if n j=- 0 and |A2 — /z2| =  Op(n^_1_c^ 2) if 
fi = 0. This is precisely why the rate for \  is faster than n-1/2 when j  > d +  1; 
the matrix L9 = (A:) £„(&)' = J2l=i(n “  k)~2 52s,t Zs(k)Zt(ky can be
thought of as being similar to A2 in the example just given. The eigenvalues Aj 
are then obtained via pointwise evaluation of Lq. Thus when the true eigenvalues
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Xj 7̂  0, as in part (i) of Theorem 2.2, the convergence rate is the ordinary n~1' 2 
where as when Aj =  0, as in part (ii) of Theorem 2.2, the rate is faster that n-1/2.

Note that when j  > d + 1, the optimal rate of convergence for Xj is n_1. 
This is known as “super-consistency” and is obtained when, for example, 6 > 
46'/(2 — 8') or the condition on the mixing coefficients is strengthened to satisfy 
YlkLi k(3(k)s/(2+s\  In terms of inference, Theorem 2.2 has a dramatic impact 
since it means that the eigenvalues whose population counterparts are truly zero 
converge to zero very quickly; see also the simulation results in Section 2.4. This 
property makes it easier to identify the number of latent factors d.

R em ark 2.3 Some key technical tools used in the proof of Theorem 2.2 are the 
[/-Statistic results of Yoshihara (1976) which require the condition that {Zt(k)} 
is strictly stationary. However, the results of Yoshihara (1976) can be substituted 
for those of Harel & Puri (1989) which don’t actually require stationarity. In that 
case, the proof is essentially the same except the regularity conditions become 
much more cumbersome. For that reason, we have decided not to state the results 
for the non-stationary case here.

We conclude this section with an example of an estimator of d which satisfies 
the conditions required for the adaptivity property in (2.13).

Theorem  2.3 Let d = : Xj > e} for some e > 0. Suppose that conditions
A l, A2, Cl, C3 and Cf hold. Let s =  s(n) — * 0 as n — ♦ oo. Then P(d ^  d) = 
0 ((e27i)_1) and thus d — d provided e2n — * 0.

In practice, one may select the threshold e via cross-validation by setting 
our objective function to be the r  step ahead forecast error, r  > 1. However, 
we note that the primary reasons for presenting the result of Theorem 2.3 is to 
provide a justification of the heuristic method of estimating d by setting it equal 
to the number of “large” eigenvalues of Lq as well as to show that it is possible 
to estimate d consistently. Indeed for practical purposes, the white noise test in 
Section 2.2.3 is perhaps more useful.
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2.4 Sim ulation studies

We simulate data from the following one factor model

Y t =  8iXt +  St t = 1, . . . ,  71, (2.15)

with a  =  (1,0, . . .  ,0)' G MP, X t =  +  r)t where rjt ~  iN(0,  1) and et ~
iN(0,Ip). Note that for the model in (2.15) d = dim(M) =  1. For all of the 
simulations in this section, we set p =  100. However, similar results to those 
that we will present here can be obtained for any fixed p. We do not pursue 
simulations results about the estimation error of M, D(M, M) since those are 
similar to the results presented in Chapter 1.

Our first set of simulation results concerns the convergence rates of the em­
pirical eigenvalues. To this end we simulate 1,000 replications from model (2.15) 
for various values of n and set 7 =  l /y/2  in simulating the AR(1) model for X t 
in (2.15) and q = 1 in defining the matrix Lg in (2.5). Note that for this setting, 
the population analogue of Lq, Lq in (2.3), has a single non-zero eigenvalue equal 
to 2, i.e. Ai =  2 and Xj = 0 for j  > 2; this can be computed analytically without 
much difficulty. Of course our estimate Lq will have many more than one non-zero 
eigenvalue Xj, j  > 1. Furthermore, there is little point in taking q > 1 for this 
example since the identifiability condition in A2 is met for q = 1. In terms of 
convergence rates, no harm would be done if we were to take q > 1 (for any fixed 
q) since for each k, the lag k sample autocovariance matrices of Y t will be root-n 
consistent for it’s population analogue. However, for larger choices of q we would 
effectively be accumulating estimation error and thus increasing the constant in 
the limiting variance.

Figure 2.1 displays boxplots of the absolute estimation errors of the eigenval­
ues. The errors in estimating the non-zero eigenvalue are considerably greater 
that those in estimating the zero eigenvalue’s; note that A2 > Xj for all j  > 3. In 
particular, the rate of decay in the estimation error of the non-zero eigenvalue is 
far slower than that of the zero eigenvalues.

Figure 2.2 shows the distribution of y/n(X 1 — Ai) over the 1,000 iterations. 
As suggested by Theorem 2.2, standardizing by a factor of yfn leads to a non­
degenerate limiting distribution for the non-zero eigenvalue estimators. In partic­
ular, the distributions begin to look Gaussian at samples sizes of around n =  200.
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(a) lambda_1

10 20 50 100 200 500 1000 2000

(b) lambda_2

10 20 50 100 200 500 1000 2000

Figure 2.1: Boxplots of estimation errors of eigenvalues; (a) non-zero eigenvalue 
estimation error |Ai — Ai | and (b) zero eigenvalue estimation error X2. To add 
clarity to the display, the outliers are not plotted.

Figure 2.3 on the other hand, displays the distribution of y/n(X2 — A2) =  y/nX2, 

which is an estimate of a zero population eigenvalue. As suggested by Theorem 
2.2, the distribution of y/nX2 converges to zero as n increases. The rate y/n is 
clearly not optimal here. In light of this, Figure 2.4 shows the distribution of nX2. 

In accordance to our theory, the standardizing factor n appears to be optimal. A 
striking feature of this graphic is how stable the distribution appears across dif­
ferent sample sizes; for example, the distribution for n  — 10 looks almost identical 
to the distribution for n = 2000.

Our next study involves the performance of the white noise test in Section
2.2.3. The simulation design is identical to the one already described. Table 
2.1 presents the means and standard deviations of the P-values from testing
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the hypothesis Hq  : A* =  0 ( i  = 1,2). It appears that the white noise test 
is performing well. The false null Hq : X\  =  0 is routinely rejected even for 
moderate sample sizes of around n =  50 and the true null Hq : \ 2 =  0 cannot 
be rejected for samples as small as n — 10. Note that together, these these 
hypotheses are actually equivalent to the null Hq : d = 1. It is not surprising 
that the conclusions drawn from this test are independent of the number of lags 
taken in computing the Ljung-Box-Pierce statistic.

Figure 2.5 displays the the simulated power of the white noise test as a function 
of the autoregressive parameter 7 € (0, 1) for testing the false null Ho : Ai =  0. 
That is, for a given 7 each point on the plotted curve is an estimate of 1 — P ( H q  : 
Ai =  0 is not rejected). In this graphic (and those that follow) we have taken the 
level of the test to be a =  0.05 and the number of lags used in computing the 
Ljung-Box-Pierce statistic in (2.8) is k0 = 5. The plotted power function is an 
average over 1000 replications. It is clear from this graphic that for larger values 
of a , the power converges to 1, i.e. the test appears to be consistent provided 
there is enough autocorrelation in the latent factor X t. This finding is quite 
intuitive since if the correlation in X t is weak, then we expect that there would 
be some difficulty in identifying any factors. Another way of thinking about this 
is that as 7 tends to zero, the identifiability condition in A2 is violated, i.e. there 
are actually no dynamic factors in model (2.15).

Figure 2.6 displays estimates of P ( H q  : A2 =  0 is rejected) as a function of 7 . 
Since the hypothesis Hq : A2 = 0 is true, we would expect that the plotted curve 
should fall below the a =  0.05 level if the test is unbiased. This is not the case 
for any 7 E (0,1) which is expected from the results given in Theorem 2.1 since 
YJe2 is only asymptotically a white noise sequence (recall, ej is the eigenvector 
of L q in (2.5) corresponding to the j-th  largest eigenvalue Xj) .  In particular, it 
appears that the number of rejections increases with larger values of 7 . Again, 
this is intuitive since if the autocorrelation in the factors increases, the amount 
of autocorrelation in YJe2 would also increase due to estimation error.
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H0 Aj =  0
ka 1 3 5

n =  10 0.35 (0.28) 0.48 (0.27) 0.56 (0.27)
n = 20 0.22 (0.26) 0.30 (0.29) 0.36 (0.30)
n = 50 0.05 (0.15) 0.07 (0.17) 0.09 (0.19)
n = 100 0.00 (0.05) 0.00 (0.04) 0.01 (0.04)
n =  200 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
n = 500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

n — 1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
n =  2000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

H0 A2 =  0
k0 1 3 5

n =  10 0.49 (0.28) 0.55 (0.26) 0.65 (0.25)
n =  20 0.40 (0.30) 0.47 (0.29) 0.52 (0.29)
n =  50 0.32 (0.30) 0.38 (0.29) 0.42 (0.30)

n = 100 0.31 (0.30) 0.36 (0.29) 0.40 (0.30)
n  =  200 0.31 (0.30) 0.36 (0.30) 0.38 (0.30)
n = 500 0.31 (0.30) 0.34 (0.30) 0.36 (0.30)

n = 1000 0.32 (0.31) 0.36 (0.31) 0.37 (0.30)
n =  2000 0.31 (0.31) 0.34 (0.30) 0.37 (0.30)

Table 2.1: The means and standard deviations (in parentheses) o f the P-values 
for the white noise test. The parameter ko defined is the number of lags used in 
computing the Ljung-Box-Pierce statistic in (2.8).
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Figure 2.2: Histograms overlaid by kernel density estimates of \fn  (Ai — Ai).
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n=10 n=20
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Figure 2.5: Simulated power 1 -  P(H0 : Ai =  0 is not rejected) (y-axis) as a 
function of the autoregressive parameter 7 e  (0,1] (x-axis). The dashed hori­
zontal line denotes the a — 0.05 level and the plotted curve is an average over 
1000 replications. The number of lags used in computing the Ljung-Box-Pierce 
statistic in (2.8) is taken to be kQ = 5.
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Figure 2.6: Simulated probabilities P(Hq : X2 = 0 is rejected) (y-axis) as a func­
tion of the autoregressive parameter 7 G (0,1] (x-axis). The dashed horizontal 
line denotes the a  =  0.05 level and the plotted curve is an average over 1000 repli­
cations. The number of lags used in computing the Ljung-Box-Pierce statistic in 
(2.8) is taken to be k0 = 5.
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2.5 Im plied  vo latility  surfaces

To illustrate the methodology developed in this chapter, we set upon the task 
of modeling the dynamic behavior of IBM, Microsoft and Dell implied volatility 
surfaces. The implied volatility of an option (typically a “vanilla” call or put) 
is value of the volatility parameter obtained from inverting the Black-Scholes 
equation for the observable option price and a set of variables related to the 
option (typically any two from time to maturity, delta, moneyness or strike). 
If the Black-Scholes equation was correct, then the the implied volatility would 
be independent of the values of the parameters that went into its computation. 
However, this is far from accurate for real market data with many empirical 
studies demonstating that the profiles of implied volatility surfaces display a 
“smile” or “skew” (see Cont & da Fonseca (2002), Fengler et al. (2007) and Park 
et al. (2009) amongst others). Another prominent feature of implied volatility 
surfaces is that their level changes from day to day. The evolution in time of this 
surface captures the evolution of prices in the option market.

Since implied volatilities are linked directly to market prices via the Black- 
Scholes formula, many investment professional argue that they are better mea­
sures of volatility than historical (or “realized”) volatility estimators. Implied 
volatilities are often said to be “forward looking” since they are based on current 
prices which presumably have expectations of the future contained within them. 
Thus there is great interest in modeling the dynamic behavior of implied volatility 
for risk management purposes.

2.5.1 D ata description

We begin with a brief description of the dataset under consideration. The data 
was obtained from OptionMetrics via the WRDS database. The dates in question 
are 03/01/2006 — 29/12/2006 (250 days in total). For each day t we observe the 
implied volatility Wt(ui: Vj )  computed from call options as a function of time 
to maturity of 30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 calendar days 
which we denote by u*, i =  1 , . . . , p u (pu = 10) and deltas of 0.2, 0.25, 0.3, 
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, and 0.8 which we denote by Vj, 
j  = 1 , . . . , p v (pv = 13). We collect these implied volatilities in the matrix
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W t =  E XPv. Figure 2.7 displays the mean volatility surface of
IBM, Microsoft and Dell over the period in question. It is clear from this graphic 
that the implied volatilities surfaces are not flat. Indeed any cross-section in the 
maturity or delta axis displays the well documented volatility smile.

Now it is a well documented stylized fact that implied volatilities are non- 
stationary (see the aforementioned references). Indeed, when applying the Dickey- 
Fuller test to each of the univariate time series Wt(ui, u*), none of the puxpv — 130 
nulls of unit roots could be rejected at the 10% level. The P- values from these test 
are displayed in Figure 2.8. Of course we should treat the results of these tests 
with some caution since we are performing a large number of hypothesis tests, 
but even still the evidence in favor of unit roots is overwhelming. Therefore, in­
stead of working with W* directly, we choose to work with AW* =  W* — W*_i. 
Our observations in the form of (2.1) are then Y* =  vec{AW*}, where for 
any matrix M  = (m i,. . . ,  m Pv) E EPt*XPv, vec{M} =  (m i,. . .  ,Toa!Pv)' € MPuPv. 

For convenience, we also introduce the inverse function vec-1 which satisfies 
vec- 1(vec{M}) =  M. Note that Y* is now defined over 04/01/2006 — 29/12/2006 
since we lose an observation due to differencing. The effective sample size is thus 
n = 249 and the dimension of Y* is p = pv x pu = 130.

2.5.2 E stim ation  results

In forming the matrix Lg in 2.5 we take q =  5. Estimation results for different 
q are similar and thus not reported here. Figure 2.9 displays the ten largest 
eigenvalues of Lq for Dell, IBM and Microsoft. From this graphic it is apparent 
that there is one eigenvalue that is much larger than the others. Indeed, the 
white noise test, whose results are summarized in Table 2.2, also suggests that 
we should reject the null Ai =  0 but we cannot reject A2 =  0. Thus we set d =  1 
for all three companies.

Figure 2.10 displays the estimated factor loading surfaces vec- 1{ei}. A com­
mon feature is evident in the factor loading surface for all three companies in that 
it is relatively flat apart from at long maturities and small delta’s where there is 
a large spike. This discovery has a simple explanation based on market activity.
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Ho Ai =  0 to II O

k0 1 3 5 1 3 5
Dell 0.00 0.00 0.00 0.54 0.32 0.39
IBM 0.00 0.00 0.01 0.57 0.83 0.81

Microsoft 0.00 0.00 0.00 0.34 0.57 0.64

Table 2.2: P-values from testing the null H0 : Zt}k,i:200 is a white noise sequence. 
The parameter ko defined is the number of lags used in computing the Ljung- 
Box-Pierce statistic in (2.8).

At longer maturities and smaller delta’s, there are fewer market participants so a 
single transaction can cause a large movement in the option price which in turn 
induces a large change in the implied volatility. The interaction of these two 
variables is what produces the very pronounced spike in Figure 2.10.

Figure 2.11 displays a scatterplots of the stock returns (which we denote by 
R t , i.e. R\ is the return on 04/01/2006) against the estimated common factor 
Zti =  YJei. It is clear that there is a strong linear relationship between Rt and Zt\ 
for all three companies. Indeed, when regressing Rt on Zt\ the slope parameter 
is highly significant. This opens up the opportunity of a statistical arbitrage 
since there is a great deal of linear predictability in Zt\ (see Table 2.2). Thus we 
may forecast Zt\ using a model of our choice (for example an ARMA model) and 
consequently take positions on the IBM stock based on this forecast. Further 
empirical studies are required to determine whether or not this is a common 
feature in other datasets.
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dell ibm

microsoft

Figure 2.7: Mean implied volatility surfaces.

57



2.5 Implied volatility surfaces

dell

> o  _i :
80

index

ibm

2  “ 
5  6 !
Q.

CO "

40
index

microsoft
o

m <P

index

Figure 2.8: P-values from the Dickey-Fuller test for the null Hq : 5 =  0 in the 
regression AW t(ui, Vj) =  SWt(ui, Vj) +  et . The indices are i = 1 ,... ,pu — 10 and 
j  =  1 , . . . ,  pv = 13. Thus the plotted P-values are from a total ofp = puxpv = 130 
hypothesis tests.

58



O.
Oe

+O
O 

1.
5e

-0
5 

Oe
+O

O 
8e

-0
7 

O.
Oe

+O
O 

1.
4e

-0
5

2.5 Implied volatility surfaces

dell

ibm

m icrosoft

Figure 2.9: Ten largest eigenvalues of Lq
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Figure 2.10: Estimated factor loading surface vec Hei}.
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Figure 2.11: Scatter plots of the stocks returns Rt against the estimated common 
factor Zti =  YJei. The period is 04/01/2006 - 29/12/2006. The dashed line rep­
resents an estimate of the regression Rt =  a  +  (3Zti +  £*. For all three companies, 
the parameter f3 is significant at the 1 % level where as a is not significant at the 
10% level.
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2.6 Proofs

In this section we provide the proofs of the results in Section 2.3. Throughout,
we will use C to denote a generic constant which may vary from line to line.

P ro o f of Theorem  2.1 First note that f =  P ^ f  +  P m-^  f°r anY f Thus

do
||PMed0+i||2 =  ||edb+i -  P M̂ edo+i||2 =  ^ ( e ' e do+i)2, (2.16)

■7=1

where e i , . . . ,  e^  are the eigenvectors of Lq corresponding to the non-zero eigen­
values Ai > • • • > > 0. (Recall that spanfe^ : j  =  1, . . .  ,do} =  M under
H 0 ) .

Now by noting that L9edo+i =  Ado+iedo+i and ||edo+i|l =  1, we have

IILgGdo+iH = || (L9 — Lg)edo+i + Lgedo+iH

< ||L, — Lg|| • ||ed0+i|| +  |Ad0+i| • ||edo+i||

< 2||Lfl- £ j  (2.17)

where the final inequality follows from the fact Ad0+i =  0 under Hq and thus 
|Ad0+i -  Ad0+i| =  |Ado+i| < ||L9 -  Lg|| by Lemma B.l.

Let ed0+ i,.. •, ep be an orthonormal basis of Mx . Then since Ado+i =  0 for all 
i > 1 and Lq is symmetric, we have

l|L,ed0+1||2 = X ^ A + i 1̂ ) 2
j =1 

3= 1  

3= 1

I X + i ®*)2
3= 1

Al0 I X +ie,)2, (2-18)
3 = 1
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since Ai > • • • > Xd0 > 0.
Combining the bounds in (2.16), (2.17) and (2.18) we have

||P3Vl?do+l|l =  ll®do+l — P m -^ + iII < C\\Lq -  Lg||. (2.19)

Now by Lemma 1.3 in Chapter 1

||L » -L ,|| < £ | |E , ( * ) 2 ,(* )'-E »(*)E |« (* ), |I
k = 1

< ^{ ||S ,,(fc )|| +  ||s ,(fc ) ||} ||£ ,(fc )-s ,(fc ) ||
k = 1

= 0 p( O -  (2.20)

Thus from (2.19) and (2.20), the first part is proven.
Next we have

|^i®do+l "^tPj^xGdo+l I l^t(®do+l P;M-L®do+l)|
^  l|Yt||||ed0+i — P^j-edo+iH

=  Op(n-7),

which concludes the proof of the assertion. □

Before proceeding to the proof of Theorem 2.2, we require some auxiliary
results regarding matrix valued von Mises functionals. Let A t G Rpxp be a se­
quence of strictly stationary random matrices with distribution function denoted
by P(A), A G Rpxp. Let 0 : (M.pxp)m — > Rpxp be integrable and symmetric in 
each of its m(> 2) arguments. Now consider the functional

/ m

3=1

defined over T =  { P : | |0 ( P ) | |< o o } .  As an estimator of ©(P), consider the 
[/-statistic based on n observations A i , . . . ,  An defined as
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As another estimator, we shall also consider the von Mises functional defined by

n n

*1=1 im = 1

Finally for c = 0 ,1 ,. . . ,  m, we define the functions
/ m

0 ( A i , . . . ,  A c, A c+i , . . . ,  A m) P(dAj) ,

j= c + 1

and c

gc{A l5. . . ,  A c) =  ^ ( - 1 ) ^  £  M A * , . . . ,  A jd).
d=0

Then via the Hoeffding decomposition we have

U„ -  0 (P) =  (2.21)
C = 1  '  '

where U nc is also a [/-statistic with kernel gc, i.e.

. - ln
c ,

l<zi<--<zc<n

In an analogous fashion, we may consider the canonical decomposition of V n 
for which we use Dirac’s ^-measure to define the empirical measure Pn as follows

P„(A) =  n - 1 (<5Al(A) H---------1- 5a „(A)) , A 6 Rpxp.

Then for c =  1 , . . . ,  m, we set

v nc =  J M A i ,  , A c) n  (Pn( d A j )  -  P ( d A j ) )
3 = 1  

n n
= n “c^ - - - ^ ^ c(Ail, . . . , A ic),

*1=1 i c = 1

then we have
m /  \

v „ - © ( p )  =  £ r ;  j v ^ .  (2.22)
C = 1  '
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In particular note that

i=l

Decompositions (2.21) and (2.22) play a central role in the proof of Lemma 2.1 
below. Further details about 17-statistics and von Mises functionals may be found
in Lee (1990).

We are now in a position to state some regularity conditions which form the 
basis of the results.

Ul. {Aj;} is strictly stationary and /5-mixing with /5-mixing coefficients satisfy­
ing (3(I) =  0(1 (2+s'V5')  for some S' > 0.

U2. It holds for all 1 < i\ < • • • < im < im that E  { ^ ( A ^ , . . . ,  Aim)||2+<5} < oo
and

j=i
for some 8 > S' given in Ul above.

Lemma 2.1 Let conditions Ul and U2 hold, (i) Then it holds that

E \\m - \V n -©(P)) -  U n J 2 =

where 7  = min { 1 , y p+jj}. (ii)

B||V„ -  Un||2 =  o(n-1-7).

Thus (i) also holds forUn Vn.

P roof of Lemma 2.1 (i) We make use of (2.21). Put

m-1(Un -  ©(P)) = UBl +  R„, (2.23)

where

(2 .24)

65



2.6 Proofs

We show that £'||Unc||2 =  0(n  1 7). Let E E  Rpxp be the matrix with 1 in it’s 
zjr'-th position and 0 elsewhere. Then

S l l t U 2 =  E  E  B(tr{ULE«}2), (2.25)
i=1 i = l

where tr-fU^E^} is the R valued [/-statistic

trfU ^E y }  =  ( " )  E  tr{<fc(Ail, . . . , A ij E w}.

Now under conditions U1 and U2, part (i) of Lemma B.5 yields

E (tr{U ^E i;,}2) =  c > 2. (2.26)

Thus inserting estimate (2.26) into (2.25) and by recalling that p is fixed and 
finite, we have E ||U nc||2 =  0 (n -1-7).

Now from (2.24) and Loeve’s cv-inequality we have
m

£||R>t||2 < C ^ E | |U „c||2 =  0 (n -1-7). (2.27)
c=2

Combining equations (2.23) and (2.27) concludes the proof of part (i).
(ii) By virtue of (2.22) and part (ii) of Lemma B.5, an analogous set of manip­

ulations to those used in the proof of part (i) above yields E’HV^H =  0 (n-1-7) 
for c > 2. The result now follows from the fact that V ni =  U ni. □

We now have the following result about the rates of convergence for E ||U n — 
© (P)||2 and £ ||V n - © ( P ) | |2.

Lem m a 2.2 Let conditions U1 and U2hold. (i) Then we have E ||U n—© (P )||2 =  
0{n~l). (ii) In addition, the result of part (i) holds for U n replaced by Vn.

P ro o f of Lem m a 2.2 (i) First note that

||U„ -  0(P)|| < m \\m - l { \ l n -  0 (P ) -  EUI +  m ||Unl||.

Thus by Lemma 2.1, we have

£ ||U „ -  0(P )||2 =  0 (n -1-7) +  0 (E ||U „1||2). (2.28)
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Now using a similar argument to that in the proof of Lemma 2.1 we have

£ ||U nl||2 = J 2  (2-29)
*=1 j =1

where trCU^Ey} is the R valued partial sum

tr{U ;iE«} =  i ^ t r { ffl(Ai)'E tf}.
^ ' 1 2=1

Then Lemma B.6 yields £'(tr{UJllEij}2) =  0(n~l ). Combining this last estimate 
with (2.28) and (2.29) produces the required result.

(ii) The proof of the second part of the assertion follows an identical set of 
arguments to those given above and is thus omitted. □

P ro o f of Theorem  2.2 (i) From Lemma B.l, we have \Xj — Xj\ < ||L9 — Lg|| for 
all j  > 1. Thus we only need to show that ||L9 — Lg|| =  Op(n-1/2). To this end, 
consider the kernel 0 : Rpxp x Rpxp — > Rpxp given by

</>(A,B) =  AB', A, B e  Rpxp.

Then from the definition of E J/(/c)Sy(/c)/ we have

- n—k n—k
% (k)% (k ) ' =

i=1 j=l

= (2-3°)
'  i=1 j =1

which in light of the preceding discussion is simply an Rpxp valued von Mises func­
tional. Thus from the definition of Lq in (2.5), Lemma 2.2 and the cv inequality 
yield

E\\Lq -  E J a < C ■ ~  S„W E)y(fc)'||2 =  O (n '1). (2.31)
k=1

since n ~  n — k for each fixed k. Now via an application of the Chebyshev 
inequality to (2.31), we have

| |L , - L  q\\ = 0 v{n-1' 2), (2.32)

67



2.6 Proofs

as required.
(ii) Extend e i , . . . ,  to an orthonormal basis of Rp. Then it holds that

L ,ejt (2.33)
j=1 j=1

and by recalling that Aj =  0 for j  > d +  1

d d

(2.34)
j=l J=1

Note that span{ej : j  = d + 1, . . .  ,p} =  M-1. Therefore Lqej = 0 for all j  > d + 1 
and thus from (2.33) and (2.34) we have

^  =  ^ ^ e ?(Lq — L9)ej. (2.35)
j=i j=i

We claim that

A j  -  A j = e' (Lg -  Lg)ej +  Op(7i_1), j  =  1 , . . . , d. (2.36)

Using the fact that Lq is symmetric along with the relations Lqej = Af i j  and
Lqej = XjGj, we have

lej (^9 — ~  (A? ~  A?) I ~  I “  ej Egej — (Aj — Aj)|

=  |Aj — Aj| |e 'e j — 1|. (2.37)

Now by the Cauchy-Schwarz inequality

lei®i -  !| =  lej(% -  e,-)| < ||e j ||%  -  e j  =  ||% -  ej||, (2.38)

and from Lemma B.2 and (2.32) we have

||% -  e j  <U|L, -  L,|| =  C y n -1/2). (2.39)

Thus from the result of part (i), (2.37), (2.38) and (2.39) we have

|e ' (L, -  L,)%  -  -  Aj-)| =  Op(n~1). (2.40)
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Next we have

le j ( ^ 9  — Ĵq )e j  ~  e j f i JQ ~  ■ '̂g)e j l  =  — — e j ) l

^  suP ||x ||< ill(£g  — I /« )x lllle i  — ®jll

— Il^g — ^ g l l l lp j  — e jll*

=  O ^ n -1), (2.41)

by (2.32) and (2.39). Thus relations (2.40) and (2.41) together imply (2.36). 
Now from (2.36) we have

d d

£  Aj -  Aj =  £ e'(Eg -  L gH  +  O p ^ 1)- (2-42)
j = 1 j = 1

Subtracting (2.42) from (2.35) yields

£  =  £  e '(£ ,  -  L ,)ej +  Op(n_1). (2.43)
j=d+l j= d + 1

Our final task is to derive the rate for =d+1e '( L ,- L ,) e  j. To this end, we note 
that an application of Lemma 2.1 and the Chebyshev inequality to the von Mises 
functional in (2.30) yields

||Ev(fc)2y(fc) -  £„(*)£„(*)|| =  (2.44)

since

£ ,(* )e ,(* ) =  ~  5 /  4>{7.i(k),Zj {k))Pk{dZj (k)).

Put Lq =  Hy(k)Y>y(k)'. Then from (2.44) and the definition of Lg in (2.5) 

l|£, -  L ,II < £  ||£ ,(*)£,(*)' -  £,(fc)S,(fc)|| =  Op(n(- 1_l)/2). (2.45)
k=1

Now by the relation in (2.45)

|e'-(L, -  Lg)ej| < s u p ^ - J I ^  -  L9)x|| < ||L9 -  L J  =  Op(n(“1_7)/2). (2.46) 

Thus from (2.43) and (2.46)

£  =  £  e'(£g -  Lg)eg +  Op{ n ^ ' \  (2.47)
j= d + 1 j= d + 1

69



2.6 Proofs

since 7 < 1. Now note that e' (Lg — Lq)ej = 0 for j  = d +  1, . . . ,  p since ej € M -1 
for these values of j. This last relation together with (2.47) yield J ^ =d+1 Aj =  
Op(n^~1~7^ 2). Finally, since Lq is positive definite it holds that A* < Y ĵ=dt+\ \  ~  
Op(rS~l~7^ 2) for i = d +  1, . . . ,  p. □

P ro o f of Theorem  2.3 Since Ai > • • * > Ap > 0 (with a strict inequality holding 
with probability one), it follows that {d > d} = {A^+i > £•}. Now if dim{M} =  d, 
then it holds that A^+i =  0 and thus A^+i =  |Ad+i — Ad+i| < ||L9 — L9|| by Lemma 
B.l. Collecting these last few facts and applying the Chebyshev inequality yields

P(d > d) < e~2 • E\\Lq -  Lq\\2 =  0 ((e2n)_1), (2.48)

by (2.31).
Next we turn to P(d < d). First note that if d — 0, {d < d} =  0. Thus, we 

suppose that d > 1. Then due to the ordering of the eigenvalues, it holds that 
{ d < d }  = {Ad_i < e}. Therefore

P( d <d )  =  P (\d -i < e)

=  P(Ad-i — Ad-i > Ad_i — e)

< P( |Ad-i — Ad_i| > Ad_i — e)

< P (\\iq -  L9|| > Xd-i -  e), (2.49)

where the final inequality follows from Lemma B.l. Now since A^_i > 0 and 
e  — > 0 as n  — > 00, it holds that Ad_i — e > 0 for large enough n. Thus by 
(2.31) and an application of the Chebyshev inequality to (2.49), we have

P(d < d ) <  (A*-, -  e)~2 • E\\L„ -  L, | |2 =  (2.50)

From (2.48) and (2.50) it follows that

p ( S y  d) =  P(d < d) +  P{d > d) = 0((£2n)"1),

as required. □



A ppendix  A 

Background on opera to r theo ry

In this section we provide the relevant background on operator theory used in 
this work. More detailed accounts may be found in Dunford & Schwartz (1988).

Let be a real separable Hilbert space with respect to some inner product 
(•,■). For any V C ‘K, the orthogonal complement of V is given by

V± = { x e K  : (x , y )=0,  Vy E tt}.

Note that V±A- = V where V denotes the closure of V. Clearly if V is finite 
dimensional then V-11- =  V.

Let L be a linear operator from !K to IK. For x E IK, denote by Lx the image 
of x under L. The adjoint of L is denoted by L* and satisfies

(Lx, y) =  (x, L*y), x , y e K .

L is said to be self adjoint if L* = L and non-negative definite if

(Lx, x) > 0, \/x e[K.

The image and null space of L are defined as Im(L) =  {y G IK : y =  Lx, x G %} 
and Ker(L) =  {x E % : Lx — 0} respectively. We define the rank of L to be 
r(L) =  dim(Im(L)) and we say that L is finite dimensional if r(L) < oo.

A linear operator L is said to be bounded if there exists some finite constant 
A > 0 such that for all x G TC

||La:|| < A||a:||,
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where || • || is the norm induced on IK by (•,•). We denote the space of bounded 
linear operators from IK to IK by IB =  3  (IK, IK) and the uniform topology on 3  
is defined by

||L||® =  sup \\Lx\\, L e ' B .
M<i

Note that all bounded linear operators are continuous, and the converse also 
holds.

An operator L E 3  is said to be compact if there exists two orthonormal 
sequences {e^} in {f j } of IK and a sequence of scalars {Aj} decreasing to zero 
such that

oo

Lx  =  s  Â eJ’x ) f t '  x e
3 = 1

or more compactly
oo

L =  ^  Aj ej <8> f j  •
3=1

Note that if IK =  ^(U ) equipped with the inner product defined in (1.5), then

oo

(Lx)(u) = Aj (ej, x) f j  (u) .
j=i

Clearly Im(L) =  sp{fj  : j  > 1} and Ker(L) =  sp{ej : j  > I}-1.
The Hilbert-Schmidt norm of a compact linear operator L is defined as ||L||g =  

E J L i ^j ) 1̂ 2 and the nuclear norm is ||L||>r =  S J i i  I'M- We will let $ and IN* 
denote, respectively, the space consisting of all the operators with a finite Hilbert- 
Schmidt or nuclear norm. Clearly we have the inequalities | |  • | | > r  >  | |  • | | s  >  I I ' I I b ?  
and thus the inclusions IN’ C § C 3 . Note that IN’, S, and 3  are Banach spaces 
when equipped with their respective norms. Furthermore S is a Hilbert space 
with respect to the inner product

oo

(Li :L2)§ =  ^  {Ligi, hj)(L2gi, hj), Li, L2 € S,
i,j=1

where {gi} and {hj} are any orthonormal bases of IK.

72



A ppendix  B 

Some useful technical L em m a’s

In this section, we state some results due to other authors which are used in the 
proofs contained in Section’s 1.6 and 2.6.

Lemma B .l (Bosq (2000), Lemma 4.2) Let Lq =  ^ojeoj ® fo,j and L\ = 
Y^jLi @i,jei,j ® fi,j be compact linear operators acting on some separable Hilbert 
space TC. Suppose without loss of generality that > Oij+i for i = 0,1. Then it 
holds that sup^j | 60j  — 0ij\ < \\L0 — Li||®.

Lemma B .2 (Bosq (2000), Lemma 4-3) Let L0 and Li be as in Lemma B.l 
except now suppose without loss of generality that they are both self adjoint, i.e. 
£i,j =  fi,j for i =  0,1 (if this does not hold then we may instead consider the 
eigenvectors of LiL\). Let || • || be the norm on TC induced by the inner product 
(•,■). Suppose that we have the strict inequality Oij > 0i,j+1 for i =  0,1. Then it 
holds that ||eo,j — sign{(eo,j,eij)}eij|| < Cj||L0 — Li||® where Cj < Cj+1 < oo is 
a sequence of constants depending only on j.

Lemma B.3 (Merlevede et al. (1997), Lemma 3) Let {At} be a sequence of 
centered Oi valued random variables (not necessarily stationary) with a-mixing 
coefficients a(u). Denote by the quantile function of ||j4*||, i.e. the
inverse function of G(u) = -P(||A|| > u) and assume that for each i = 1, . . .  ,n

f  a~l (u)Q?(u)du < oo. (B.l)
Jo
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Then for every n  > 1 it  holds that

n n „ i
a 1(u)Q?(u)du.

Note that a sufficient condition for (B.l) is that {At} is strictly stationary 
and theres exists some S > 0 such that E||,4f||2'h* < oo and Y lZ i <*(l)s^ 2+ŝ ', see 
Theorem 2.17 in Bosq (2000).

Lemma B.4 (Mas (2000), Proposition 6) Let Lq and L\ be as in Lemma B.2 
and assume that we have the strict inequality Oij > Oij+i for i =  0,1. Let Uij = 
£i,j ® Cjj for i =  0, 1, i.e. 11*̂  is the projection operator onto the eigensubspace 
of$ij.  Then it holds that Ulloj — ^  Dj\\Lo — Li||s where Dj < Dj+i < oo
is a sequence of constants depending only on j.

Lemma B.5 (Yoshihara (1976), Lemma’s 2 and 4) Let {Xt} be a sequence of 
strictly stationary random variables with distribution denoted by P(X),  X  £ M. 
Now consider the functional

3=1

defined over T =  {P : ||0(P)|| < oo}. Based on a sample X \ , . . . ,  X n, we consider 
the following estimators of 6(P)

n n

which possess the canonical decompositions

In particular
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Suppose that for some S > 0, supiu im E\(f>(Xii : . . . ,  Aim)|2+<5 < oo and

I

m

and the beta mixing coefficients of {Xt} satisfy (3(1) =  0(1 2̂+8'^ 8') with S' < 6. 
Then for c = 2, . . .  ,m , it holds that (i) E(U2C) = 0 (n -1-7) and (ii) E(V2C) = 
0 (n-1-7) where 7 =  min {l, f ^ § } .

even in the ideal case where A* are independently and identically distributed, the 
rate for E H U J 2 is only n~2. Thus it must hold that 7 < 1.

Lemma B .6 (Fan & Yao (2003), Proposition 2.7) Let {Xt} be strictly stationary 
and a-mixing with E( Xt) =  0. Put Sn = Ylt=1 %t. Then if for some 6 > q the 
conditions E\Xt \8 < 00 and a(l) =  0(l~8q̂ 2̂ s~q̂ ) are satisfied, it holds that

Note that it is in fact an error in Yoshihara (1976) to define 7 = W - 8') si
<S'(2+<5) blsince

E(Si) =
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