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Abstract
The traditional aim of data assimilation is a point close to “Truth”. Ed
Lorenz noted this assumes the model-state space and the system state
space (if such a thing exists) are similar enough that these two points
are “subtractable,” providing meaningful distance. The modern aim
is an ensemble near “Truth”. Yet the mathematical sophistication of
modern methods is shown to obscure their lack of internal coherence
when the model is wrong.

Introduction
Data assimilation is a formal method of “nowcasting”: melding obser-
vations and a model into an quantitative estimate of the current state
of the system “now.” But if the model is wrong, how could any point
in the model state space serve as a target for nowcasting? The “Truth”
is not out there, in model land. Even if it were, how would we quantify
our approximation given that the observations are uncertain? This sec-
ond question is addressed first, and ensemble nowcasting methods are
developed in the Perfect Model Scenario. A new approach is discussed,
one which appears more robust when the fact that the model is wrong
is admitted. Technical difficulties that arise in this real-world case are
noted; a fundamental connection between the assimilation method and
the aim of the forecast may be inescapable, if the forecast is to be useful.

Problem Statement
The problem of nowcasting can be cast as forming an ensemble estimate
of the current model state given a model and observations. The problem
is first tackled within the fictional perfect model scenario, where the
mathematical structure of the system is known. The aim of nowcast
here is to capture “Truth”. The challenge is then raised in the imperfect
model scenario (reality) where the model is wrong. The model state
space and the system state space are almost certainly different. In
general, the property of the projection operator between these two space
is unknown, and one may question whether or not “Truth” exists. The
goal here is reset to produce relevant nowcast that is consistent with the
observations and an informative estimate of the model error to improve
the future forecast and model.

Gradient Descent Nowcasting in PMS
Even with a perfect nonlinear model, noisy observations prevent us from
identifying the true state of the system precisely. An ensemble algorithm
is desired to account the initial condition uncertainty. Such algorithm
may generate an ensemble directly or from perturbations of a reference

trajectory. The Gradient Descent (GD) method [1] (described below)
is adopted to locate such reference trajectory.

Methodology

Let the dimension of our model state space be m and the number of
observed states used in the assimilation be n; the sequence space is
an m × n dimensional space in which a single point can be thought
of as a particular series of n states ui, i = −n + 1, .., 0 where ui is
a m dimensional vector. Define a pseudo-orbit to be a sequence of
model states that at each step differ from trajectories of the model, i.e.,
ui+1 6= F (ui) where F is the mathematical form of the model. The
observations themselves projected into the model state space define a
pseudo-orbit which, with probability one, will not be a trajectory, call
this initial Analysis, A0. A GD algorithm is applied to minimise the
mismatch cost function of a pseudo-orbit ui:

C(u) =
∑

| F (ui) − ui+1 |
2 . (1)

The mismatch cost function has no local minima other than on the tra-
jectory manifold for which C(u) = 0 (Variational method like 4DVAR
has exponentially increasing number of local minima as the assimila-
tion window gets longer [4]). In practice, the GD algorithm initialised
with Ao and run for a finite time; only a pseudo-orbit is obtained. The
model trajectory defined by the middle component of the pseudo-orbit
defines the reference trajectory. An ensemble nowcast is then formed
by sampling the local space around reference trajectory according the
likelihood given the observations.

Ensemble Kalman Filter vs GD

The GD nowcasting results are compared with the results produced
by the well-established Ensemble Kalman Filter[6]. Fig 1 represents
four nowcast results examples in a 2-D state space. In all panels, the
ensemble, produced by GD method is not only closer to the true state
but also reflects the structure of the model’s attractor as the ensemble
members lie near the model attractor. The EnKF ensemble has its own
distinctive structure, sometimes (bottom two panels) systematically off
the attractor and without covering the true state.
To quantitatively measure the difference between these two methods,
we first translate the nowcast ensemble into a predictive distribution
function by standard kernel dressing [7], which is then evaluated using
the “log p score” (Ignorance Score [8,9]). Comparisons are made in both
lower dimensional Ikeda Map and higher dimensional Lorenz96 flow.
An even higher dimensional example is noted in Fig 3. In Table 1, the
ensemble generated by GD nowcast outperforms the one generated by
EnKF in both experiments. Relative Ignorance between two methods
is found to be 1.4 bits in Ikeda experiment and 0.7 bits in Lorenz96
experiment; that is as GD places on average, 160% (and 60%) more
probability mass on the verification than the EnKF.
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Fig 1: Ensemble results from both EnKF and GD nowcast for the Ikeda
Map. The true state of the system is centred in the picture located by the plus
sign; the square is the corresponding observation; the background dots indicate
samples from the Ikeda Map attractor. The EnKF ensemble is depicted by 512
purple dots. The GD nowcast ensemble is depicted by 512 green crosses. Each
panel is an example of one nowcast.

Systems Ignorance Lower Upper

EnKF GD EnKF GD EnKF GD

Ikeda -3.21 -4.67 -3.28 -4.75 -3.13 -4.60
Lorenz96 -3.72 -4.44 -3.78 -4.49 -3.66 -4.38

Table 1: Ignorance score of nowcast ensemble for Ikeda Map and Lorenz96
System, the noise model is N(0, 1) and N(0, 0.05) respectively. Ensemble gen-
erated by GD method and Ensemble Kalman Filter are compared. Lower and
Upper are the 90 percent bootstrap re-sampling bounds of Ignorance score, and
the statistics are calculated based on 2048 assimilations and 512 bootstrap sam-
ples are used to calculate the re-sampling bounds.

GD Nowcasting in Reality

All models are wrong. In such Imperfect Model Scenarios, the model
state and system state are distinct entities. No trajectory of the model
is consistent with an infinite series of observations, there are pseudo-
orbits, however, that are consistent with observations and these can
be used to estimate the model state. To locate relevant pseudo-orbits,
the GD algorithm is applied with a stopping criteria. An informative
estimate to the model error is also produced.

It is not possible to disentangle observational noise and model error
from each other precisely. Applying the GD method with a stopping
criteria can, however, yield less inconsistent (or biased) estimates. Let
ui − si be the implied noise considered as the estimate of the observa-
tional noise; and the mismatch ui+1 − F (ui) be the imperfection error
considered as the estimate of the model error. Fig 2 shows the statistics
of pseudo-orbit changes as a function of the number of iterations of Gra-
dient Descent. By comparing the standard deviation of implied noise
with that of the real noise model, it appears that at the beginning of the
minimisation, the observational noise is underestimated by the implied
noise simply because the minimisation algorithm is initialised at the
observations. As the minimisation proceeds, the implied noise becomes
more consistent with the observational noise and the pseudo-orbit gets
closer to the true pseudo-orbit 1. After more iterations, however, the
implied noise tends to overestimate the observational noise and the dis-
tance between the pseudo-orbit and the true pseudo-orbit grows. This
is due to the model inadequacy. When the imperfection error of the
pseudo-orbit becomes smaller than the actual model error, the implied
noise compensates for the imperfection error making implied noise too
large and yielding a pseudo-orbit inconsistent with the observations.
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Fig 2: Statistics of the pseudo-orbit as a function of the number of Gradient
Descent iterations for both low dimension Ikeda system-model pair experiment
(first row) and higher dimension Lorenz96 system-model pair experiment (bot-
tom row). (a) is the standard deviation of the implied noise (the flat line is the
standard deviation of the noise model); (b) is standard deviation of the model
imperfection error (the flat line is the sample standard deviation of the model
error); (c) is the RMS distance between pseudo-orbit and the true pseudo-orbit.

The GD minimisation with intermediate runs produces more consistent
pseudo-orbits. Certain criteria need to be defined in advance to decide
when to stop. One can for example define the stopping criteria by
testing the consistency between implied noise and the noise model or
optimized by the forecast performance.

1the system trajectory projected onto the model state space

Fig 3: A0 from a weather model (NOGAP) before GD, showing vorticity.

Using the Imperfection Error

Model error is neither IID nor Gaussian distributed. It is desirable for
the estimate of model error to roughly capture spatial correlation and
thereby provide useful information to improve the forecast (and model).
As the model is wrong, a forecast using the model may be improved by
adjustment [10]. For example one can draw at random from the GD
imperfection error to produce random adjustment or using analogue
methods to provide analogue adjustment. Fig 4 shows six examples
of the one step forecast ensemble in the state space. In all examples,
forecasts with random adjustment produce ensemble members spread
out, as the spatial information is discarded. The first 4 panels present
the four cases where the model error is very small, small, moderate
and large. Forecasts with analogue adjustment outperform the direct
forecast when model error is not negligible. Panel (e) shows an example
where the model error is small but the forecast with analogue adjustment
is unable to capture the true state. This failure occurs because the model
error in this case is overestimated by the imperfection error. Panel (f)
shows an opposite example where forecasts with analogue adjustment
did not capture the true state because the model error in this case is
underestimated by the imperfection error.

Fig 4: One step forecast ensembles in the state space. Observations are
generated by Ikeda Map with IID uniform bounded noise U(0, 0.01). The
truncated Ikeda model is used to make forecast. The initial condition ensemble
is formed by inverse noise with 64 ensemble members. Four 1-step forecast
examples are shown in six panels. In each panel, the background dots indicate
samples from the Ikeda Map attractor, the red cross denotes the true state of the
system, the blue square indicates the observation, the direct forecast ensemble
is depicted by purple circles, the forecast with random adjustment ensemble is
depicted by orange dots and the forecast with analogue adjustment ensemble is
depicted by cyan stars.

Summary
An ensemble data assimilation method based on GD [1] is introduced.
Improved performance comes at the cost of not being a one-step method,
which, on the other hand, allows an enhanced balance between the
extracting information from the dynamic equations and information in
the observations themselves. Outside the perfect model scenario, the
GD method requires a stopping criteria to locate relevant pseudo-orbits
and informative estimate of the model error.
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