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ABSTRACT

Probabilistic forecasting is common in a wide variety of fields including

geoscience, social science and finance. It is sometimes the case that one has

multiple probability-forecasts for the same target. How is the information in

these multiple nonlinear forecast systems best “combined”? Assuming sta-

tionarity, in the limit of a very large forecast-outcome archive, each model-

based probability density function can be weighted to form a “multi-model

forecast” which will, in expectation, provide at least as much information as

the most informative single model forecast system. If one of the forecast

systems yields a probability distribution which reflects the distribution from

which the outcome will be drawn, Bayesian Model Averaging will identify

this forecast system as the preferred system in the limit as the number of

forecast-outcome pairs goes to infinity. In many applications, like those of

seasonal weather forecasting, data are precious; the archive is often limited to

fewer than 26 entries. In addition, no perfect model is in hand. It is shown

that in this case forming a single “multi-model probabilistic forecast” can be

expected to prove misleading. These issues are investigated in the surrogate

model (here a forecast system) regime; where using probabilistic forecasts

of a simple mathematical system allows many limiting behaviours of fore-

cast systems to be quantified and compared with those under more realistic

conditions.
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1. Introduction30

Forecasters are often faced with an ensemble of model simulations which are to be incorporated31

into quantitative forecast system and presented as a probabilistic forecast. Indeed, ensembles of32

initial conditions have been operational in weather centers in both the USA (Kirtman et al. 2014)33

and Europe (Palmer et al. 2004; Weisheimer et al. 2009) since the early 1990s and there is a34

significant literature on their interpretation (Raftery et al. 2005; Hoeting et al. 1999; Roulston35

and Smith 2003; Wang and Bishop 2004; Wilks 2006; Wilks and Hamill 2007). There is signifi-36

cantly less work on the design and interpretation of ensembles over model structures, although37

such ensembles are formed on weather (TIGGE (Bougeault et al. 2010)), seasonal (ENSEM-38

BLES (Weisheimer et al. 2009)) and climate (CMIP5 (Taylor et al. 2012)) forecast lead times.39

This paper focuses on the interpretation of multi-model ensembles in situations where data are40

precious, that is where the forecast-outcome archive is relatively small. Archives for seasonal41

forecasts fall into this category, typically limited to between 32 and 64 forecast-outcome pairs.142

At times, the forecaster has only an “ensemble of convenience” composed by collecting forecasts43

made by various groups for various purposes. Alternatively, multi-model ensembles could be44

formed in collaboration using an agreed experimental design. This paper was inspired by the EN-45

SEMBLES project (Weisheimer et al. 2009), in which seven seasonal models were run in concert,46

with nine initial condition simulations under each model (Hewitt and Griggs 2004). Small-archive47

parameters2 (SAP) forecast systems are contrasted with large-archive parameters (LAP) forecast48

systems using the lessons learned in experimental design based on the results originally reported49

by Higgins (2015).50

1The observational data available for initialization and evaluation of the forecasts is very different before the satellite era.
2Here the parameters refer to the parameters involved in transforming multi-model ensemble into predictive distribution, for example the model

weights, dressing and blending parameters (see Appendix A1) and they are estimated from an archive which is sometimes large and sometimes

small.
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We adopt the surrogate model context, taking relatively simple models of a chaotic dynamical51

system, then contrasting combinations of model to gain insight in how to build and test multi-52

model ensembles in a context where the data are not precious and a “perfect model” (the system)53

is known. In this context a robust experimental design can be worked out. There is, of course,54

an informal subjective judgement regarding how closely the consideration in the surrogate experi-55

ments map back into the real-world experiment. This is illustrated using a relatively simple chaotic56

dynamical system. Specifically, the challenges posed when evaluation data are precious are illus-57

trated by forecasting a simple one-dimensional system using four imperfect models. A variety58

of ensemble forecast system designs are considered: the selection of parameters and the relative59

value of “more” ensemble members from the “best” model are discussed. This consideration is60

addressed in a new generalization of the surrogate modeling framework (Smith (1992) and refer-61

ences therein); it is effectively a “surrogate forecasting system” approach, of value when practical62

constructions rule out the use of the actual forecast system of interest, as is often the case. In the63

large forecast-archive limit, the selection of model weights is shown to be straightforward and the64

results are robust as expected; when a unique set of weights are not well defined, the results remain65

robust in terms of predictive performance. It is shown that when the forecast-outcome archive is66

nontrivial but small, as it is in seasonal forecasting, uncertainty in model weights is large. The67

parameters of the individual model probabilistic forecasts vary widely between realizations in the68

SAP case; they do not do so in the LAP case. This does not guarantee that the forecast skill of SAP69

is significantly inferior to that of LAP, but it is shown that in this case the SAP forecast systems are70

significantly (several bits) less skillful. The goal of this paper is to refocus attention on this issue,71

not to claim to have resolved it. When evaluating models which push the limits of computational72

abilities of the day, one is forced to use systems simpler than those targeted by operational models73

to investigate ensemble forecasting. And whenever simplified models are employed, there is a74

4



question as to whether the results hold in larger (imperfect) models. This question of “Even In Or75

Only In” (EIOOI) was discussed in Smith and Gilmour (1998).76

Turning to the question of forming a multi-model forecast system, it is shown that (a) the model77

weights assigned given SAP are significantly inferior to those under LAP (and, of course, to the78

using ideal weights). (b) Estimating the best model in SAP is problematic when the models have79

similar skill. (c) Multi-model “out-of-sample” performance is often degraded due to the assign-80

ment of low (zero) weights to useful models. Potential approaches to this challenge (other than81

waiting for decades) are discussed. It is not possible, given the current archive, to establish the82

extent to which these results are relevant. The aim of the paper can only be to suggest a more83

general experimental design in operational studies which would identify or rule out the concerns84

quantified above. The paper merely raises a concern to which no exceptions are known, it does not85

attempt (nor could any paper today succeed) in showing this clear and present challenge to multi-86

model forecasting that dominates seasonal (or other) operational forecasts. It does, by considering87

well designed surrogate forecasting systems, provide insight into challenges likely to be faced by88

any multimodel forecast system of a design similar to the real forecast system of interest.389

3After reading this section, a reviewer asks if these results are relevant to readers of MWR? Consider the related question: what evidence is in

hand that any approach is robust in operational models? Detailed questions of how large an ensemble should be or how a multi-model should be

weighted (or even constructed (Du and Smith 2017)) can not be explored with operational models due to the extreme computational cost of such

an evaluation. One could not evaluate, say, Figure 13 using operational models. The aim of surrogate modeling is to address such questions and

demonstrate the robustness of the results for simpler target systems. The weakness of surrogate forecast systems is interpreting their relation of

these results to those of operational systems of interest. The alternative is to have no well quantified and evaluated insight into the robustness at

all. Were the results of Hide (1958) and Read (1992) useful to numerical weather forecasting? Were the many systems of mathematical equations

constructed by Lorenz (1963, 1995)? Were the circuit studies on ensemble size by Machete and Smith (2016)? Surrogate forecast systems can aid

in the design of operational test-beds and support their finding. The answer in our particular case appears to be that they are relevant.
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2. From Ensemble(s) to Predictive Distribution90

The ENSEMBLES project considered seasonal forecasts from seven different models; an initial91

condition ensemble of nine members was made for each model and launched four times a year (in92

the months of February, May, August and November). The maximum lead time was seven months,93

except for the November launch which extended to 14 months. Details of the project can be found94

in Alessandri et al. (2011); Doblas-Reyes et al. (2010); Weigel et al. (2008); Hewitt and Griggs95

(2004); Weisheimer et al. (2009); Smith et al. (2015).96

The models are not exchangeable in terms of the performance of their probabilistic fore-97

casts. Construction of predictive functions via kernel dressing and blending with climatology98

(see Brocker and Smith (2008) and Appendix A1. for mathematical details) for each initial con-99

dition ensemble of simulations is discussed in Smith et al. (2015) (under various levels of cross-100

validation). Note that kernel dressing is not kernel density estimation (Silverman 1986); asked to101

suggest a reference that clarifies this common confusion of the two procedures, Silverman replied102

“As for anything in print, this is like asking for something in print that says the earth is round103

rather than flat? (B. Silverman private communication, 12 Apr 2018 12:54:11). Kernel Dressing104

does aim to reproduce the imperfect-model distribution from which it was drawn; Kernel Density105

Estimation always and only attempts to reproduce the distribution from which the ensemble mem-106

bers were drawn. Throughout the current paper, skill is quantified with I.J. Good’s logarithmic107

score (Good 1952; Roulston and Smith 2002); this score is sometimes (and in this paper) referred108

to as Ignorance (IGN) (Roulston and Smith 2002). As noted in Smith et al. (2015); Du and Smith109

(2017), IGN is the only proper and local score for continuous variables (Bernardo 1979; Raftery110

et al. 2005; Brocker and Smith 2006), and is defined by:111

S(p(y),Y ) =− log2(p(Y )), (1)
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where Y is the outcome and p(Y ) is the probability of the outcome Y . In practice, given K forecast-112

outcome pairs {(pi,Yi) | i = 1, . . . ,K}, the empirical average Ignorance score of a forecast system113

is then114

SE(p(y),Y ) =
1
K

K

∑
i=1
− log2(pi(Yi)), (2)

In practice, the skill of a forecast system can be reflected by the Ignorance of the forecast system115

relative a reference forecast pre f :116

Srel(p(y),Y ) =
1
K

K

∑
i=1
− log2[(pi(Yi))/pre f (Yi)]. (3)

Climatological forecast (climatology) is a commonly used reference forecast in meteorology.117

3. Simple Chaotic System Models Pair118

Without any suggestion that probabilistic forecasting of a one-dimensional chaotic map reflects119

the complexity or the dynamics of seasonal forecasting of the Earth System, this paper draws120

parallels. Parallels between challenges to probabilistic forecasting of scalar outcomes using mul-121

tiple models with different structural model errors and a small forecast-outcome archive in low-122

dimensional systems and those in high-dimensional systems. These challenges occur both in low-123

dimensional systems and in high-dimensional systems. Whether or not suggestions inspired by124

the low-dimensional case below generalize to high-dimensional cases (or other low-dimensional125

cases, for that matter), would have to be evaluated on a case-by-case basis. The argument be-126

low is that the challenges themselves can be expected in high-dimensional cases, leading to the127

suggestion that they should be considered in the design of all multi-model forecast experiments.128

The system to be forecast throughout this paper is the Moran-Ricker Map (Moran 1950; Ricker129

1954) given in Equation 4. Selection of a simple, mathematically defined system allows the option130

of examining the challenges of a small forecast-outcome archive in the context of results based on131
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very large archives. This is rarely possible for a physical system (see however Machete (2007);132

Smith et al. (2015)). In this section the mathematical structure of the system and four imperfect133

models of it are specified. The specific structure of these models reflects a refined experimental134

design in light of the results of Higgins (2015).135

Let x̃t be the state of the Moran-Ricker Map at time t ∈ Z. The evolution of the system state x̃ is136

given by137

x̃t+1 = x̃teλ (1−x̃t). (4)

In the experiments presented in this paper, λ = 3, where the system is somewhat “less chaotic”138

than using the value adopted in Sprott (2003) (Figure 1 shows the Lyapunov exponent as a function139

of system parameter λ (Glendinning and Smith 2013)), in order to ease the construction of models140

with comparable forecast skill. Define the observation at time t to be st = x̃t + ηt , where the141

observational noise, ηt , is independent and normally distributed (ηt ∼ N(0,σ2
noise))

4.142

Four one-dimensional deterministic models are constructed, each one being an imperfect model143

of the Moran-Ricker system. In the experiments presented here, the focus is on designing a multi-144

model ensemble scheme and effective parameter selection for producing predictive distribution145

from multiple models. Therefore the imperfect models as well as their parameter values are fixed.146

These four models share the same state space as the system, and the observations are complete.147

Note in practice, it is almost always the case that the model state x lies in a different space from148

the system state x̃. The models are:149

• Model I, G1(x), is built by first expanding the exponential term in Equation 4 to the 12th
150

order:151

xt+1 = x(1+λ (1− x)+
1
2!
(λ (1− x))2 + · · ·+ 1

12!
(λ (1− x))12). (5)

4Observations are restricted to positive values.
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The coefficient of each polynomial term is then truncated at the 3rd decimal place:152

xt+1 = x(1+3(1− x)+4.5(1− x)2 + · · ·+0.004(1− x)11 +0.001(1− x)12). (6)

• Model II, G2(x), is derived by first taking the logarithm of Equation 4 and expanding to the153

8th order:154

logxt+1 = logx+λ −λx = logx+λ −λelogx (7)

logxt+1 =−2logx− 3
2!
(logx)2− 3

3!
(logx)3−· · ·− 3

8!
(logx)8 (8)

The coefficient of each polynomial term is then truncated at the 4th decimal place:155

logxt+1 =−2logx−1.5(logx)2−0.5(logx)3−· · ·−0.0006(logx)7−0.0001(logx)8 (9)

• Model III, G3(x), is obtained by expanding the right-hand side of Equation 4 in a Fourier156

series over the range 0≤ x̃≤ π . This series is then truncated at the 10th order to yield157

xt+1 =
a0

2
+

10

∑
i=1

[aicos(2ixt)+bisin(2ixt)],

where the coefficients ai and bi are obtained by158

ai =
2
π

∫
π

0
xeλ (1−x)cos(2ix)dx (10)

bi =
2
π

∫
π

0
xeλ (1−x)sin(2ix)dx (11)

• Model IV, G4(x), is obtained by expanding the right-hand side of Equation 4 by Laguerre159

Polynomials truncated at the 20th term.160

xt+1 =
20

∑
i=0

ciLi(x),
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where Li(x) = ∑
i
k=0

(−1)k

k!

(N
k

)
xk are the Laguerre Polynomials and the coefficients ci are ob-161

tained by162

ci =
∫

∞

0
w(x)Li(x)xeλ (1−x)dx (12)

with the weighting function w(x) = e−x. Laguerre Polynomials are orthogonal and orthonor-163

mal.164

Notice that the order of the truncation for Model I, II, III and IV differ. These are chosen so that165

each model represents the system dynamics well and the scales of their forecast skill are compa-166

rable. Figure 2 plots the dynamical function of each model together with the system dynamics.167

Figure 3 presents the histogram of the 1-step model error over 2048 different initial conditions168

which are uniformly sampled between the minimum and maximum of the Moran-Ricker system.169

It appears that Model I simulates the system dynamics well except when the initial condition is170

near the maximum value of the system. For Model II, a large difference between the model dynam-171

ics and the system dynamics appears only when the initial condition is near the minimum value172

obtained by the system. Model III does not match the system dynamics well where x & 1.5 and173

where the forward model reaches the maximum value of the map. Model IV matches the system174

less well for initial conditions near the maximum value of the map.175

Figure 4 plots the two-step model error for each model, while Figure 5 presents the histogram176

of the 2-step model error. Generally, the structure of the model error is different. Different models177

have different scales of model error in different local state space.178

Again, there is, of course, no suggestion that the Moran-Ricker system resembles the dynamics179

of the Earth. Rather, the framework presented here (and in Higgins (2015)) provides probabilistic180

forecasts from structurally flawed models; the model-based forecasts (and ideal probabilistic fore-181

casts formed using the perfect model) differ nontrivially from each other, and as the models are182
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nonlinear the forecast distributions are non-Gaussian. It is these challenges to multi-model fore-183

cast system development that are illustrated in this paper, which should (of course) not be taken to184

present an actual geophysical forecast system; indeed the verifications in the observational record185

rules out examination of LAP in geophysical systems, while computational requirements rule out186

extensive examination of SAP in “state-of-the-art” geophysical models.187

4. Ensemble Formation188

a. Initial Condition Ensembles for Each Model189

In the experiments presented in this paper, each model produces ensemble forecasts by iterating190

an ensemble of initial conditions (IC). The initial condition ensemble (ICE) is formed by perturb-191

ing the observation with random draws from a Normal distribution, N(0,κ2
τ ). If the model were192

perfect and the observation were exact, κτ would be zero; as neither of these conditions is met193

one does not expect κτ to be zero. Such a perturbation parameter κτ is chosen to minimize the194

Ignorance score at lead time τ . When making medium-range forecasts, the European Centre for195

Medium-Range Weather Forecasts (ECMWF) selects a perturbation size such that the RMS error196

between the ensemble members and the ensemble mean at a lead time of two days is roughly equal197

to the RMS of the ensemble mean and the outcome at two days.198

In the experiments presented below, each initial condition ensemble will contain Ne = 9 mem-199

bers, following the ENSEMBLES protocol. Consider first the case of a large archive, with200

Na = 2048. For a given κ and lead time τ , the kernel dressing and climatology-blend parame-201

ter values are fitted using a training forecast-outcome archive which contains Nl = 2048 forecast-202

outcome pairs. The Ignorance score is then calculated using an independent testing forecast-203

outcome set which contains Nt = 2048 forecast-outcome pairs. Figure 6a shows the optimal per-204
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turbation parameter κ for each model varies with lead time.5 The Ignorance score for each model205

at different lead time, using the values of κ in Figure 6a, is shown in Figure 6b. The sampling206

uncertainty across forecast launches is represented by a bootstrap resampling procedure, which207

resamples the set of forecast Ignorance scores for each model, with replacement. The bootstrap208

resampling intervals are shown as vertical bars in Figure 6 as a 5−95% interval. As seen in Figure209

6a, for each model, the preferred value of κ varies significantly (by about a factor of 2) between210

different forecast lead times. Defining a Ne-member forecast system requires selecting a specific211

value of κ for each model. In this paper, the value of κ for each model is chosen by optimizing the212

forecast Ignorance score at lead time 1. Sensitivity tests have been conducted and the Ignorance213

score at other lead times is much less sensitive to κ than that at lead time 1. Bias correction in the214

dressing blending approach is another concern. Hodyss et al. (2016) discussed bias in a real-world215

context. The dressing blending approach can be generalized by including a shifting parameter (see216

Brocker and Smith (2008)) to account for model bias. Including the shifting parameter does, in217

fact, improve the Ignorance score out-of-sample (in each model at almost all lead times) in this218

case. As the improvement is typically less than one 20th of a bit (sometimes zero), such shifting219

parameter is not included in the dressing blending throughout the experiments presented in the220

current paper.221

b. On the Number of IC Simulations in Each Ensemble222

Forecast system design relies on the knowledge of the relationship between the size of the fore-223

cast ensemble and the information content of the forecast (Smith et al. 2015). Usually, the cost of224

developing a brand new model is tremendously larger than the cost of increasing the number of225

5As noted by a reviewer, there is uncertainty in the κ values reported in Figure 6a. To quantify this uncertainty, the estimate of κ was bootstrap

resampled. The results (not shown) show variation in κ , at lead time 1 always less than 50%, but very little variation in the corresponding Ignorance

value for each model.
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ensemble members6. Furthermore the cost of increasing the ensemble size increases only (nearly)226

linearly and decreases as technology improves.227

As the number of ensemble members increases, the true limitation due to structural model error228

becomes more apparent. Figure 7 shows that forecast Ignorance varies as ensemble size increases.229

Improvement from the additional ensemble members can be noted, especially at shorter lead times.230

5. Forecast System Design and Model Weighting When Data Are Precious231

a. Forecasts With a Large Forecast-outcome Archive232

As Na, the size of the forecast-outcome archive, increases, one expects robust results since large233

training sets and large testing sets are considered. To examine this, 512 different training sets are234

produced, each contains 2048 forecast-outcome pairs. For each archive, the kernel width σ and235

climatology-blend weight α are fitted for each model’s forecasts at lead time. Figures 8a and 8b236

show the fitted values of the dressing parameters and climatology-blend weights. The error bars237

reflect the central 90th percentile over 512 samples. The variation of the weight assigned to the238

model appears small. The variation of the fitted kernel width is small at short lead times and large239

at long lead times. Especially at lead time 5, the fitted value for Model IV has relatively large240

variation. This, however, does not indicate that the estimate is not robust but suggests the Igno-241

rance score function in the parameter space is relatively flat near the minimum. To demonstrate242

this, the empirical Ignorance is calculated for each archive of kernel width and climatology-blend243

weight based on the same testing set (which contains another 2048 forecast-outcome pairs). Fig-244

ure 8c plots the Ignorance score and its 90th percentile as a function of lead time. Notice the 90th
245

percentile ranges are always very narrow.246

6And financially, the cost falls on the current account not the capital account.
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The next two paragraphs echo Smith et al. (2015). There are many ways to combine multiple247

single model forecast distributions into a single probabilistic (multi-model) forecast distribution248

(Hagedorn et al. 2005; Brocker and Smith 2008). A simple approach is to treat each model equally249

and therefore apply equal weight to each individual model (see, for example, Weisheimer et al.250

(2009)). In general, different models perform differently in terms of forecasts, for example, the251

ECMWF model significantly outperforms other models in seasonal forecasts (Smith et al. 2015).252

Therefore, applying non-equal weights to all contributing models might provide more skillful253

multi-model forecast distribution (see, for example, Rajagopalan et al. (2002)). Following Doblas-254

Reyes et al. (2005) and Smith et al. (2015), define the combined multi-model forecast distribution255

to be the weighted linear sum of the constituent distributions:256

pmm = ∑
i

ωi pi, (13)

where pi is the individual forecast distribution from the ith model and ωi (∑i ωi=1) the correspond-257

ing weight. The weighting parameters ωi may be determined according to their performance in a258

past forecast-outcome archive. The weights of individual models are expected to vary as a function259

of lead time.260

It is computationally costly and potentially results in ill-fitted model weights, if all the weights261

are fitted simultaneously. To avoid both issues, a simple iterative approach (Du and Smith 2017)262

is adopted. For each lead time, the best (in terms of Ignorance) model is first combined with the263

second-best model to form a combined forecast distribution (by assigning weights to both models264

that optimize the Ignorance of the combined forecast). The combined forecast distribution is then265

combined with the third-best model to update the combined forecast distribution. This process266

is repeated until inclusion of the “worst” model is considered. Note each time a new model is267

included in the combined model, only two weights need to be assigned. Figure 8d shows the268
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weights assigned to each model as a function of lead time. The cyan line in Figure 8c shows the269

variation of the Ignorance score for the multi-model forecast given those estimated model weights270

is very small.271

b. Forecast With a Small Forecast-outcome Archive272

When given a small forecast-outcome archive (e.g. from a∼ 40-year seasonal forecast-outcome273

archive), one does not have the luxury of exploring a large collection of independent training and274

testing sets. Cross-validation is often approached by adopting a leave-one-out approach. The275

robustness of parameter fitting in such cases is of concern. To examine such robustness, a large276

number of forecast-outcome archives are considered. Each archive contains the same numbers of277

forecast-outcome pairs. For each archive, the parameter values are fitted via leave-one-out cross-278

validation. The distribution of fitted values over these small forecast-outcome archives is then279

compared with the fitted value from the Na = 2048 forecast-outcome archives above. Figure 9280

plots the histograms of the fitted climatology-blend weights given 512 forecast-outcome archives281

each containing Na = 40 forecast-outcome pairs. Notice that, in most cases, the distributions282

are very wide although they cover the value fitted given the large training set. There are some283

cases in which about 90 percent of the estimates are larger or smaller than the values fitted by284

the large archive, e.g. lead time 1 of Model I and Model II and lead time 4 of Model III and285

Model IV. It therefore appears that the robustness of fitting varies with lead time and the model.286

For shorter lead times, however, the weights are more likely to be over-fitted and, for longer lead287

times, the weights are more likely to be under-fitted. This is because at short lead times the model288

forecasts are relatively good; only a few forecast systems yield predictions that are worse than the289

climatological forecast. Small forecast-outcome archives, on the other hand, may not contain any290

model busts and so often overestimate the weights. The longer lead time case can be explained291

15



similarly. Figure 10 plots the histogram of fitted kernel widths. Again, observe that there is much292

larger variation of the estimates here than when fitting with large forecast-outcome archives.293

Poor estimation of the kernel width and climatology-blend weight will cause the forecast to294

lose skill and appear to underperform out-of-sample (due to inappropriately high expectations).295

This could, of course, be misinterpreted as climate change. For each of the 512 fitted kernel296

widths and climatology-blend weights, the Ignorance scores are calculated over the same testing297

set of 2048 forecast-outcome pairs. Figure 11 plots the histogram of the Ignorance score for each298

model. Using parameters fitted with small archives often results in significant degrading (∼ 1 bit)299

of the Ignorance score of the forecasts. Correctly blending with the climatological distribution300

would yield a forecast score which, in expectation, is never worse than the climatology. When the301

blending parameter is determined using the small archive, however, the average relative Ignorance302

can be worse than climatology out-of-sample at long lead times (see for example in Figure 11).303

Figure 12 plots the histogram of multi-model weights. Clearly the variation of the model weights304

based on a small archive are much larger. Weights of zero are often assigned to model forecasts305

which contain useful information, for example.306

6. Multi-model vs Single Best Model307

As noted in Smith et al. (2015)7, it is sometimes said that a multi-model ensemble forecast is308

more skillful than any of its constituent single-model ensemble forecasts (see, for example, Palmer309

et al. (2004); Hagedorn et al. (2005); Bowler et al. (2008); Weigel et al. (2008); Weisheimer et al.310

(2009); Alessandri et al. (2011)). One common “explanation” (Weigel et al. 2008; Weisheimer311

et al. 2009; Alessandri et al. 2011) for this is that individual model tends to be overconfident312

with its forecast and a multi-model forecast reduces such overconfidence, which leads to a more313

7These first two sentences are taken from Smith et al. (2015).
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skillful forecast performance. As shown in Section 6, single model SAP forecast systems are314

typically between half a bit and two bits less skillful than a LAP system based on the same model.315

Can a SAP multi-model forecast system regain some of this potential skill? Figure 12 shows that316

this is unlikely, as the determination of model-weights given SAP varies tremendously relative to317

their LAP values. Again, it is the performance of the combination of weights that determine the318

skill of the forecasts, so this variation need not always be deadly.319

Figure 13 shows the skill of the multi-model forecast system relative to the forecast system320

based on the single best model. Both the SAP and the LAP forecast systems show that the multi-321

model system usually outperforms the single model. Comparing SAP multi-model systems with322

the single best model SAP system (Figure 13b), the advantage of the multi-model system(s) is323

stronger when the best model (as well as all the parameters: model weights and dressing and324

climatology-blended parameters) are ill-identified. Comparing SAP multi-model systems with the325

single best model LAP system (Figure 13c), however, the advantage of the multi-model system(s)326

is weaker. Multi-model systems do not always outperform the single best model, especially at327

longer lead times.328

At this point, one faces questions of resource distribution. A fair comparison of an N-model329

forecast system would be against a single model with n-times larger ensemble. (This, of course,330

ignores the operational fact that it is much more demanding to maintain an ensemble of models331

than to maintain a large ensemble under one model.) Secondly, note that for each model, κ was332

a function of lead time. At the cost of making ensemble members non-exchangeable, one could333

draw ensembles from distinct groups, and weight these members differently for each lead time.334

Finally, one could develop methods which treat the raw ensemble members from each of the335

models as non-exchangeable and use a more complex interpretation to form the forecast. While336

the simple forecast framework of this paper is an ideal place to explore such questions, they lie337
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beyond the scope of this paper. Instead, the extent to which the multi-model forecast system is338

more misleading than the single model systems concludes the discussion in the next section.339

7. Discussion and Conclusions340

A significant challenge to the design of seasonal probabilistic forecasting has been discussed341

and illustrated in a simple system where multiple models can easily be explored in long time342

limits. The challenge has been addressed within the surrogate modeling paradigm. In the actual343

system of interest, empirical data is precious: we have very few relevant out-of-sample forecasts,344

and doubling the current sample size will take decades. For these reasons we consider surrogate345

systems with sufficient similarity given the questions we wish to ask. We are forced to assume346

that the results obtained are general enough to make them informative for design in the real-347

world system; in this particular case we believe that they are: the challenges of interpreting small348

ensembles in any multi-model context are arguably quite similar. Similarly, the convergence to a349

clear conclusion in the limit of large ensembles is also arguably quite similar. The details of the350

rate at which information increases as the ensemble size increases will depend on the details of351

the dynamics of the system, the quality of the models, and so on. That said, there is sufficient352

evidence from the study above to show that some current multi-model ensemble studies do not353

employ initial condition ensembles of sufficient size to achieve robust results.354

There is no statistical fix to the challenges of “lucky strikes” when a generally poor model355

places an ensemble member near an outcome “by chance”, and that particular outcome was not356

well predicted by the other forecast systems. Similarly “hard busts” in a small archive can distort357

the parameters of the forecast systems, when an outcome occurs relatively far from each ensemble358

member. In this case, wider kernels and/or heavier weighting on the climatology results. This359

may be due to structural model failure, or merely to a “rare” event, where rare is related to the360
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ensemble size. Given a sufficiently large ensemble, the forecast system could have assigned an361

(appropriately low) probability to the observed “bust” event.362

In short, the brief duration of the forecast-outcome archive, typically less than 40 years in sea-363

sonal forecasting, limits the clarity both with which probability distributions can be derived from364

individual models and with which model weights can be determined. No clear solution to this365

challenge has been proposed, and while improvements on current practice can be made, it is not366

clear that this challenge can be met. Over long periods, like 512 years, the climate may not be well-367

approximated as stationary. In any event, both observational systems and the models themselves368

can evolve significantly on much shorter timescales, perhaps beyond recognition.369

One avenue open to progress is in determining the relative skill of “the best model” (or a small370

subset) and the full diversity of models. Following Brocker and Smith (2008) it is argued that a371

forecast system under the best model with a large ensemble may well outperform the multi-model372

ensemble forecast system when both systems are given the same computer power. To test this in373

practice requires access to larger ensembles under the best model. This paper argues future studies,374

such as ENSEMBLES, could profitably adjust their experimental design to take this into account375

(see also Machete and Smith (2016)).376

A second avenue is to reduce the statistical uncertainty of model fidelity within the available377

archive. This can be done by running large ensembles (much greater than “9”, indeed greater than378

might be operationally feasible) under each model. This would allow identification of which mod-379

els have significantly different probability distributions, and the extent to which they are (some-380

times) complementary. Tests with large ensembles also reveal the “bad busts” due to small en-381

semble size to be what they are. It can also suggest that those which remain are indeed due to382

structural model error.383
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In closing, it is suggested that perhaps the most promising way forward is to step away from the384

statistics of the ensembles, and consider the physical realism of the individual trajectories. One385

can look for shadowing trajectories in each model, and attempt to see what phenomena limit the386

model’s ability to shadow. Identifying these phenomena, and the phenomena that cause them,387

would allow model improvement independent of the probabilistic skill of ensemble systems. This388

approach is not new, of course, but the traditional physical approach to model improvement which389

dates back to Charney. Modern forecasting methods do offer some new tools (Judd et al. 2008),390

and the focus on probabilistic forecasting is well placed in terms of prediction. The point here is391

merely that probabilistic forecast skill, while a sharp tool for decision support, may prove a blunt392

tool for model improvement when the data are precious.393
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APPENDIX394

A1. From Simulation to a Predictive Distribution395

This appendix is taken from Smith et al. (2015) Appendix A.396

An ensemble of simulations is transformed into a probabilistic distribution function by a combi-397

nation of kernel dressing and blending with climatology (Brocker and Smith 2008). An N-member398

ensemble at time t is given as Xt = [x1
t , ...,x

N
t ], where xi

t is the value of a observable quantity for the399

ith ensemble member. For simplicity, ensemble members given a model are considered exchange-400

able. Kernel dressing defines the model-based component of the density as:401

p(y : X ,σ) =
1

Nσ

N

∑
i

K
(

y− (xi)

σ

)
, (A1)

where y is a random variable (the correspondent of the density function p) and K is the kernel,402

taken here to be403

K(ζ ) =
1√
2π

exp(−1
2

ζ
2). (A2)

Thus each ensemble member contributes a Gaussian kernel centred at xi. For a Gaussian kernel,404

the kernel width σ is simply the standard deviation determined empirically as discussed below.405

Even for an ensemble drawn from the the same distribution as the outcome, there remains the406

chance of ∼ 2
N that the outcome lies outside the range of the ensemble. Given the nonlinearity of407

the model, such outcomes can be very far outside the range of the ensemble members. In addition408

to N being finite, the simulations are not drawn from the same distribution as the outcome, as the409

forecast system is never perfect in practice. To improve the skill of the probabilistic forecasts, the410

kernel dressed ensemble may be blended with an estimate of the climatological distribution of the411

system obtained by dressing the historical observations (see Brocker and Smith (2008) for more412

details, Roulston and Smith (2003) for alternative kernels and Raftery et al. (2005) for a Bayesian413
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approach). The blended forecast distribution is then written as414

p(·) = α pm(·)+(1−α)pc(·), (A3)

where pm is the density function generated by dressing the model ensemble and pc is the estimate415

of the climatological density. The blending parameter α determines how much weight is placed416

on the model. Specifying both values (kernel width σ , and climatology blended parameter α)417

at each lead time defines the forecast distribution. Both parameters are fitted simultaneously by418

optimizing the empirical Ignorance score over the training set.419
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FIG. 1. Estimates of the Global Lyapunov exponent are plotted as a function of λ . a) 4096 values of λ
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FIG. 2. Graphical presentation of the dynamics of four different models, the blue line represents model

dynamics as a function of initial conditions and the red line represents the system dynamics.
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FIG. 7. The Ignorance score varies as the ensemble size increases for each model.
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FIG. 8. Forecast Ignorance, climatology-blend weight assigned to the model, kernel width and weights as-

signed to each individual model are plotted as a function of lead time.

585

586

36



FIG. 9. Climatology-blend weights assigned to each model. The red bars are the 95th percentile range of the

fitted weights based on 512 forecast-outcome archives. Each contains 2048 forecast-outcome pairs. The blue

crosses represent the histogram of the fitted weights based on 512 forecast-outcome archives. Each of these

contains only 40 forecast-outcome pairs.
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FIG. 10. Kernel width of each model’s forecasts. The red bars are the 95th percentile range of the fitted kernel

width based on 512 forecast-outcome archives, each contains 2048 forecast-outcome pairs. The blue crosses

represent the histogram of the fitted kernel width based on 512 forecast-outcome archives, each contains only

40 forecast-outcome pairs.
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FIG. 11. Ignorance score of each model’s forecasts. The red bars are the 95th percentile range of Ignorance

score calculated based on a testing set containing 2048 forecast-outcome pairs, using the climatology-blend

weights and kernel widths fitted based on 512 forecast-outcome archives, each contains 2048 forecast-outcome

pairs. The blue crosses represent the histogram of Ignorance score calculated based on the same testing set but

using the climatology-blend weights and kernel widths based on 512 forecast-outcome archives, each contains

only 40 forecast-outcome pairs.
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FIG. 12. Multi-model weights for each set of model forecasts. The red bars are the 95th percentile range of

model weights calculated based on a testing set containing 2048 forecast-outcome pairs, using the climatology-

blend weights and kernel widths fitted based on 512 forecast-outcome archives, each contains 2048 forecast-

outcome pairs. The blue crosses represent the histogram of model weights calculated based on the same testing

set but using the climatology-blend weights and kernel widths based on 512 forecast-outcome archives, each

contains only 40 forecast-outcome pairs.

601

602

603

604

605

606

40



FIG. 13. Ignorance of multi-model ensemble relative to the single best model. The blue crosses represent the

histogram of the Ignorance of the multi-model ensemble relative to the single best model (black dashed line).

(a) Model weights and dressing and climatology-blend parameters are fitted based on 512 large archives, each

contains 2048 forecast-outcome pairs. (b) Model weights and dressing and climatology-blend parameters are

fitted based on 512 small archives, each contains 40 forecast-outcome pairs. (c) The Ignorance of the multi-

model ensemble is calculated using model weights and dressing and climatology-blend parameter which are

fitted based on 512 small archives, while the Ignorance of the single best model is calculated based on 512 large

archives.
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