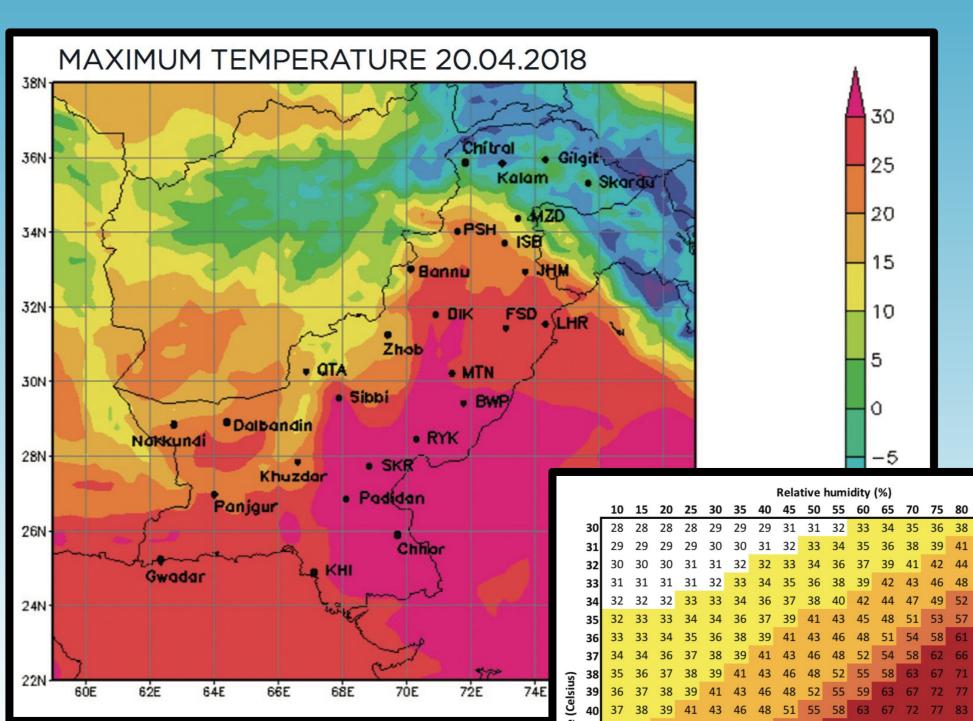
Dr Erica Thompson (LSE CATS) Prof Leonard Smith (LSE CATS) Sarah Klassen (Start Network)

### Aims


- Provide useful information to support decision-makers to take humanitarian action before a crisis occurs
- Support implementation of new procedures

# Solutions

- Evaluate forecast performance
- How far in advance is useful information available?
- Where can useful action be taken, on what timescales?
- Co-design the research to target genuinely helpful outputs
- Where information is not available, take forecast off the table

# Acting in advance of humanitarian crises: Using forecasts effectively

"It's a delicate balance between being close enough to the spike of the heatwave - when we've got a higher level of certainty about the forecast, but far enough away from the heatwave to actually implement anticipatory action. In the past, it's been difficult to get the balance right." - Sarah Klassen, Start Network Crisis Anticipation Officer



Our case studies: Heatwave in Pakistan (above and right) Cyclone in the Philippines (far right)



CATS CENTRE FOR THE ANALYSIS OF TIME SERIES



THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

# Research funded by NERC: NE/R006873/1 and NE/R01423X/1

|                       |    |                       |                            |        |        |        |        |       |        |            |          |         | ~      |        |        |         |           |         |       |
|-----------------------|----|-----------------------|----------------------------|--------|--------|--------|--------|-------|--------|------------|----------|---------|--------|--------|--------|---------|-----------|---------|-------|
|                       |    | Relative humidity (%) |                            |        |        |        |        |       |        |            |          |         |        |        |        |         |           |         |       |
|                       |    | 10                    | 15                         | 20     | 25     | 30     | 35     | 40    | 45     | 50         | 55       | 60      | 65     | 70     | 75     | 80      | 85        | 90      | 18°I  |
| Temperature (Celsius) | 30 | 28                    | 28                         | 28     | 28     | 29     | 29     | 29    | 31     | 31         | 32       | 33      | 34     | 35     | 36     | 38      | 39        | 41      |       |
|                       | 31 | 29                    | 29                         | 29     | 29     | 30     | 30     | 31    | 32     | 33         | 34       | 35      | 36     | 38     | 39     | 41      | 43        | 44      | 16°I  |
|                       | 32 | 30                    | 30                         | 30     | 31     | 31     | 32     | 32    | 33     | 34         | 36       | 37      | 39     | 41     | 42     | 44      | 47        | 49      |       |
|                       | 33 | 31                    | 31                         | 31     | 31     | 32     | 33     | 34    | 35     | 36         | 38       | 39      | 42     | 43     | 46     | 48      | 51        | 53      | 14°I  |
|                       | 34 | 32                    | 32                         | 32     | 33     | 33     | 34     | 36    | 37     | 38         | 40       | 42      | 44     | 47     | 49     | 52      | 55        | 58      |       |
|                       | 35 | 32                    | 33                         | 33     | 34     | 34     | 36     | 37    | 39     | 41         | 43       | 45      | 48     | 51     | 53     | 57      | 60        | 64      | 12°I  |
|                       | 36 | 33                    | 33                         | 34     | 35     | 36     | 38     | 39    | 41     | 43         | 46       | 48      | 51     | 54     | 58     | 61      | 65        | 69      |       |
|                       | 37 | 34                    | 34                         | 36     | 37     | 38     | 39     | 41    | 43     | 46         | 48       | 52      | 54     | 58     | 62     | 66      | 71        | 75      | 10°I  |
|                       | 38 | 35                    | 36                         | 37     | 38     | 39     | 41     | 43    | 46     | 48         | 52       | 55      | 58     | 63     | 67     | 71      | 76        | 81      | 101   |
|                       | 39 | 36                    | 37                         | 38     | 39     | 41     | 43     | 46    | 48     | 52         | 55       | 59      | 63     | 67     | 72     | 77      | 82        | 88      |       |
|                       | 40 | 37                    | 38                         | 39     | 41     | 43     | 46     | 48    | 51     | 55         | 58       | 63      | 67     | 72     | 77     | 83      | 88        | 94      |       |
|                       | 41 | 38                    | 39                         | 41     | 43     | 45     | 48     | 51    | 54     | 58         | 62       | 67      | 72     | 77     | 83     | 88      | 95        |         |       |
|                       | 42 | 39                    | 41                         | 42     | 44     | 47     | 50     | 54    | 57     | 62         | 66       | 71      | 77     | 82     | 88     | 95      |           |         |       |
| ď                     | 43 | 40                    | 42                         | 44     | 47     | 49     | 53     | 57    | 61     | 66         | 71       | 76      | 82     | 88     | 94     |         |           |         |       |
| Te                    | 44 | 41                    | 43                         | 46     | 48     | 52     | 56     | 59    | 64     | 69         | 74       | 81      | 87     | 94     |        |         |           |         |       |
|                       | 45 | 42                    | 44                         | 47     | 51     | 54     | 58     | 63    | 68     | 73         | 79       | 86      | 92     | 99     |        |         | Feels lil |         |       |
|                       | 46 | 43                    | 46                         | 49     | 53     | 57     | 61     | 66    | 72     | 78         | 84       | 91      | 98     |        |        |         | Modera    |         |       |
|                       | 47 | 44                    | 47                         | 51     | 55     | 59     | 64     | 69    | 76     | 82         | 89       | 96      |        |        |        |         | Warm      |         |       |
|                       | 48 | 46                    | 49                         | 53     | 57     | 62     | 67     | 73    | 79     | 87         | 94       |         |        |        |        |         | Hot       |         |       |
|                       | 49 | 47                    | 51                         | 54     | 59     | 65     | 71     | 77    | 84     | 92         | 99       |         |        |        |        |         | Very ho   |         |       |
|                       | 50 | 48                    | 48 52 57 62 68 74 81 88 96 |        |        |        |        |       |        | Extreme he |          |         |        |        |        |         |           |         |       |
|                       |    | Other                 | condit                     | ions i | ncludi | ng win | d spee | d and | physic | al acti    | vity lev | els als | o cont | ribute | to the | e perce | ption     | of extr | eme h |

# Challenges

- Humanitarian impacts often not directly related to physical hazards
- Communication with local-level
   representatives needs to be
   framed and pitched appropriately
- For some events, a good forecast is
  not available on a timescale
  allowing for action then
  decisions must be taken based on
  other factors



#### Tell me more

<u>lse.ac.uk/CATS/Research/IRIS</u> <u>e.thompson@lse.ac.uk</u> @h4wkm0th

HOOL S AND NCE D SCIENCE OF THE ENVIRONMENT

•

