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Abstract The United Kingdom Climate Impacts Programme’s UKCP09 project
makes high-resolution projections of the climate out to 2100 by post-processing the
outputs of a large-scale global climate model. The aim of this paper is to describe
and analyse the methodology used and then urge some caution. Given the acknowl-
edged systematic, shared errors of all current climate models, treating model outputs
as decision-relevant projections can be significantly misleading. In extrapolatory sit-
uations, such as projections of future climate change, there is little reason to expect
that post-processing of model outputs can correct for the consequences of such errors.
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This casts doubt on our ability, today, to make trustworthy probabilistic projections at
high resolution out to the end of the century.

Keywords Climate change · Prediction · Projection · Simulation · Model ·
Probability · Reliability · Emulation · Systematic error · Decision-making ·
Structural model error

1 Introduction

There is now a widespread consensus that global warming is real and in large part due
to human activities.1 Simply knowing that the Earth’s surface will warm on the whole
(or on average) has value for both mitigation2 and adaptation strategies, especially
when accompanied by other physically understood aspects such as the greater rate
of warming of land than of ocean and the warming amplification at higher latitudes.
Nevertheless much greater detail is sometimes desired. The question is: to what extent
can that desire be met effectively? The impact of climate change on humans (as well
as other organisms) occurs at a local scale, and so ideally one would like to know what
changes one has to expect in one’s immediate environment. For instance, how will
the precipitation change in central London by the end of this century? Having reliable
answers to such questions would have significant implications for water management,
agriculture, health planning, andmany other decisions. Robust, reliable answerswould
aid decision-making (Oreskes et al. 2010; Sexton et al. 2012; Smith and Stern 2011;
Tang and Dessai 2012).

TheUnited Kingdom Climate Impacts Program’sUKCP093 project aims to answer
exactly such questions by making high-resolution probabilistic projections4 of the
climate out to 2100 based on HadCM3, a global climate model (GCM) developed at
theUKMetOfficeHadleyCentre. The IPCChas confidence that global climatemodels
like HadCM3 have some skill at continental scales and above.5 This leaves open the

1 The existence of a wide-spread a consensus is documented in Oreskes (2007); the evidence for the
warming being anthropogenic is documented in the most recent IPCC report (Stocker et al. 2013); a shorter
summary is Dessler (2011, Chap. 3).
2 Knowing even roughly what is likely to happen may be reason enough not to go there.
3 ‘UKCP’ stands for United KingdomClimate Projections and ‘09’ indicates that it was launched for public
use in 2009. The project’s broad outline is documented in the briefing report (Jenkins et al. 2009) (a revised
version has been published in 2010); the science report (Murphy et al. 2010) and two recent papers (Sexton
et al. 2012; Sexton and Murphy 2012) provide a detailed exposition.
4 A ‘projection’ is the ‘response of the climate system to emission or concentration scenarios of greenhouse
gases and aerosols, or radiative forcing scenarios […]’ (Solomon et al. 2007, 943}. Unlike predictions or
forecasts, projections ‘depend upon the emission/concentration/radiative forcing scenario used, which are
based on assumptions concerning, for example, future socioeconomic and technological developments that
may or may not be realised and are therefore subject to substantial uncertainty’ (ibid.).
5 ‘IPCC’ refers to the Intergovernmental Panel onClimateChange, the international body for the assessment
of climate change established by the United Nations Environment Programme (UNEP) and the World
Meteorological Organization (WMO) in 1988. The panel’s findings are documented in its assessment
reports. The 4th assessment report was published in 2007 (Solomon et al. 2007), and the 5th has been
released in phases from September 2013 to October 2014.
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question whether decision-relevant high-resolution projections could be constructed
with today’s models.

The aim of this paper is to describe and analyse the methodology used by UKCP09
and then urge some caution. While this methodology is the only complex model-
error-exploring methodology currently deployed to inform decisions with probability
projections,UKCP09 is not an isolated phenomenon. In theUKa successor toUKCP09
is being planned, and similar projects are under consideration around the world.6 The
question whether UKCP09 provides decision-relevant projections is widely debated
inside the UK; this paper is intended to raise the profile of that discussion, as the
answers have implications that reach far beyond the political and scientific context
of the UK. UKCP09 has great value as a worked example in the discussion of the
strengths and weaknesses of climate simulation in support of good policy worldwide.

Given the acknowledged systematic errors in all current climate models, the fact
that many limitations are shared by models, and the fundamental limitations which
come into play whenever one extrapolates with imperfect nonlinear models, model
outputs cannot be assumed to contain the information necessary to produce reli-
able probabilistic, multi-decadal projections, particularly on local scales (Smith 2002;
Thompson 2013; Frigg et al. 2014). Climate projections are extrapolatory in nature;
they rely directly on the information content of the models regarding the interaction
of relevant physical processes. If the model simulations are not of high fidelity, then
it is questionable whether post-processing of model output, even if involving addi-
tional information from observations, would be sufficient to generate trustworthy,7

high-resolution projections out to the end of this century. This paper elucidates the
fundamental assumptions applied in UKCP09, facilitating the questioning of their rel-
evance; this is of particular value because some are widely made in the interpretation
of climate modelling experiments.8

In Sect. 2 we discuss the aims of UKCP09. In Sect. 3 we outline the method used
to generate high-resolution climate projections. We give considerable space to the
description of UKCP09’s methods for two reasons. First, even though UKCP09 is
widely discussed, its ways and means in generating projections are terra incognita
outside a narrow circle of experts. We take this paper as an opportunity to make the
main outlines of this complex scheme accessible to a wider audience. Second, our
criticisms are directed against particular (independent) assumptions of the scheme,
and without first introducing these assumptions our discussion would lack a foothold.
In Sect. 4 we discuss the project’s handling of structural model error, which is based

6 Similar projects include: Cal Adap (http://www.cal-adapt.org/precip/decadal/), Climate Wizard (http://
www.climatewizard.org/), ClimateimpactsOnline (http://www.climateimpactsonline.com/).
7 In this paper we shall use the word ‘trustworthy’ to denote probability forecasts, which one might ratio-
nally employ for decision-making purposes using probability theory in the standard way. Such probability
forecasts are expected to be robust and reliable, the kind a good Bayesian would make. There may be many
justifiable and interesting scientific reasons to construct probability forecasts; our criticism of them in this
paper is only in regard to their direct use in decision support (as, for instance, illustrated in the worked
examples of UKCP09).
8 Uncertainty in climate modelling has been given considerable attention, among others, by Parker (2010a),
Parker (2013), Winsberg and Biddle (2010), and Winsberg (2012). Our discussion has a different focus in
that it deals specifically with local climate projection and concentrates on post-processing.
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on what we call the core assumption and the proxy assumption, and we argue that both
assumptions are untenable. In Sect. 5 we expose general challenges to employing
emulators in the climate context, and UKCP09’s use of emulators in particular. In
Sect. 6 we discuss the choice of prior probability distributions and in Sect. 7 we draw
attention to issues with initial conditions and downscaling. In Sect. 8 we consider
the issue whether the UKCP09 projections are intended for actual use. In Sect. 9 we
reach the conclusion that UKCP09’s projections should not be regarded as trustworthy
projections for quantitative decision support, and propose an initial list of necessary
properties for trustworthy projections.

2 UKCP09: aims and results

Modelling endeavours can pursue different goals: uncovering mechanisms, under-
standing causal structures, explaining manifest behaviour, aiding the application of a
theory and generating projections are but a few items on a long list. Many of these
goals can be (and indeed have been) pursued with climate models. The declared aim
and purpose of UKCP09 is to provide decision-relevant projections, on which industry
and policy makers can base their future plans. The UKCP09 briefing report states:

To adapt effectively, planners and decision-makers need as much good informa-
tion as possible on how climate will evolve, and supplying this is the aim of the
new projections of UK climate change in the 21st century, known as UKCP09.
They are one part of a UK government programme of work to put in place a new
statutory framework on, and provide practical support for, adaptation.

The projections have been designed as input to the difficult choices that plan-
ners and other decision-makers will need to make, in sectors such as transport,
healthcare, water-resources and coastal defences, to ensure that UK is adapting
well to the changes in climate that have already begun and are likely to grow in
future. (Jenkins et al. 2009, p. 9)

In a system as complex as the world’s climate, it is absurd to produce a point projection
(i.e. a projection saying that a particular event will happen at a particular time with
certainty). UKCP09 produces what they dub ‘probabilistic projections’, which

assign a probability to different possible climate outcomes recognising that […]
giving a range of possible climate change outcomes is better, and can help with
robust adaptation decisions, but would be of limited use if we could not say
which outcomes are more or less likely than others. (ibid., p. 23)

The challenges many decision makers have to address arise at a local level: flood
barriers have to be built in a particular location and to a chosen height, water storage
facilities have to be built in suitable locations and so on. For this reason, local user-
relevant information about the impacts of climate change is the most useful, assuming
of course that it is not mis-informative (Smith and Stern 2011).

UKCP09 tries to meet the demand for decision-relevant information at the local
level by producing highly specific information (ibid., pp. 6–7). Probabilities are given
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for events on a 25 km grid (which means, for instance, that the projections may
differentiate between the impacts of global climate change in London and Oxford, two
cities that are only about an hour apart by train). Projections aremade for finely defined
specific events such as changes in the temperature of the warmest day in summer, the
precipitation of thewettest day inwinter, or the change in summer-mean cloud amount,
with projections blocked into overlapping 30 year segments which extend to 2100. As
indicated in the graph on p. 36 of the Briefing Report, it is projected, for instance, that
under a medium emission scenario there is a 0.5 ‘probability level central estimate’9

for the reduction in summer mean precipitation in central London to be between 20
and 30 %.10 The worked examples provided in UKCP09 state explicit design criteria
implying this finely defined interpretation is intended.

3 The architecture of UKCP09

These projections are generated with a method involving both global climate mod-
els and elaborate post-processing techniques, where ‘post-processing’ here refers to
operations carried out on model-outputs with the aim of transforming bare simulation
results into probabilistic projections. In this sectionwe outline themethodwith the aim
of making its architecture visible and identifying key assumptions. The method can
be divided into seven parts: modelling, observation, parameter uncertainty, structural
model error, statistical inference, emulation, and downscaling.11

3.1 Part 1—modelling

The cornerstone of UKCP09’s exploration of the future of the global climate is
HadCM3, which is a coupled atmosphere-ocean general circulation model developed
at the Hadley Centre in the UK. The model includes an atmospheric model, a land
surface model and an ocean model (which includes a sea ice model) and a coupler.12

The coupler mediates interactions (such as heat and momentum exchanges) between
models. Simulations of processes in the climate system come from nonlinear partial
differential equations (PDEs), which define the evolution of continuous fields rep-
resenting the state of various aspects of the climate system. It is possible neither to
integrate PDEs exactly, nor to measure perfectly the continuous fields required to ini-
tialise them. In practice equations are discretised (in space and in time). HadCM3’s
atmospheric component has 19 levels with a resolution of 2.5◦ of latitude by 3.75◦ of
longitude, which produces a global grid of 96 × 73 grid points. This is equivalent to
a surface resolution of about 417 km × 278 km at the Equator, reducing to 295 km

9 We take this phrase to refer to the median of the probability distribution.
10 The full set of UKCP09 predictions is at http://www.ukclimateprojections.defra.gov.uk/.
11 Our account of the method is based on Murphy et al. (2010, Chap. 3) and Sexton et al. (2012).
12 See http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
(information retrieved on 23 March 2014). Further information about HadCM3 can be found at http://
www.badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dpt_1162913571289262.

123

http://www.ukclimateprojections.defra.gov.uk/
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
http://www.badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dpt_1162913571289262
http://www.badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dpt_1162913571289262


3984 Synthese (2015) 192:3979–4008

× 278 km at 45◦ of latitude. The oceanic component has 20 levels with a horizontal
resolution of 1.25× 1.25 degrees, and a longer time-step than the atmospheric model.

These models include literally thousands of dynamical variables (the state of each
grid point is described by a number of variables such as temperature and pressure).
Collectively these variables form the model’s state space X . The time evolution of
these variables is hoped tomirror the evolution over time of relevant physical variables.
Thesemodels also include hundreds of parameters (someof them representing physical
constants; others defining or controlling small scale processes such as cloud formation
which are not resolved explicitly, somepurely numericalwith no physical counterpart).
Parameter values enter, for example, into the transfer of heat, moisture or momentum
between the surface and the atmosphere, the reflectivity of sea ice, cloud albedo and
behaviour, and convection at sub-grid scales.

To aid the discussion to follow, let us introduce some notation. Let X be the model’s
state space, and the model’s state at time t is x(t) = {x1(t), x2(t), . . .} ∈ X . Let
α = {α1, α2, . . .} be the vector of all parameters in the model. The time evolution of
HadCM3 is ϕC

t (x;α), meaning that (given an initial condition x0 at time t = 0 and a
value of α) ϕC

t (x;α) specifies the value of the system’s dynamical variables x(t) for
time t > 0 (where t = 0 can be in the past or the future). That is, ϕC

t (x;α) : X → X
maps X onto itself and one can write x(t) = ϕC

t (x0;α). At some places in what
follows it is important to emphasise that α assumes a particular value a. In these cases
one writes ‘ϕC

t (x0; a)’ as shorthand for ‘ϕC
t (x0;α = a)’. If a particular set of values

for the parameters are chosen one speaks of a model version (Stainforth et al. 2005).
Hence, ϕC

t (x; a) is a model version of ϕC
t (x;α).

Values of x(t) cannot be computed with pencil and paper methods; a computer
is used to numerically calculate ϕC

t (x;α). Even today’s powerful computers take a
long time to make a run13 of ϕC

t (x;α), and so a less complex model is used for most
calculations. To this end an oceanmodel consisting of a so-called slabmodel is adopted
(i.e. an ocean with no currents and a uniform effective depth of 50 m). The role of the
oceans in transporting heat is nevertheless represented by an applied atmosphere/ocean
heat flux. The result of this manoeuvre is HadSM3, a computationally less demanding
model.14 We write ϕS

t (x;α) to denote the time evolution of this model, where we take
it as understood that the vectors x and α vary with the model structure; they are larger
in HadCM3 than in HadSM3 which has fewer variables and fewer parameters.

3.2 Part 2—observations

UKCP09 provides a method for making projections that incorporates information
from observations (Sexton et al. 2012, p. 2513). It is assumed that there is a vector
y representing the climate of the world between 1860 and 2100 (Murphy et al. 2010,
p. 51). There is a vector space Y of which y is a member. The vector y is ‘a large

13 A ‘run’ is the calculation of the value of x at some particular future instant of time given a certain x0 and
a set of specific values for α. It is synonymous with the term ‘simulation’. With today’s climate models a
run of a 100 years may take between hours and months depending on the model’s complexity and resolution
and on the computing hardware utilised.
14 Going from HadCM3 to HadSM3 roughly doubles the speed of the model.
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collection of quantities, where each component is typically indexed by type, and by
location and time’ (Rougier 2007, p. 249). It is worth noting that there is no simple
relation between x and y (nor between X and Y ): the former reflects the model’s state
at a given timewhile the latter is a summary of the world’s true climate across a certain
time interval.15

The vector y can be decomposed into a historical and a future component (where
the convention is adopted that the present is part of the historical component): y =
(yh, y f ). Likewise Y can be separated in historical and a future component: Y =
Yh × Y f , where ‘×’ denotes the Cartesian product.

Observed quantities are denoted by o, and the values found in actual observations
are õ (that is, the outcome of an observation is o = õ); hence õ ∈ Yh .16 As no
observation is perfectly precise, one might consider measurement error. The errors are
typically assumed to have a Gaussian distribution. For ease of notation it is assumed
that observations and their errors are arranged in vectors of the same structure as the
past component of the climate and so one can write:

õ = yh + e, (1)

where e is the Gaussian error distribution.17

3.3 Part 3—parameter uncertainty

One problem in determining the future values of x is that ‘the available information
is seldom precise enough to allow the appropriate value of a given parameter to be
accurately known’ (Murphy et al. 2010, p. 37).18 Not knowing what value of α to use
in calculations, yet assuming there is one, ‘gives rise to the parameter component of
model error’ (ibid.).19

15 We note that the notion of a vector representing the world’s climate raises many serious questions.Which
variables ought to be included? At what time and length scales should its components be defined? Andmore
fundamental, how is climate (as opposed to weather) to be defined in the first place. The documentation
of UKCP09 provides little information about how these issues have been resolved. Since nothing in our
discussion depends on the definition of y we don’t pursue this issue further.
16 Given our provisos about the definition of y, selecting observations as indicators of the climate vector
is an equally difficult task. UKCP09 use so-called ‘pseudo-observations’: ‘We obtain these by using two
or three alternative data sets for each observed quantity, from which we generate 100 pseudo-observations
made by adding random linear combinations (where coefficients sum to one) of the different data sources
[…] regridded onto the HadSM3 grid’ (Sexton et al. 2012, p. 2517). Again, nothing in the discussion to
follow depends on how exactly observations are treated and so we set this issue aside.
17 Of course these distributional assumptions are often questionable; for example they cannot hold for
precipitation which is positive definite.
18 Arguably parameters of an imperfect model are not uncertain but rather indeterminate, as there is no
ideal set of parameter values which will make the model adequate for all predictive purposes, as would be
the case if the model structure was perfect and the values of the parameters were well defined but simply
unknown (Du and Smith 2012).
19 This assumption is controversial. Smith (2006) argues that for imperfect models appropriate values
(leading to trustworthy forecasts) may not exist. For want of space we set these worries aside and proceed
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The technique of a perturbed parameter ensemble (PPE) is designed to address this
difficulty (Allen and Stainforth 2002).20 The leading idea of a PPE is to calculate the
future values of x for a number of different values of α, where these values ideally are
chosen in a manner that sample the diversity of reasonable values. If, for instance, we
are uncertain about the ‘best’ value of parameter α2 but believe that it lies between
a2,min and a2,max, then one carries out calculations of x for many values in the interval
[a2,min, a2,max].21 The variability of the outcomes provides a sense of the sensitivity
of the model. Calculating future values of x for a number of different parameter values
amounts to constructing a PPE because the variation of the parameter values amounts
to perturbing the parameter yet without changing the mathematical structure of the
model (because the formulation of the equations remain unchanged).

Given the complexity of a model like HadCM3 relative to state-of-the-art compu-
tational capacity only a relatively small number of runs are available. The question
then is how to construct a PPE for a model with 100s of parameters if one only has
a small number of runs. UKCP09 first limits this problem by restricting attention to
predominantly atmospheric parameters and then solicits parametrisation experts to
identify those parameters which they believe control the crucial processes in the sys-
tem, on which the future values of x depend sensitively; these experts are then asked
to specify plausible intervals for these22 parameters (Murphy et al. 2010, pp. 37, 49).
This process led to the identification of 31 crucial parameters and the definition of
their associated plausible intervals.

Restricting attention to these 31 parameters, one can ask: what is the variation
of future values of x given the diversity in α? UKCP09 quantify uncertainty in x
probabilistically, meaning that they specify a distribution over the uncertainty interval
associated with α. The choice made is the following:

weused trapezoidal distributions for the continuous parameterswhereby themid-
dle 75 % of the expert range was considered equiprobable, and then probability
density reduced linearly to zero at the extreme values. For the discrete parame-
ters, the different levels were considered equiprobable. Parameters are assumed
independent so that it is straightforward to determine probabilities for every
possible combinations [sic] of parameter values. (Sexton et al. 2012, p. 2517)

We write T (α) to refer to this distribution.

3.4 Part 4—model error

UKCP09 uses what they call the ‘best input assumption’: ‘that for a given climate
model there exists a best set of model parameters, [a∗], that provide the best simulation

Footnote 19 continued
as if the question was one of uncertainty not indeterminacy; for more on this point see Smith and Stern
(2011).
20 We note in passing the lack of unanimity on whether the second ‘P’ of PPE stands for ‘parameter’,
‘parameterization’, or ‘physics’.
21 For a discussion of what ‘best’ might mean see also Parker (2010b).
22 Note the difference between the range of reasonable model-parameter values within the model and the
uncertainty in the value of the corresponding physical parameter, when such a thing exists.
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of the true climate, y’ (Sexton et al. 2012, p. 2521). They add that ‘due to imperfections
in the climatemodel, even the best input has deficiencies in simulating the true climate’
(ibid.). The response to this point is to introduce the so-called discrepancy term d. This
term is defined as the distancebetween thebestmodel simulation and the true climate.23

A form of the discrepancy term is determined as follows. Use the climate model
ϕS

t (x0;α) to calculate the components of a vector that has the same structure as y.
Call this vector �(α), where the explicit mention of α indicates its dependence on the
parameter α; obviously �(α) ∈ Y . The vector for the best input assumption is �(a∗).
Assuming some metric on Y , the discrepancy is the difference between y and �(a∗).
On the assumption that it is well-defined, the value of the discrepancy is uncertain
(meaning imprecisely known, not indeterminate) and so should be expressed as a
probability distribution ε. So one can write (Sexton et al. 2012, p. 2521):24

y = �(a∗) + ε (2)

As above, this equation can be decomposed into a historical and a future part:

yh = �h(a∗) + εh

y f = � f (a
∗) + ε f (3)

The discrepancy term therefore

effectively represents how informative the climate model is about the true cli-
mate, and it measures the difference between the climate model and the real
climate that cannot be resolved by varying the model parameters. Such differ-
ences could arise from processes which are entirely missing from the climate
model, or from fundamental deficiencies in the representation of processeswhich
are included, through (say) limited resolution or the adoption of an erroneous
assumption in the parameterisation scheme. (Sexton et al. 2012, p. 2515, empha-
sis added)25

In brief, by adding the discrepancy term to the model one can glean ‘what the model
output would be if all the inadequacies in the climate model were removed, without
prior knowledge of the observed outcome’ (Sexton et al. 2012, p. 2521).

The use of the discrepancy term is based on two assumptions. The first assump-
tion is ‘that the climate model is informative about the real system’ (ibid., original
emphasis). This amounts to saying that at least for the best input parameter a∗ the
model output is close to the real climate: ‘[a∗] is not just a ‘statistical parameter’,

23 There are a host of challenges here, as climate is a distribution, the model climate and the real climate
are not in the same state space, whatever notion of ‘best’ is taken the simulation model will not be ‘best’
for all target variants, and so on. These points raise important questions about how the distance is measured
and what the discrepancy is intended to represent in practice in the climate case.
24 UKCP09 expresses this by writing (in our notion) y = ϕ(a∗) + ε; see Eq. (1) in (Sexton et al. 2012,
p. 2521). However this is not a correct formal expression of the concept of a discrepancy term because, as
noted above, y and x are not members of the same vector space and hence cannot be added. For a discussion
of ‘subtractability’, see Smith (2006) and references therein.
25 See also Murphy et al. (2010, pp. 63–64).
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devoid of meaning: it derives its meaning from the physics in the climate model being
approximately the same as the physics in the climate’ (Rougier 2007, p. 253). We call
this the informativeness assumption.

The second assumption concerns the distribution ε and says that this distribution is
Gaussian. We call this the Gaussianity assumption. It is then also assumed that ε and
e and α are ‘probabilistically independent’ (ibid.).

Not being omniscient, one cannot just make a comparison between model outputs
and reality. A crucial leap UKCP09 makes is to use a multi model ensemble (MME)
as a proxy for the truth:

Our key assumption is that sampling the effects of structural differences between
themodel chosen for the PPE and alternativemodels provides a reasonable proxy
for the effects of structural errors in the chosen model relative to the real world.
(Sexton et al. 2012, p. 2516)

this approach is based on the assumption that structural differences between
HadSM3 and other models are a plausible proxy for the uncertain effects of
structural errors in how HadSM3 represents climate processes in the real world.
(Sexton et al. 2012, p. 2526)

It is based on the judgement that the effects of structural differences between
models can be assumed to provide reasonable a priori estimates of possible
structural differences between HadSM3 and the real world. We take a given
multi-model ensemble member as a proxy for the true climate, and use our
emulator of HadSM3 to locate a point in the HadSM3 parameter space which
achieves the best multivariate fit between HadSM3 and the multi-model member
(Murphy et al. 2010, p. 64)

TheMME in question contains 12 models see Sexton et al. (2012, p. 2519, for details).
The view expressed in these quotations is that measuring the average distance of
HadSM3 to a set of different models yields a similar result as measuring its distance to
the real world. We call the view that a MME is a trustworthy proxy for the real world
the proxy assumption.

So the aim is to determine the parameters of the distribution ε by comparison of the
outputs of HadSM3 with the outputs of other models in an MME. The leading idea
behind the actual calculations is to first determine the best HadSM3 analogue for each
model in the ensemble. Having found the best analogue, one can calculate the error b,
essentially the difference between the two model outputs. The procedure is repeated
for each MMEmember, giving 12 b’s. From these the mean and the covariance matrix
of ε are determined.26

Under the proxy assumption, this procedure quantifies the additional uncertainty
due to structural model error. One can then add this uncertainty to the uncertainty
about values of y obtained in Part 3 and thereby obtain the total uncertainty, which
now includes an estimate of the uncertainty due to structural model error. As noted by
Murphy et al. (2007) it is important to stress that this is a lower bound.

26 For details see Sexton et al. (2012, pp. 2525–2527).
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3.5 Part 5—statistical inference

UKCP09 provides probabilistic projections. With the above in place one can now say
how statistical inferences are drawn from the information gathered in Parts 1–4. The
aim is to calculate p(

�y f |õ), the probability of a particular future climate �y f ∈ Y f

given past observations. We use ‘p(
�y f |õ)’ as a shorthand for ‘p(

�y f |o = õ)’; and the
same convention is used below for p(

�y f |õ, a), p(a|õ) and p(a).
On the assumption that the discrepancy term compensates for any difference

between model outputs and the true climate, the only residual uncertainty is para-
meter uncertainty. As per Part 3, this uncertainty is assumed to be understood and
quantified—by the trapezoidal prior distribution T (α)—and so one can use the law of
total probability to calculate the value of p(y f |o = õ) as a function of the parameter
uncertainty:

p(
�y f |õ) =

∫
A

p(
�y f |õ, α)p(α|õ)dα, (4)

where A is the 31-dimensional uncertainty interval [a1,min, a1,max] × · · · × [a31,min,

a31,max]. Applying Bayes’ theorem to p(α|õ) yields the posterior distribution:

p(
�y f |õ) = 1

p(õ)

∫
A

p(
�y f |õ, α)p(õ|α)p(α)dα, (5)

where p(o = õ) can again be expanded using the law of total probability:

p(õ) =
∫

A
p(õ|α)p(α)dα. (6)

This is the core equation of UKCP09.27

Let us have a look at the terms in the equation. The last term in the integral is the
trapezoid distribution over the uncertainty intervals: p(α) = T (α). The middle term is
the likelihood function. It evaluates how likely the actual observations are in light of the
climate model and the discrepancy term. Recall that yh = �h(a∗)+ εh . Generalising,
let yh(α) be the climate retrodicted by the model for parameter α. Trivially we have
yh(α) = �h(α) + εh . Furthermore recall o = yh + e. Hence

o = �h(α) + εh + e. (7)

Finally recall further that εh and e are distributions. Hence this equation provides
probability distribution for the probability of past observations conditional on the
parameter α. This gives a probabilistic weight to the actual observation õ, and this
weight is the probability p(õ|α) (also known as the likelihood function).

The first term in the integral can be dealt with in the same way. y f = � f (a∗) +
ε f induces a probability distribution � f (α) + ε f , which depends on α, over future
climates and this distribution can be used to give a probabilistic weight to the future
climate under consideration, �y f . This is probability p(

�y f |õ, α).

27 This is Eq. (5) in Sexton et al. (2012, p. 2523); for a discussion of the derivation see Rougier (2007).
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The above integration is over the entire interval A. Such an integration can be
carried out only if both �h(α) and � f (α) are known for all values of α in A. This is
not the case. In fact, to explore the uncertainty of future values of x brought about by
the variation in these 31 parameters, 280 runs were made with HadSM3 (the simplified
model). Later 17 runs with HadCM3 (the larger model) were added and information
from the two combined.

3.6 Part 6—emulator

Emulation is a powerful tool which aids understanding the behaviour of complex
computer models when the total number of runs is constrained by technology. The
small number of runs underlyingUKCP09does not approach a complete exploration of
the parameter space. Indeed it is too small to provide an understanding of the diversity
of outcomes. And to carry out the above integrations one would have to know how
�h(α) and � f (α) depend on all parameter values and not only the ones used in the
actual model runs. Filling the gaps between any finite number of model runs in a large
parameter space is the task performed by a statistical tool called an emulator.28

The emulator predicts the output x for any parameter value at any time t . For a
fixed initial condition and a particular future time t, ϕS

t (x;α) specifies a functional
relationship between α (which now is the independent variable) and x at the time
of interest (now the dependent variable). This relationship defines a surface in X ,
so ϕS

t (x;α) is referred to as the target surface. Assuming that x is a sufficiently
smooth function of α, an emulator is built giving values of x for all α. The emulator
does not attempt to recreate the internal dynamics of the model but rather, builds
up a distribution for each outcome solely on the basis of the data points obtained in
simulations and statistical assumptions. An emulator is akin to a statistically satisfying
curve-fitting algorithm; it is more thanmere curve-fitting in that provides a distribution
from which ‘curves’ (the mean, the median) can be extracted complete with local
accuracy estimates. Let us denote the surface over output variables that the emulator
provides by ψt (x;α). For the known points at which a climate model run is available
onemust haveψt (x;α) = ϕS

t (x;α). As a statistical tool the emulator does not provide
an exact curve ψt (x;α) because the exact location of the curve ψt (x;α) is uncertain
(except at the simulated points). Rather the emulator provides a distribution of the
location of ψt (x;α) in X . We call this distribution �(x;α).

What we have just sketched is what we call a complete emulator. It is complete
in the sense that it emulates the complete set x(t) = {x1(t), x2(t), . . .} of dynamical
variables. On the basis of the values of {x1(t), x2(t), . . .} one can then compute the
various climate variables we are interested in, for instance global mean temperature,
dailymean precipitation, etc. This is because climate variables of interest are functions
of the complete set of dynamical variables (complete relative to the model, that is). Let
v be a climate variable of interest, thenwe canwrite: v(t) = f (x1(t), x2(t), . . .), where

28 Note that emulatorsmay elsewhere be called ‘surrogatemodels’, ‘meta-models’, and ‘models ofmodels’.
A general introduction to emulation (unrelated to UKCP09) can be found at http://www.mucm.aston.ac.
uk/MUCM/MUCMToolkit/index.php?page=MetaFirstExample.html.
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the specifics of f depend on v and {x1(t), x2(t), . . .}. If, for instance, {x1(t), x2(t), . . .}
contains temperatures and if v is GMT, then f is simply a weighted average.

A complete emulator is expensive to build. So in practice what is being built is
what we call a targeted emulator. A targeted emulator is one that emulates a particular
climate variable v (e.g. GMT) directly rather than first emulating {x1(t), x2(t), . . .}
and then calculating GMT from the {x1(t), x2(t), . . .} using f . So a targeted emulator
takes as input the parameters α = {α1, α2, . . .} and provides as output the variable of
interest, e.g. GMT, as a function of α = {α1, α2, . . .} and time t . Such an emulator
provides a distribution �(v;α). If v is a scalar then the emulator is a scalar emulator;
if v is a vector, it is a multivariate emulator. UKCP09 uses a multivariate emulator that
emulates a vector with 12 components, where the components are climatic variables
such as the sea surface temperature, precipitation, etc. (Sexton et al. 2012, p. 2518).29

The crucial point is that the emulator replaces the model in the process of statistical
inference: ‘Put simply, the ensemble ofmodel evaluations is used to build the emulator,
and then the emulator is used in the inference’ (Sexton et al. 2012, p. 2523); see also
(Rougier 2008, pp. 827, 829). This means that in actual calculations the vectors�h(α)

and � f (α), which determine the probabilities p(õ|α) and p(
�y f |õ, α) in the above

integral are calculated not with the model itself but with the emulator instead.
Taking the results from Parts 5 and 6 together we gain an important insight: in

actual calculations the probabilities offered as projections are computed on the basis
of three items: emulator probabilities �(v;α), the discrepancy distribution ε, and the
distribution T (α), along with the observations õ and their uncertainties e.

3.7 Part 7—downscaling

The model calculations are done on the HadSM3 grid, which has a resolution of
approximately 300km. UKCP09, however, provides projections on a much finer scale
of 25km. In order to generate projections at that level of detail, a downscalingmethod is
introduced to derive such information from the global model simulations done in Part
1: ‘Finally, to make the projections suitable for impacts and adaptation assessments,
we use a further ensemble of the Met Office regional climate model (HadRM3) to
downscale the projections from the global Met Office model to a resolution of 25
km’ (Murphy et al. 2010, p. 40). Dynamic downscaling of this sort involves running a
high-resolution limited area regional model over the geographical domain of interest,
with the boundary conditions provided by a global model. In UKCP09 this final stage
involves an ensemble usingHadCM3 (Murphy et al. 2010). A scaling process (referred
to as timescaling) is also used to derive time dependent information through the 21st
century because the HadSM3 simulations generate only the equilibrium response to
doubling atmospheric carbon dioxide (Murphy et al. 2010). This downscaling and
timescaling are critical steps in the process which enables UKCP09 to offer time-
dependent information at local scales. The details, however, are beyond the scope of
this paper and are not critical to the other issues discussed below.

29 UKCP09 does so indirectly in the sense that it emulates the coefficients of a set of basis vectors for the
output space in question. Nothing in the discussion that follow depends on this.
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The endeavours of these seven parts taken together produce the projections we have
seen in the last section. We now turn to a discussion of these projections. We discuss
each of the crucial ingredients in turn.

4 Structural model error

Accounting for structural model error is a critical step in any application for decision
support. The discrepancy term and the use of emulation provide important new tools to
this end. The effective and appropriate use of these tools hinges on the informativeness
assumption and the proxy assumption. We do not dispute the deep importance of these
new tools in general, nor the need to improve traditional approaches to model error,
but in this section and the one that follows we discuss the efficacy of these tools as
deployed in UKCP09.

4.1 The discrepancy term and structural model error

Let us start by explaining in more detail the challenge that leads to the introduction
of the discrepancy term. The issue is structural model error (SME) (Beven 2012;
Kennedy and O’Hagan 2001; McWilliams 2007; Smith 2002). Like every model,
HadCM3 has its imperfections. That is to say that in specifying ϕC

t (x;α), a number of
strongly idealising assumptions are made in terms of the relationship between model
and reality. There are known flaws forced upon us by technological limitations. These
include distortion of the topography of the earth: mountain ranges like the Andes are
systematically too smooth and too short, small volcanic islands chains, some easily
visible in satelite photographs due to the effect they have on atmospheric circulation via
cloud tracks, do not exist in the model, and of course cloud fields themselves cannot be
simulated realistically at the available resolution. Recall thatmostmodel runs onwhich
UKCP09’s projections are based are done with HadSM3, which has an ocean with no
dynamically resolved currents and a uniform depth of 50m everywhere. Solutions of
the discretized PDE differ from those of the original PDE, and the PDE itself differs
from the true equations of the world (assuming such equations exist at all).30

Inasmuch as SME is due to shortcomings in the equations of the model, the chal-
lenges it poses to producing projections cannot be resolved by varying the model’s
parameters. If a model has SME this means that the time evolution of an ensemble
will, eventually, differ from that of a better model and indeed reality itself (if a relevant
distribution can be associated with reality). Because this difference is due to the math-
ematical structure of the model equations no adjustment of the parameters in a model
of that structure can remove this difference (Smith 2002). The crucial question is: how
soon do nontrivial effects of SME manifest themselves in a given situation? And to
what extent can a model with SME still be informative about the target system? On

30 Furthermore, there are limitations to our scientific understanding of the climate system and there may
be relevant factors and process that we are simply unaware of—there may be unknown unknowns which
would lead us to alter the equations of the model even under our current computational constraints.
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what timescales does the science underlying the model suggest that a decision maker
is likely to encounter a big surprise if the model outputs are taken as trustworthy?

UKCP09 proposes the discrepancy term as a solution to SME. The message is
that the uncertainties due to SME can be estimated and taken into account in pro-
jections. Adding this term to actual model runs is presented as giving us ‘what the
model output would be if all the inadequacies in the climate model were removed,
without prior knowledge of the observed outcome’ (Sexton et al. 2012, 2521), and
the UKCP09 science report calls the discrepancy term ‘an appropriate means of quan-
tifying uncertainties in projected future changes’ (Murphy et al. 2010, 66). In this
section we consider whether its use for the provision of quantitative decision support
is justified. For the sake of argument we grant the assumption that the discrepancy is
Gaussian and focus on the informativeness and proxy assumptions.

4.2 The informativeness assumption

Recall that the informativeness assumption says that the distance between the model
and the truth is relatively small; so small indeed that ‘the physics in the climate model
being [sic] approximately the same as the physics in the climate.’ (Rougier 2007, p.
253). How good is this assumption?

That systematic errors in the models in question lead to non-trivial macroscopic
errors of simulation, of the past andof the future, is not disputed (Murphy et al. 2007). In
nonlinearmodels such asHadCM3 even extremely small SME can result in there being
a significant discrepancy betweenmodel and target (Judd andSmith 2004;McWilliams
2007; Frigg et al. 2014). Seager et al. (2008) have noted their inability to reproduce
a realistic dust bowl of the 1930s even given the observed sea-surface temperatures.
This is not a negligible shortcoming when one is focused on the resolution offered
by UKCP09. Given these systematic errors there are lead times at which the failure
of the model to simulate realistic weather31 results in differences in feedbacks, which
cause the climate of the model to differ from that of the planet. When the models
used are not close to the target, simple linear transformations are inappropriate and
the informativeness assumption fails. The informativeness assumption is a crucial
building block in the edifice of UKCP09 and if that assumption fails, then the accuracy
and decision-relevance of projections is called into question.32

The same conclusion can be reached from a different angle. Figure 1 shows the vari-
ousmodel globalmean temperatures (GMT) over the period 1900–2000 for theCMIP5
ensemble (Meehl et al. 2009), theMMEwhich is the updated version ofCMIP3used by
UKCP09 (Sexton et al. 2012, p. 2519)—the figure for CMIP3 is very similar. Note that
while all models show warming between 1900 and 2000, their average temperatures
differ by as much as 3◦ and the details of their temperature curves vary tremendously.
Aggregate variables such as GMT ‘smooth out’ local variation so, of course, different

31 Even today’s best climate models do not simulate blocking realistically. For a discussion of this point see
Smith and Stern (2011) and Hoskins’ review of UKCP09 (available at http://www.ukclimateprojections.
metoffice.gov.uk/23173).
32 The question of what good science should report on the lead times beyond those on which quantitative
guidance is informative is a separate issue.
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Fig. 1 Model global mean temperatures over the period 1900–2000 for the CMIP5 ensemble

local behaviours can give rise to the same average behaviour. That the models’ GMTs
differ significantly, however, is an indication that their local climates are also signifi-
cantly different. Local features such as sea ice, snow coverage and surface vegetation
will vary and thus local feedbacks in the models will be substantially different from
each other, and from those in reality. The magnitude of the range of global mean tem-
perature hindcasts of the last century, casts significant doubt on the viability of the
informativeness assumption for 25 km projections to the end of this century.

There is also a statistical argument based on results due to Murphy et al. (2004,
2007), which is clear on the limitations noted here, casting doubt on the informative-
ness assumption. Murphy et al. consider 32 climate variables v(i), i = 1, . . . , 32. For
each of these variables there is a time series of past observations. These form a vector
m(i) with the components m(i)

j , where j ranges over the available data points (to keep
notation simple we assume that there are n data points for all 32 variables; nothing
here depends on that). One can then calculate the mean and the variance of each
time series: μ(i) = (1/n)�n

j=1m(i)
j and σ (i) = (1/n)�n

j=1(m
(i)
j − μ(i))2. Assum-

ing that the error is Gaussian, these two parameters define a Gaussian G(i)(v(i)) =
c exp[(v(i) − μ(i))2/2σ (i)2], where c is a normalisation constant. One can then intro-
duce the distance variables δ(i) := (v(i) − μ(i))/σ (i), and so the Gaussian becomes
G(i)(v(i)) = c exp[(δ(i))2/2]. The quantities δ(i) measure the difference of v(i) from
the observationalmean in terms of the observational standard deviation. If, for instance
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δ(i) = 2 for a specific value of v(i), then this value is two standard deviations away
from the observational mean.

Murphy et al. then consider a PPE of 53 different model versions of HadSM3,
where the model parameters that are varied and their uncertainty ranges are chosen
on the basis of expert advice (ibid., p. 769). These model runs produce hindcasts for
the v(i), which we denote by ‘v(i)(α)’ to indicate that they are produced by a model
version defined by specific value of the parameters α. The G(i) can then be used to
give a probabilistic weight to the model version in the light of the observations by
plugging δ(i)(α) = (v(i) − μ(i))/σ (i) into the Gaussians. If for instance, one then
finds δ(31)(α) = 16 this means that the value the model version defined by α predicts
for variable 31 is 16 standard deviations away from the observational mean. One can
then calculate the average of the 32 δ(i)(α) for a model version. This number is known
as the climate prediction index (CPI). Murphy et al. calculate the CPIs for all 53 model
versions and find that it varies between 5 and 8. This means that the average of the
model’s retrodictions are 5 to 8 standard deviations away from the observations. This,
in turn, means that the actual observations are extremely unlikely by the lights of the
model! In their Figure 4 (ibid., p. 771) they also give the values for the individual
δ(i)(α). For some variables these values are relatively small (between 1 and 2), but
for some variables they range between 23 and 24. Many of the climate variables used
by UKCP09—see Sexton (2012, p. 2518) for a list—are among the 32 considered in
Murphy et al. and so this result has implications for UKCP09. If actual observations
turn out to be extremely unlikely by the light of the model then why might one hold
that the model is quantitatively or probabilistically informative about the climate? It
is worth noting that this need not undermine the model’s value as a research tool for
understanding climatic processes; nor need it imply that the model is uninformative
at all temporal and spatial scales for all variables. It does however call into question
the validity of the informativeness assumption as a justification for the use of the
discrepancy term in the UKCP09 projections.

4.3 The proxy assumption

The proxy assumption is the assumption that measuring the average distance of
HadSM3 to the 12 members a multi model ensemble yields a result that is close to
what one would find if one were to measure HadSM3’s distance to the real world. The
discussion of this assumption is complicated by the fact the literature on the subject
exhibits a certain degree of inconsistency. On the one hand the method is illustrated
and advertised as delivering trustworthy results; on the other disclaimers that effec-
tively undermine the crucial assumptions are also included, sometimes parenthetically
or deep within technical discussions.33

The first reason cited in support of the proxy assumption is that multi model aver-
ages give a better representation of climate than any individual model: ‘Indeed, the
multimodel ensemble mean has been shown to be a more skilful representation of the
present-day climate than any individual member (Reichler and Kim 2008)’ (Sexton

33 An example is Murphy et al. (2010, pp. 63–69).
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et al. 2012, p. 2526). While often true in a root-mean-square sense, it is not at all clear
what implications this holds for probabilities derived from multimodel ensembles
(Smith et al. 2014).

It is acknowledged that ‘systematic errors to all current climate models persist’
(Sexton et al. 2012, p. 2526). In making climate projections, the models are being
used to extrapolate to a state of the systemwhich has not been seen before. The crucial
factor for such a task is whether our tool for producing projections—be it a model
or a multi-model mean—can claim to be sufficiently close to reality. In a complex
nonlinear system on times longer than a mixing time such closeness must be achieved
for all variableswhichwe believe could impact the response of our variables of interest.
More fundamentally, two senses of skill appear to be mixed here: (a) the skill of a
point forecast like the ensemble mean and (b) the skill of a probabilistic forecast like a
Bayesian distribution. In each case, note the contrast between ‘more skilful’, which is
a comparative quality a model possesses relative to other models, and ‘skilful’, which
is an intrinsic quality of a model (referring to its skill in supporting decisions). Being
more skilful is of little relevance unless the original model truly is skilful. Furthermore,
when skilful is defined in terms of a single performance index (Reichler andKim 2008;
Murphy et al. 2004) there are nevertheless significant errors in variables which might
be expected to substantially influence changes in the future. No evidence is given that
more skilful can be equated with skilful in terms of a single performance index. The
literature on model errors suggests that this is also true for many individual variables
of undeniable importance for future climate change.

The second reason mentioned in support of the proxy assumption is that ‘the struc-
tural errors in different models can be taken to be independent’ (Murphy et al. 2010, p.
66) and that therefore the ensemble samples uncertainty well. However, immediately
after we are warned that

Whilst there is evidence for a degree of independence […], there is also evidence
that some errors are common to all models […], due to shared limitations such
as insufficient resolution or the widespread adoption of an imperfect parame-
terisation scheme. From this perspective, our estimates of discrepancy can be
viewed as a likely lower bound to the true level of uncertainty associated with
structural model errors. (Murphy et al. 2010, p. 66)

And then the conclusion is drawn that: ‘The main (and inevitable) limitation, however,
is that it [the proxy assumption] does not account for the potential impacts of errors
common to all climate models used in the prediction’ (Sexton et al. 2012, p. 2516).

If there are common errors the proxy assumption fails, and as all of today’s models
share the same technological constraints posed by today’s computer architecture they
inevitably share some common errors such as limitations on the accuracy of topogra-
phy. Indeed such common errors have been widely acknowledged (see, for instance,
Knutti et al. 2010) and studies have demonstrated and discussed the lack of model
independence (Jun et al. 2008a, b; Bishop and Abramowitz 2013). Furthermore, the
mathematical space of all possible climate models (if there is some such thing) is
huge, and there is no reason to believe that the 12 models we de facto work with
provide a representative sample, even of the subset of models that could be run under
the constraints of today’s technology.

123



Synthese (2015) 192:3979–4008 3997

For these reasons, the assumption that the use of an MME will accurately quantify
the distance to our true target is unjustified. It produces a distribution that is more con-
sistent with the diversity of current models, but which need not reflect the uncertainty
in the true future climate or even of our uncertainty in future climate given present
day scientific understanding. And nota bene that the fear is not so much that the width
of the uncertainty distribution is somehow too narrow, but rather that the distribution
is simply in the wrong place: the mean of the distribution will shift significantly if
the model simulations become realistic. Trying to predict the true climate with struc-
turally wrongmodels is like trying to predict the trajectory ofMercurywithNewtonian
models. These models will invariably make misleading (and likely maladaptive) pro-
jections beyond some lead time, and these errors cannot be removed by adding a linear
discrepancy term derived from other Newtonian models. Tests of internal consistency,
or other methods to determine the lead times at which the projections are expected to
be misleading would be of significant value.

Echoing Murphy et al. (2007) we note that ‘[i]t is important to stress that our
approach to the specification of discrepancy can only be expected to capture a subset
of possible structural modelling errors and should be regarded as a lower bound’
(Murphy et al. 2007, p. 2011). A lower bound on the discrepancy need neither yield
trustworthy projections nor provide a suitable basis for quantitative decision support.

5 Emulation

As we have seen in Sect. 3, emulation is an intrinsic part of UKCP09. The technique
used in UKCP09’s scheme is a Gaussian process emulator (related to Kriging). The
leading idea of this approach is to treat ϕt (x;α) as an uncertain function and treat
the values of ϕt (x;α) for any collection of input points α(1), . . . , α(k) (where k is the
number of available model runs) as a multivariate Gaussian. Then a mean function η

and a covariance function λ are chosen. The mean function gives a prior expectation of
ϕt (x;α) for any α and λ gives the prior covariance between the values of ϕt (x;α) for
different values of α. Typically η and λ contain adjustable parameters and the values
of the results of the model runs are used to adjust these parameters. The result of this
process is the distribution �(x;α).

The complicated details of this process need not occupy us here. What matters is
that this technique is based on the assumption that the target surface ϕt (x;α) exists
and is smooth (Sexton et al. 2012, p. 2523). It also matters that the emulation can
be expected to yield correct results only if a sufficiently large sample of points from
the target surface is available to train the emulator. We now examine whether these
assumptions are satisfied in UKCP09.

There are serious questions regarding the existence of the target surface, and if it
exists then its smoothness.34 The root of this problem lies in choosing the space for

34 The challenges to smoothness posed by computations on a digital computer are ignored below. We note
in passing that such challenges exist when, for example, a change in the least significant bit of x0 yield
significant changes in the target variable (Lorenz 1968).
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the emulation, and the rub lies with initial conditions. The problem comes in the form
of a trilemma.

First horn of the trilemma: For mathematical tractability one would like to have a
target surface with as few dimensions as possible. This can be achieved by choosing
a particular initial condition x0 and only varying the α. The target surface then has 31
dimensions (it is a mapping from the 31 dimensional parameter space into X ). But
this surface is uninteresting. HadSM3 is a nonlinear dynamical system and one would
expect the trajectory of future climate to depend sensitively on initial conditions. In
Sect. 7.1 we will see that HadSM3 indeed exhibits this kind of sensitivity. Therefore
the surface defined by ϕt (x;α) and x0 also varies with x0. When this variation with x0
is not considered, any particular surface is incomplete in terms of statistical inference.

Second horn of the trilemma: Staying in the 31-dimensional picture (i.e. theα are the
only independent variables), one could try to take the dependence on initial conditions
into account by plotting a number of different points—corresponding to different initial
conditions—for each value of α. The result of this is a swarm of points in X where a
number of points are associated with every α. This idea suffers from two problems.
The first is that UKCP09 simply does not have these points. Model runs for a number
of different initial conditions are not available to sample this swarm informatively.
The more fundamental problem is that by associating a swarm of points with every
value of α one has left the framework of emulation we started with because there now
simply is no surface to emulate! Targeting an aggregate function (like the mean over
initial conditions) is unhelpful if one is to maintain the fundamental assumption that
one knows the target of the emulator exactly at points where the full model has been
run.

Third horn: One can expand the space and consider the Cartesian product of the
state space X and the parameter space A, and regard ϕt (x;α) as a mapping from
X × A into X . This move turns the target surface into an object with tens of thousands
of dimensions (simply because X has tens of thousands of dimensions). This ren-
ders proper emulation untenable. Attempting to emulate a target surface in a 10,000
odd dimensional space on the basis of around 300 points (not even one point per
dimension!) would leave the surface dramatically underdetermined.

The conclusion is that whichever way emulation is done, it does not provide the
desired statistical emulation.

And finally there is also a model-world confusion in the use of the emulator even
when it is used as a stand in for a single model: the x occurring in the relevant
emulations is a model variable not a real-world variable. A perfect emulator could
(more) quickly produce a distribution which accurately reflected the probability of
the next full model run: not the probability of an event in the world. This is a serious
cause for concern as long as the diversity of our model is believed not to reflect the
uncertainty in the future of the real world (Smith 2002).

6 The trapezoid distribution

When using Eq. (5) to determine the p(
�y f |õ), it is assumed that p(α) is the trapezoid

distribution T (α). This choice is crucial: p(α) gives a weight to different model ver-
sions, and given that different model versions project different futures shifting these
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weights could, in principle, produce very different projections. So we have two ques-
tions. First, what justifies the choice of a distribution that is flat over themiddle 75% of
uncertainty intervals and drops linearly at the extreme values in the case of continuous
parameters and uniform over all options in the case of discrete parameters? Second,
how sensitively do the results depend on these choices?

We have been unable to find a justification for the choice of this distribution in the
documentation of UKCP09. However, the reasoning looks familiar: as long as one
has no reason to prefer one outcome over the other, one should not arbitrarily favour
one outcome over the other and assign equal probabilities to both. This is known as
the Principle of Indifference, which was given a canonical formulation by Laplace in
1814. The principle can be applied successfully to simple situation such as coin flips
(where we have no reason to prefer one side to the other), but it suffers from a number
of well-known problems.35

In the current context themost significant problem is the fact that the principle can be
applied in different ways to the same situation, which leads to inconsistent probability
assignments. This happens whenever a situation can be characterised by two inter-
definable quantities which (a) provide equally good descriptions of the situation and
(b) are related to one another by a non-linear definitional relationship. Consider a
simple example. Suppose you are a numismatic enthusiast and you will for the first
time in your life get to see a rare coin. You have seen pictures of the coin and so you
know that it is cylindrical with a height much less than its diameter. But you have no
idea about its size. Plausibility considerations—people typically keep coins in their
pockets!—lead you to think that its diameter δ must be somewhere between 1 and
5 cm, but you know nothing else about the diameter. So you apply the principle of
indifference to the diameter and put an even distribution over the interval [1, 5]. From
this you conclude that the probability of the coin having a diameter between 1 and 3 cm
is 0.5. But a coin can equally well be described by the surface area of one side, σ . The
diameter and the area are inter-definable: σ = π(δ/2)2. So given your assumptions
about the minimum and the maximum diameter, you think that the coin will have a
surface between (approximately) 0.785 and 19.625 cm2. Now you apply the principle
of indifference to the surface, which yields a uniform distribution over [0.785, 19.625].
So your probability that the coin has a surface between [0.785, 9.42] is 0.5. So far so
good. But a coin with a surface of 9.42 cm2 is also a coin with diameter of 3.46 cm.
So the principle of indifference tells us both that there is a 0.5 probability for the coin
having a diameter between 1 and 3 cm, and that there is a 0.5 probability for the coin
having a diameter between 1 and 3.46 cm. Since there is no reason to prefer, say, the
diameter to the surface area to describe to coin, no probability assignment is preferred
and we are faced with a contradiction.

The same problem comes up in the parameter space of the climate model. At least
some parameters (i.e. some components of the vector α) are like diameter in that
there are inter-definable quantities which are equally legitimate as a description of the
physical situation and which relate to the original parameter by a non-linear function.
An example is the so-called ice fall rate ρ, which describes how fast ice falls out

35 The principle and its problems are well documented in the philosophical literature on probability; see,
for instance, Salmon et al. (1992, pp. 74–77).
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of model clouds.36 But the same physical effect could just as well be described by
the ice residence time τ , measuring how long ice stays within a model cloud. The
two quantities are inversely proportional: τ ∼ 1/ρ. The situation is now exactly
analogous to the coin example. The principle of indifference would suggest that we
put an even distribution over certain intervals for both quantities, but these distributions
will provide contradictory probabilities.

One might try to mitigate the force of this objection by arguing that the choice
of a particular p(α) has no significant effect on the posterior probabilities p(

�y f |õ).
UKCP09 consider this issue (although not as a response to the principle of indiffer-
ence). They acknowledge that ‘alternative and equally defensible prior distributions
could be proposed’ but claim that ‘the results are quite robust to a number of rea-
sonable alternative choices’ (Science Report, p. 63). An investigation of this issue is
presented in an appendix, where it is pointed out that:

prior distributions are recognised as being themselves uncertain […] sowe inves-
tigate two other choices: assuming uniform probability across the full expert
range, and assuming uniform probabilities across a full range of values 15 %
larger than that specified by experts. The latter, in particular, is a conservative
specification which assumes both that the experts systematically underestimated
the extremes of their ranges, and that the extreme values can be assumed no less
likely than values near the middle of the range. (Murphy et al. 2010, p. 143)

It is found that ‘the impacts on the posterior projections are more modest, and the
induced differences in probability are also relatively small compared with the uncer-
tainties indicated by the UKCP09 distributions’ (Murphy et al. 2010, p. 144).

Unfortunately, this is insufficient to set worries about alternative distributions to
rest. The stability checks performed only vary the original distributions slightly and
do not take radically different distributions into account, for instance the kind of
distributions one would get for variables that are inversely related to the parameters
used. On the basis of these checks it is impossible to assert that the projections are
immune to difficulties arising in connection with the principle of indifference.

7 Further concerns

Two further aspects of UKCP09’s methodology give rise to concerns: the incomplete
discussion of initial condition uncertainty and the use of downscaling.Wewill address
these briefly in this section.

7.1 Initial condition uncertainty

HadSM3 is a non-linear dynamical system and as such one would expect the trajectory
of future climate to depend sensitively on initial conditions. Every model run assumes
a particular initial condition and hence varying that initial condition only slightly

36 See Stainforth et al. (2005, 2007) for a discussion of the ice fall rate.
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could have produced very different results. So it is conceivable that varying the initial
conditions of the 297 model runs on which UKCP09 is based just by a little bit would
have yielded different simulation results, and as consequence given rise to different
probabilistic projections. What reasons are there to believe that this is not the case?

In the introductory parts of the Science Report UKCP09 acknowledges the impor-
tance of initial condition uncertainty (Murphy et al. 2010, pp. 26–28). They point out
that we find ‘natural variability’ in the climate system: ‘Climate, at a global scale
and even more at a local scale, can vary substantially from one period (for example,
a decade or more) to the next, even in the absence of any human influences.’ (ibid.,
26) This variability is seen as being (at least in part) due to ‘the chaotic nature of the
climate system’ (ibid., p. 26). They submit that effects of natural variability can be
explored by running the model for different initial conditions:

By running the climate model many times with different initial conditions (a
so-called initial condition ensemble) we can estimate the statistical nature of
this natural variability on a range of space and time scales, and hence quantify
the consequent uncertainty in projections. (ibid., p. 26)

UKCP09’s initial condition ensemble consists of three members (i.e. three runs of
HadCM3 under the same emission scenario but with different initial conditions). The
conclusion drawn from an analysis of these three model runs is:

It can be seen that, although each experiment [i.e. model run] shows the same
general warming, individual years can be quite different, due to the effect of
natural internal variability. If we look at changes at a smaller scale, for example
those of winter precipitation over England and Wales […] we see that, although
the three projections show similar upward trends of about 20 % through the
century, they are very different from year to year and even decade to decade.
(ibid., p. 27)

Three figures are produced (ibid., pp. 26–27) showing how very different the pro-
jections are for the three model runs, driving home the point that initial condition
uncertainty is not negligible.

UKCP09 conclude their discussion by observing that ‘[t]he uncertainty due to
projected natural internal variability is included in the overall uncertainty quantified
inUKCP09’ (ibid., p. 27). The above quotation is the last discussion of initial condition
uncertainty in the science report,37 however, and no further information is provided
elsewhere.38 So it remains at best unclear whether, and if so how, initial condition
uncertainty has been taken into account in the production of UKCP09’s probabilistic
projections.

One might then conjecture that a distribution built up over time from the trajectory
starting in one particular initial condition is equivalent to that resulting from an initial

37 Initial conditions are mentioned again on p. 129, but no information beyond what has been said on
pp. 26–27 is provided.
38 Initial conditions are briefly mentioned but not discussed in Sexton et al. (2012) and in the Briefing
Report (Jenkins et al. 2009). The Science Report (Murphy et al. 2010), a document of over 190 pages,
dedicates three pages in the introductory part to the problem of initial condition uncertainty.
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condition ensemble. Daron and Stainforth (2013) gave this assumption a name: the
kairodic assumption. The idea behind the kairodic assumption is that while individual
trajectories may give rise to very different weather patterns, the overall distribution
of weather events which makes up the climate remain the same for all trajectories,
and for this reason it is unnecessary to sample initial conditions if one is interested in
the climate distribution. There is no reason a priori to expect that a distribution is not
itself IC dependent (Lorenz 1968). Arguably, there is every reason to expect it to be
the case. The question is: how much does it matter and at what scales? Stainforth et al.
(2007) show that initial conditions had a large impact on multi-year seasonal averages
of large regional averages in HadSM3, and so wemight expect them to be important.39

Deser et al. (2012) show thatmulti-decadal trends over theUSA in climatemodels vary
substantially with different initial conditions. Daron and Stainforth (2013) showed that
the kairodic assumption is likely to be substantially misleading in a climate change
like situation, where distributions are expected to change.

An acknowledgement that averaging does not account for initial condition uncer-
tainty can be found in the Science Report:

A common way of reducing the effect of uncertainty due to natural variability
on the projections is to average changes over a 30-yr period, as we did in the
UKCIP02 scenarios (and do again in UKCP09). But even this still allows large
differences in patterns of change […]; for example over Birmingham where
two of the model experiments project approximately 30 % increases, but the
other projects just over 10 %. The uncertainty due to projected natural internal
variability is included in the overall uncertainty quantified in UKCP09. (ibid.,
p. 27)

So the accepted wisdom that initial condition uncertainty can be well represented
by variability within a single trajectory is untenable, and avoiding a serious explo-
ration of the dependence of climate distributions on initial conditions by appeal to
the kairodic assumption is unjustified. The lack of exploration of initial condition
uncertainty therefore remains a concern.

7.2 Downscaling

There are many approaches to downscaling, and much could be said about alternative
approaches regarding translating the coarse outputs of a GCM to information on the
space and time resolution of phenomena of relevance to decision making. Such a
discussion is unnecessary here, as it suffices to note that downscaling does not account
for significant inadequacies in the coarse resolution data it takes as inputs. This is
clearly stated in the internal Hoskins Review of UKCP09:40

39 The multi-years averages in (2007) were 8 years long compared to 30 years in UKPC09. However, the
problem pinpointed by Stainforth et al. is unlikely to disappear by moving from 8 year averages to 30 year
averages.
40 A summary of the review is available at http://www.ukclimateprojections.metoffice.gov.uk/23173. The
above quotation has been retrieved on 7 March 2014.

123

http://www.ukclimateprojections.metoffice.gov.uk/23173


Synthese (2015) 192:3979–4008 4003

The focus on UK-scale climate change information should not obscure the fact
that the skill of the global climate model is of over-whelming importance. Errors
in it, such as the limited current ability to represent European blocking, cannot
be compensated by any downscaling or statistical procedures, however complex,
and will be reflected in uncertainties on all scales.

Given the issues we have raised above regarding the interpretation of the GCM, we
do not discuss the downscaling step in detail.

There is some confusion regarding the role of GCMs, the computation of global
averages and the use of downscaling in UKCP09.41 In the scheme used in UKCP09
a regional climate model (RCM) is coupled to a GCM, and the RCM is used to
simulate the local climate using the inputs from the GCM as boundary conditions.
The GCMs considered in UKCP09 have coarse regional detail. If the regional detail
is badly wrong, then the RCMs driven by that GCM output will produce misleading
outputs. This does not necessarily imply, however, that global averages would have
to be wrong too if one could somehow calculate such averages using the techniques
discussed above. Whether they would is a question that need not occupy us here. It
is entirely appropriate to say we are considering high-resolution projections and then
focus primarily on the GCMs; focusing on GCMs is in no way synonymous with
focusing on global averages.

8 Is UKCP09 intended for actual use?

It has been suggested to us by an anonymous referee that we are attacking a straw
man because the authors of the UKCP09 reports are well aware of these limitations
and do not intend their results to be used for decision support. The Briefing report
acknowledges that the probabilities provided are derived using a number of assump-
tions and that ‘probabilistic estimates are robust to reasonable variations within these
assumptions’ (Jenkins et al. 2009, p. 6; emphasis added), and it emphasises that ‘prob-
abilistic projections are themselves uncertain’ (ibid., p. 25).42 Statements like these,
so the referee continues, indicate that UKCP09 is aware of the limitations of their
method. Their aim is to provide ‘as much good information as possible’ (ibid. p. 9) to
decision-makers, and this, so the referee emphasises, is not equivalent to suggesting
that UKCP09 provides decision-relevant projections.43

UKCP09 places great emphasis on practical applications and on providing evidence
for policy makers. We have seen in Sect. 2 that they aim to offer advice to ‘planners
and other decision-makers in sectors such as transport, healthcare, water-resources and
coastal defences’ (Jenkins et al. 2009, p. 9). The Briefing Report observes that ‘[t]he
provision of probabilistic projections is the major improvement which the UKCP09

41 We thank an anonymous referee for raising this concern.
42 Sometimes this observation comes in the guise of there being a cascade of uncertainty, with moderate
confidence at the continental scale and less confidence at the local scale; see for instance (Jenkins et al.
2009, pp. 6 and 22). How exactly the point that local projections are uncertain is expressed is immaterial to
the dialectic in this section.
43 These alternative readings are also discussed in Parker (2014).
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brings to users’ (ibid., p. 23; emphasis added) and stresses that probabilistic projections
‘can help with making robust adaptation decisions’ (ibid., p. 23). Finally, the informa-
tion is used in ‘worked examples’, where problems like energy use and sustainability
in school buildings, overheating risk for buildings, potential changes to snowfall in
Snowdonia, UK marine shelf conservation, climate change and forestry adaptation,
and flood management policy are assessed using the UKCP09 projections.44 Plainly,
information is offered and treated as decision-relevant.

The observation that projections themselves are uncertain and valid only within the
assumptions made is potentially undermining: projections can be decision-relevant
only if they are believed to be solid enough to bet on. One cannot at once maintain that
projections are decision-relevant, and that they are only model-immanent and lack a
definite connection to the real world. UKCP09 implicitly recognise this truism when
they reassure the reader that model results are on the right track:

Although it is important that prospective users understand the limitations and
caveats, it is also worth emphasising that (a) current models are capable of sim-
ulating many aspects of global and regional climate with considerable skill; and
(b) they do capture, albeit imperfectly, all the major physical and biogeochem-
ical processes known to be likely to exert a significant influence on global and
regional climate over the next 100 yr or so. (Jenkins et al. 2009, p. 45; emphasis
added)

TheUKCP09 projections canmake a useful contribution to assessing risks posed
by future climate; they are appropriate for informing decisions on adaptation
to long-term climate change which need to be taken on the basis of current
knowledge […] (Jenkins et al. 2009, p. 46; emphasis added)

Clearly the message is: while there may be inaccuracies, they are small enough not to
undermine the practical usefulness of the probability projections. So, contrary to the
referee’s objection, UKCP09 is committed to the decision-relevance of its projections.
We have argued that this commitment is unwarranted.

9 Conclusion

Wefind little support for interpretingUKCP09’s projections as trustworthy projections
for quantitative decision support, alongside significant doubts that the information
required for such high-resolution projections is at hand today. Needless to say, ques-
tioning the evidence for a result does not amount to proving it wrong; our concern is
that the premises of the argument do not warrant trust in the results. We suggest that
necessary (not sufficient) conditions for a warrant of trust include the provision of:

1. Evidence that the discrepancy termused in practice is sufficiently informative about
the real system: specifically that the set of models share no known shortcoming
and that the diversity of current models can be taken to capture the uncertainty in
the true future climate.

44 See http://www.ukclimateprojections.metoffice.gov.uk/23102 for details.
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2. Evidence that the form of the discrepancy term (in the case of UKCP09, Gaussian)
is sufficient to capture the structural errors that are sampled.

3. Evidence that the Bayesian priors adopted (in the case of UKCP09 the trapezoid
distribution) yield a robust outcome (under reasonable changes to the prior) and a
relevant posterior (relevant to the risk management targeted).

4. Evidence that the emulator provides the desired statistical emulation; in particular
that the emulation problem is well-posed given the nature of the system as reflected
in the model being emulated (nonlinear, chaotic, and so on), and that the emulation
is effective out-of-sample.

5. Evidence that every known uncertainty has been accounted for (in the case of
UKCP09 initial condition uncertainty is neither sampled nor is its impact reflected
in the projections).

6. Evidence that each translation from model variables to corresponding variables in
the world (that is, from a future model state to a decision-relevant quantity we will
observe in the future45) accounts for all knownmodel shortcomings, that those lost
in translation are captured in the discrepancy, and that the implications of those
missed are made clear. (While both the limited adequacy of downscaling and the
low fidelity in simulated blocking are openly acknowledged by UKCP09 in this
regard, the implications these inadequacies hold for decision-making are not made
clear.)

7. Evidence and argument supporting a minimum lead time on which the process has
a strong warrant of trust, and a maximum lead time beyond which projections are
not expected to be trustworthy. These time-scales will, of course, vary with space
and duration of the target variables.

These seven elements stand individually. While resolving any one of them in the
context of climate would be a major research achievement, the shift from being a
valuable research programme which advances science to a trustworthy operational
risk management tool for decision makers requires resolving each one. We do not
claim this list is complete. In the context of UKCP09, each element on its own is
sufficiently worrisome to cast doubt on the decision-relevance of the information as
quantitative risk-management tool. On the available evidence UKCP09’s projections
do not merit trust.

In the case of decision support in the face of climate change this is a crucial point
for two reasons. First, over-reliance on the reliability of such climate projections can
undermine the ability to make robust decisions; better decisions could be made with a
better understanding of the scientific uncertainties even when they cannot be presented
in this quantitative fashion. Second, for the reasons outlined above, the detailed proba-
bilistic projections might be expected to change46 substantially in future assessments,
thus undermining the user communities’ trust in scientific outputs; particularly their
presentation of uncertainty.

45 Discussion of the translation between model variables and real world variables with similar names can
be found in Smith (2000) and Smith (2002).
46 Expected to change even without a deeper scientific understanding of the phenomena, or new observa-
tions. Scientific projects are always subject to change when our basic understanding of science changes,
the question is whether they are mature conditioned on everything we know today.
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It should be noted that the scientists who worked hard to make UKCP09 the best it
could be were constrained by the structure of the project; the deliverables were defined
before any viable approach to meet them was available in the peer-reviewed literature.
Furthermore, the United Kingdom Climate Impacts Program, which is much broader
thanUKCP09, faced the problemofmotivating users to engagewith the real challenges
and risks posed by climate change in the face of deep uncertainty regarding local
impacts: the challenge of keeping users engaged and interested when the information
they most immediately desire may lie beyond the reach of today’s science.

Pointers to the fact that a naïve interpretation ofUKCP09 probability distributions is
untenable can be found within the UKCP09material. The UKCP09 worked examples,
however, clearly suggest the decision-making application of this material in ways
which, if our criticisms hold true, would be expected to prove maladaptive.

When the best available tool in terms of the utility of its deliverables is not adequate
for purpose (trustworthy), it is not in fact ‘best available’. In this case good policy,
decisionmaking, and riskmanagementwould be based on trustworthy, if less desirable,
deliverables. Where tools like UKCP09 are not trustworthy, what is? The aim of this
paper was to pave the ground for an informed discussion of this question. As long
as the prevailing view is that (something like) the probabilities provided by UKCP09
offer an attainable trustworthy option today, the issue of more informative approaches
does not even arise. We hope we have illuminated a way to move forward to new
horizons.
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