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ABSTRACT

Data assimilation and state estimation for nonlinearmodels is a challenging taskmathematically. Performing this

task in real time, as in operational weather forecasting, is even more challenging as the models are imperfect: the

mathematical system that generated the observations (if such a thing exists) is not amember of the availablemodel

class (i.e., the set of mathematical structures admitted as potential models). To the extent that traditional ap-

proaches address structural model error at all, most fail to produce consistent treatments. This results in ques-

tionable estimates both of the model state and of its uncertainty. A promising alternative approach is proposed to

produce more consistent estimates of the model state and to estimate the (state dependent) model error simul-

taneously. This alternative consists of pseudo-orbit data assimilation with a stopping criterion. It is argued to be

more efficient and more coherent than one alternative variational approach [a version of weak-constraint four-

dimensional variational data assimilation (4DVAR)]. Results that demonstrate the pseudo-orbit data assimilation

approach can also outperform an ensemble Kalman filter approach are presented. Both comparisons are made in

the context of the 18-dimensional Lorenz96 flow and the two-dimensional Ikeda map. Many challenges remain

outside the perfectmodel scenario, both in defining the goals of data assimilation and in achieving high-quality state

estimation. The pseudo-orbit data assimilation approach provides a new tool for approaching this open problem.

1. Introduction

Weather forecast models are useful when predicting

the weather, and Newton’s laws are useful when pre-

dicting the motion of (most) planets, but in neither case

are the underlying mathematical models perfect. In-

deed, there is no scientific reason to believe that a per-

fect model exists. Generally, the model class from which

the particular model equations are drawn does not

contain a process that is able to generate1 the data. This

paper focuses on the extension of data assimilation

outside the perfect model scenario (PMS) to the situa-

tion where the model is structurally imperfect. In this

case, not only the observational uncertainty but also

model inadequacy (Kennedy and O’Hagan 2001; Smith

2002) needs to be considered when an ensemble of ini-

tial conditions is constructed. Assuming the model is

perfect is unlikely to produce the optimal results. In

a chaotic system it is almost certain that no trajectory of

the model is consistent with an infinite series of obser-

vations (Judd and Smith 2004), and there appears to be

no consistent way to estimate the model states using

trajectories since the model’s invariant measure is al-

most certainly a poor prior for the ‘‘true’’ state.2 There

are pseudo orbits that are consistent with observations,

however, and these can be used to estimate the model

state (Judd and Smith 2004). This paper considers the

pseudo-orbit data assimilation (PDA) approach dis-

cussed in Du and Smith (2014, hereafter Part I), adding

a new stopping criterion to find relevant pseudo orbits

outside PMS. The proposed approach is argued to be

better suited for the condition encountered in opera-

tional state estimation than one version of the vari-

ational approach—specifically, the weak-constraint

four-dimensional variational assimilation (WC4DVAR)

(Miller et al. 1994; Zupanski 1997). Approaches adapting

the PDA results to form an ensemble of initial conditions

are introduced. By testing the state estimation perfor-

mance both in the low-dimensional Ikeda system–model

pair and in the higher-dimensional Lorenz96 system–model
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1 Produce a trajectory that, given the noise model, is consistent

with the observations.

2Note even this statement assumes the model states and the true

state share the same state space.
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pair, the PDA approach is demonstrated to be capable

of outperforming an ensemble Kalman filter (EnKF)

approach (Anderson 2001, 2003) as well.

In section 2, data assimilation outside PMS is defined

and alternative approaches are reviewed. The purpose

of using a pseudo orbit to account for model inadequacy

is explained in section 3. The methodology of PDA with

a stopping criterion is presented in section 4. In section

5, differences between the WC4DVAR approach and

the PDA approach are discussed. Comparisons between

EnKF and PDA for both the two-dimensional Ikeda

system–model pair and the 18-dimensional Lorenz96

system–model pair are made in section 6. Section 7

provides a brief summary and conclusions.

2. Imperfect model scenario

Outside puremathematics, the perfect model scenario

is fiction. Arguably, there is no perfect model for any

physical dynamical system (Smith 2002; Judd and Smith

2004). In the imperfect model scenario (outside PMS),

onemay hypothesize a nonlinear systemwith state space

R
~m; the evolution operator of the system is ~F [i.e., ~xt11 5

~F(~xt) where ~xt 2 R
~m is the state of the system]. The terms

~F, ~x, and ~m are unknown. It is often useful to speak as if such

a system existed, regardless of whether one actually does

exist. What is in hand is a model that approximates the sys-

tem, with the form yt11 5 F(yt), where yt 2 R
m (Rm is the

model state space). In reality, it is almost certain that the

system state space is different from the model state space.

Assume that ~x can somehow be projected into the model

state spacebyaprojectionoperatorg(�) [i.e.,x5 g(~x),where

x 2 R
m]. In general, the property of this projection operator

is unknown and one might question whether ~x exists.3 It is

simply assumed that g(�) maps the states of the system

into somehow relevant states in the model state space.

This operator will be discussed explicitly in each ex-

periment below. A better understanding of g(�) is an

important consideration for additional work that lies

beyond the scope of this paper. An observation st at

time t is defined by st 5 h[g(~xt)]1ht, where st 2 jsj and ht

represents the observational noise, taken here to be in-

dependent and identically distributed (IID) Gaussian,

N(0,s2), for simplicity;4 h(�) is the observation operator,
which projects the model state into the observation

space jsj . For simplicity, h(�) is taken to be the identity

operator below. Full observations are made; that is,

observations are available for all state variables at every

observation time.5 The goal is to estimate the current

state of the model y0 given the previous and current

observations st, t 5 2n 1 1, . . . , 0. Results are verified

using the projection of the target system state [i.e.,

x0 5 g(~x0)].

A review of existing state-estimation approaches

(both sequential approaches and variational approaches)

can be found in Part I. Outside PMS, adjustments have

to be made to account for model inadequacy. For vari-

ational approaches, a weak constraint (Miller et al. 1994;

Zupanski 1997) is often applied to replace the strong

constraint (Courtier et al. 1994; Bennett et al. 1996). For

sequential approaches, several methods have been pro-

posed to account for model inadequacy. These include

the following: (i) Add stochastic terms in the (deter-

ministic) model equations to alter the nature of model

inadequacy by improving the model class (e.g., Buizza

et al. 1999; Penland 2003; Leeuwen 2010; Mitchell and

Gottwald 2012); one must still deal with inadequacy in

the new class, of course. (ii) Add noise to each en-

semble member so as to increase the ensemble vari-

ance appropriate to model inadequacy (e.g., Mitchell

and Houtekamer 2000; Hamill and Whitaker 2005).

(iii) Inflate the distance of each ensemblemember about

their mean (Anderson and Anderson 1999; Hamill et al.

2001). Adopting the weak constraint in variational

3 It is common to think of the state of a physical system as

a vector (or perhaps a continuous field) of real numbers. The

simplest interpretation of atmospheric dynamics that would admit
~x requires that the continuum hypothesis holds; this is inconsistent

with our best knowledge of the physics of fluids. Each of the four

steps—the step from reality to partial differential equations, the

step from partial differential equations to ordinary differential

equations, the step from ordinary differential equations to finite

difference equations, and the final step to difference equations on

a finite digital grid—is treacherous. Even if these are overcome, 1)

the failure of the continuum hypothesis would require ~x to be

something other than the state of a partial differential equation and

2) even the claim that partial differential equations as simple as the

Navier–Stokes equations admit smooth, physically reasonable so-

lutions remains unproven. The difficulty of point 2 may be gauged

by the fact that is to a millennium prize problem in modern

mathematics (Fefferman 2000). The point of this footnote is to

stress that the simple assumption that the state of the atmosphere is

mathematically well defined and merely ‘‘uncertain’’ is as poorly

founded as it is common. Arguably, there simply is no such thing.

4Although, the approach introduced in this paper can be applied

to deal with non-Gaussian and even noise models that admit

nonindependent and nonidentically distributed noise.
5As noted in Part I, various generalization to partial observa-

tions can be made (Judd et al. 2008; Du 2009; Smith et al. 2010) and

the approach could be applied in operational weather forecasting

following the approach of Judd et al. (2008). The case of partial

observations will be considered elsewhere. In short, a two-pass

approach to PDA is taken: the first using background information

of the unobserved state variables with the observations frozen, and

the second a standard application of the PDA approach described

in this paper. While interesting, it is omitted here. Note there is

some loss of generality in assuming full observations.
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approaches and using method (i) in sequential approaches

require prognostic terms in the cost function or model

equations. Option (ii) is costly and inefficient, especially

for high-dimensional models. Option (iii) aims to account

for model inadequacy by adjusting the second moment of

the ensemble distribution within the subspace spanned by

the ensemble. The PDA approach presented in this paper

estimates state-dependent model error and state variables

simultaneously without requiring either the prior specifi-

cation of prognostic terms or a second-moment closure.

Following Judd and Smith (2004), two types of model

inadequacy are distinguished.One is structural inadequacy;

the other is ignored-subspace inadequacy. For each type

ofmodel inadequacy, a system–model pair is designed in

order to compare alternative approaches. For structural

model inadequacy, where the system dynamics are not

known in detail and its mathematical structure (assum-

ing such a thing exists) is different from that of the

model, the Ikeda map (Ikeda 1979; Haramel et al. 1985)

is treated as the system and a truncated Ikedamap as the

model. (Details of all systems, models, and experiments

are given in the appendixes.) In this case, themodel state

and the system state share the same state space and g(�)
is the identity naturally. For ignored-subspace model

inadequacy some component(s) of the system dynamics

is (are) unknown, unobservable, or simply omitted from

themodel; the Lorenz96model II flowwith both fast and

slow variables is treated as the system, while the one

layer model I flow excluding the fast variables is taken as

the model. (Details of these flows are given in appendix

A.) In this system–model pair, the model state space and

the system state space differ; g(�) projects the system

state into a subspace of the system state space; here, g(�)
is a many-to-one projection. In the real atmosphere, of

course, many different states of the atmosphere must

map into identical model states.

3. Accounting for model inadequacy requires
pseudo orbits

When g(�) is one to one, define the pointwise model

error to be g(~xt11)2F[g(~xt)].
6 While it is sometimes

reasonable to assume the observational noise is IID, it is

almost certain that the pointwise model error of a non-

linearmodel varies coherently with x andwill not be well

mimicked by any IID process [see Orrell et al. (2001)

for relevant evidence in numerical weather prediction].

Figure 1 illustrates how the pointwise model error for

the Ikeda system–model pair is spatially correlated:

there are regions where the pointwise model error is

small and regions where it is not. Better understanding

the distribution of the pointwisemodel error could aid in

model development. If systematic pointwise model er-

rors are more or less well identified, one may be able to

improve the model by correcting some of the errors [for

examples in numerical weather prediction with theNavy

Operational Global Atmospheric Prediction System

(NOGAPS), see Judd et al. (2008)]. While the focus of

this paper is on how to better estimate a representative

state within the model state space, accounting for model

inadequacy is an unavoidable task within the procedure;

the proposed approach provides information regarding

pointwisemodel error, whichmay be of use in improving

both the forecast and the model. It is stressed that state-

dependent model error information is an output of the

proposed approach, whereas both EnKF andWC4DVAR

require specifications and/or assumptions as an input. If

indeed a viable statistical description of state-dependent

model error was available, it could be used to broaden

the model class and improve dynamical simulation.

To estimate ‘‘the’’ current state of the model outside

PMS, one needs to account for both observational noise

and model inadequacy. In the absence of observational

noise, the pointwise model error could be derived from

the observations directly. In the presence of observa-

tional noise, the convolution compounding pointwise

model error and observational noise removes the pos-

sibility of identifying either precisely.

Recall from Part I that a pseudo orbit,U[ fu2n11, . . . ,

u21, u0g, to is a point in them3 n dimensional sequence

space for which ut11 6¼ F(ut) for any component of U.

This implies that U corresponds to a sequence of model

FIG. 1. The pointwise model errors for the truncated Ikeda map.

The lines show the pointwise model error for 512 starting points by

linking the prediction to the target. This figure provides a reference

for Figs. 3 and 4.

6 If g(�) is not one to one, the definition must be modified to

consider the expectation over all states ~x that map into x via g(~x).
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states that is not a trajectory of the model. Let the ele-

ments of U corresponding to the model state at a given

time be called a ‘‘component’’ of the pseudo orbit. De-

fine the imperfection error of each of the n 2 1 com-

ponents of U to bevt 5 ut112 F(ut) for t52n1 1, . . . ,

21. Note the imperfection error will not correspond to

the pointwise model error. It is the case, however, that

the projection of a system trajectory in the model state

space is a pseudo orbit of the model, and in this case the

imperfection error does reflect the pointwise model er-

ror in the model state space. Arguably,7 no model tra-

jectory is consistent8 with an infinite sequence of

observations outside PMS. There are pseudo orbits,

however, that are consistent with observations and these

can be used to provide useful estimates of the projection

of the system state into the model state space. The sys-

tem trajectories projected into the model state space are

pseudo orbits of the model in the model state space;

these target pseudo orbits, fg(~x2n11), . . . , g(~x0)g, are

both consistent with the observations and their imper-

fection errors reflect the pointwise model error precisely.

Unfortunately, such desirable pseudo orbits cannot be

determined precisely outside PMS owing to the con-

founding of observational noise and the pointwise

model error mentioned above. It may still be possible to

identify informative pseudo orbits of the model that are

consistent with observational noise, however, and the

imperfection error of those pseudo orbits may provide

information regarding pointwise model error. PDA-

based approaches for finding relevant pseudo orbits are

introduced in the following section.

4. PDA with a stopping criterion

In Part I, Du and Smith applied the PDA approach

introduced by Judd and Smith (2001) for state estima-

tion in PMS by minimizing the mismatch cost function

given by

C(U)5�jut112F(ut)j2 . (1)

PDAminimizes the mismatch cost function in anm3 n

dimensional sequence space using a gradient descent

(GD) algorithm. In practice, the minimization is ini-

tialized with the observation-based pseudo orbit (i.e.,
0U 5 fs2n11, . . . , s0g). The pseudo-orbit is updated on

every iteration of theGDminimization. Let the result of

the GD minimization be aU, where a indicates algo-

rithmic time in GD (see Part I for additional discussion).

In a misstep, Judd and Smith (2004) adjusted the ap-

proach by adding the imperfection error term in the

mismatch cost function to account formodel inadequacy

(to be clear, this approach is not recommended). Spe-

cifically, Judd and Smith (2004) adjusted cost function

to be

C*(U,v)5�jut112vt11 2F(ut)j2 . (2)

By minimizing C*(U, v), one obtains a pseudo orbit ut
and the corresponding imperfection error vt. Du (2009)

shows that the results of such an approach are inconsistent9

with the observational noise and the pointwise model

error; minimizingC*(U,v) to obtain pseudo orbits is not

recommended.

The alternative presented here is to minimize C(U)

with a stopping criterion, thereby obtaining more con-

sistent (less biased) pseudo orbits. Notice that minimi-

zation of C(U) is actually minimizing the imperfection

error of the pseudo orbit u. The imperfection error is

treated as an estimate of the pointwise model error,

which is known to exist when the model is imperfect.

Note the aim is not minimizing the imperfection error

but producing better (more consistent) estimates of the

model states and the corresponding pointwise model

error. Let st 2 h(ut) be the implied noise. It is desirable

to obtain pseudo orbits whose implied noise and im-

perfection error are consistent with the observational

noise and the pointwise model error, respectively. In-

asmuch as all available information onmodel inadequacy

will have been included in refining the model, infor-

mation is only available regarding the observational

noise, and that information is statistical.One obvious goal

is to match the statistics of the implied noise with that of

the observational noise, so that the implied noise is con-

sistent with the noise model. Figure 2 shows that the

statistics of implied noise, imperfection error, and pseudo

orbits change as theminimization runs deeper and deeper

(a increases). Both the higher-dimensional Lorenz96

system–model pair experiment (Fig. 2, left) and the low-

dimensional Ikeda system–model pair experiment (Fig. 2,

right) are shown.

As the GD minimization advances (as a increases),

the standard deviation of the implied noise tends to in-

crease beyond that of the observational noise; this

7 This is expected when the model is chaotic (Judd and Smith

2004).
8 Specifically, there is no trajectory fy0, y1, y2, . . .g such that the

series st 2 yt is consistent with the noise model.

9 The obtained pseudo orbits tend to have the implied noise

(defined in the following paragraph) much smaller than the ob-

servational noise and the imperfection error much larger than the

pointwise model error.
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indicates the tendency of pseudo orbits to eventually

move far from the observations. Comparing the stan-

dard deviation of the implied noise with that of the ac-

tual noise model (flat line) in the first panels of Fig. 2

reveals that at the beginning of the GD minimization,

the observational noise has a larger standard deviation

than the implied noise does since the pseudo orbit is

close to the observations; this simply reflects the fact that

the minimization algorithm is initialized at the obser-

vations. As the minimization proceeds, the standard

deviation of the implied noise grows (approaching that

of the observational noise), and the pseudo orbit gets

closer to the target pseudo orbit, as shown in Fig. 2c.

At some point, however, the standard deviation of the

FIG. 2. Statistics of the pseudo orbit as a function of the number of gradient descent iterations for both the (left)

higher-dimensional Lorenz96 system–model pair experiment and (right) low-dimensional Ikeda system–model pair

experiment. (a) Standard deviation of the implied noise (the flat line is the standard deviation of the noise model);

(b) standard deviation of the model imperfection error (the flat line is the sample standard deviation of the pointwise

model error); and (c) RMS distance between the pseudo orbit and the target pseudo orbit.
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implied noise exceeds that of the observational noise,

and the distance between the pseudo orbit and the target

pseudo orbit grows larger still. This results from model

inadequacy: When the imperfection error of the pseudo

orbit becomes smaller than the actual pointwise

model error (see Fig. 2b), the implied noise com-

pensates for the imperfection error to account for the

effects of model inadequacy. This makes the implied

noise distribution too wide, and the pseudo orbits be-

come inconsistent with the observations. Thereafter, the

minimization of C(U) reduces the imperfection error

without improving the pseudo orbit—indeed, while de-

grading it. This problem calls for some sort of stopping

criterion.

In cases where the pointwise model error distribution

is neither IID nor Gaussian, the extent to which the

imperfection error mimics the pointwise model error is

incompletely reflected by the second-moment statistics.

The ability of PDA to cope with such conditions will be

presented elsewhere. Figure 1 indicates the extent to

which the pointwise model error is spatially correlated.

As an estimate of the pointwise model error, the im-

perfection error is expected to have similar spatial cor-

relations to those of the pointwise model error.

Evidence that this expectation is fulfilled is provided in

Fig. 3, which plots the imperfection error10 in the state

space of the Ikeda map for different numbers of GD

iterations. Compare Fig. 3 with the actual pointwise

model error plotted in Fig. 1. A quantitative comparison

of model error and imperfection error is obtained from

the slope l of the regression line of model error against

imperfection error. Figure 3d shows l as a function of a,

which is how the regression evolves as theGD algorithm

advances. At the beginning of the minimization, the

imperfection errors tend to be larger than the pointwise

model error in most places; early in the minimization

(a is small), the imperfection error contains both the

observational noise and the pointwise model error. Sim-

ilarly in the asymptotic regime (a is large), the imperfection

error has evolved to bemuch too small and the slope of the

regression line grows much larger than 1. This can be

seen in Fig. 3d. The imperfection error loses the spatial

information available at smaller a. Less spatial corre-

lation of the imperfection error can be seen in Fig. 3c.

With a ’ 40 (Fig. 3b), the imperfection error provides

a better estimate of the pointwise model error. Here, the

FIG. 3. Snapshots of the imperfection error (magnified by a factor of 3 in length) in state space during the gradient

descent runs for the Ikedamap experiment with noisemodelN(0, 0.012): after (a) 5, (b) 40, and (c) 200GD iterations.

The color reflects the difference between the imperfection error and the corresponding pointwise model error.

(d) The evolution of the slope of the best-fit line relating the imperfection error and the corresponding pointwise

model error as a function of the number of GD iterations. The vertical lines show the locations of a5 5, 40, and 200;

these values of a correspond to (a),(b), and (c), respectively.

10Note that the starting points of the imperfection error are not

the same in Figs 3a–c.
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patterns in Figs. 3b and 1 are very similar, and the dif-

ferences between the imperfection error and the corre-

sponding pointwise model error are relatively small.

The extent to which pointwise model error can be

identified robustly depends strongly on the relative

magnitudes of the observational noise and pointwise

model error. Figure 4 plots the imperfection error in the

state space at two different noise levels. (In each case,

the GD stopped when the standard deviation of the

implied noise first exceeded the standard deviation of

the observational noise.) When the observational noise

is much smaller than the pointwise model error, the

latter can bewell estimated by the imperfection error (as

in Fig. 4a). When the observational noise is significantly

bigger than the pointwise model error, the imperfection

error appears more random (as in Fig. 4b).

These experiments suggest that PDA with a stopping

criterion based on the statistics of the implied noise

produces pseudo orbits closer to the target than those

with significantly smaller a or significantly larger a.

When should one stop the GD minimization in order to

obtain the most relevant pseudo orbit? The answer to

this question will vary with the definition of ‘‘most rel-

evant’’ (or ‘‘best’’) pseudo orbit. If, for example, ‘‘bet-

ter’’ means a pseudo orbit more consistent with the

observations, then the stopping criterion can be based

upon consistency between implied noise and the noise

model;11 alternatively, if better means a preferred

candidate for an ensemble forecast (evaluated at a cer-

tain forecast lead time), then the stopping criterion can

be determined based on past forecast performance.12

Generally, the number of iterations a is a tuning pa-

rameter and need not be specified a priori. Denote PDA

with a stopping criterion as PDAc. In the experiments

presented in this paper, the stopping criterion targeted

state-estimation performance. That is, a was tuned to

maximize the skill (in terms of ignorance defined below)

of the state estimation at t 5 0. Evaluation criteria that

lead to the same result inside PMS (where a perfect

ensemble is well defined) are expected to lead to dif-

ferent results outside PMS. While the simple criterion

above is adequate for our purpose, it no doubt could be

improved upon. The key take-home point here is that

even this simple stopping criterion provides more con-

sistent state-estimation results than the alternative ap-

proaches considered. Furthermore, outside PMS, PDA

need not pursue a pseudo orbit all the way to its as-

ymptotic approach to amodel trajectory. This means the

cost of obtaining useful pseudo orbits is reduced sub-

stantially, which in turn makes the approach more at-

tractive for use in operational prediction models (e.g.,

Judd et al. 2008).

The PDAc approach can also play a role in forming

ensembles of initial conditions. To capture the uncer-

tainty in the nowcast and forecast in numerical weather

prediction, some approaches (Leutbecher and Palmer

FIG. 4. Imperfection errors (magnified by a factor of 3 in length) after intermediate gradient descent runs for the

Ikeda system–model pair are plotted in the state space. The color reflects the difference between the imperfection

error and the corresponding pointwise model error. (a) s5 0.002 and (b) s5 0.05, where s is the standard deviation

of the Gaussian noise model.

11Of course, higher-resolution measurements (i.e., small noise

observations) available over a limited duration might also be used

as a target to optimize the stopping criterion for state estimation.

12Note that as the model is not perfect, one should expect the

characteristic of the ideal initial condition ensemble to vary with

lead time.
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2008) sample the model’s more rapidly growing direc-

tions at the (t 5 0) analysis. Such sampling, however, is

unlikely to produce states that are consistent with the

long-term model dynamics (Smith 1996).

An alternative approach is to apply PDAc to per-

turbed observations. To form an ensemble in this case,

the observations are perturbed using the inverse of the

observational noise distribution. More explicitly, given

the observational noise model, one adds random draws

from the inverse of the observational noise model to

the observation. For Gaussian observational noise, the

perturbed observations are statistically equivalent to

increase the noise level by
ffiffiffi
2

p
. PDAc is then applied to

the perturbed observations. Last, the final component of

each pseudo orbit produced by the PDAc approach is

taken as an ensemble member. Each ensemble member

from perturbed observation is treated as equally likely.

This approach is used to generate the experiments re-

sults in the paper. The alternative approach of adding

noise to the optimized pseudo orbit obtained from the

observations is not considered here. Given that the

model is acknowledged to be imperfect, it is not clear

that these forecasts should be used as probability fore-

casts however they are formed.

5. Contrasting WC4DVAR with PDAc

In the traditional 4DVAR approach (Lorenc 1986;

Talagrand and Courtier 1987; Courtier et al. 1994), the

model dynamics are interpreted as a strong constraint

(Courtier et al. 1994; Bennett et al. 1996), which effec-

tively assumes that the model is perfect (i.e., model

trajectories consistent with the observations are tar-

geted). Comparison between 4DVAR and PDA in PMS

in Part I suggests that the 4DVAR approach suffers

from the multiple local minima when applied to long

windows (Miller et al. 1994; Pires et al. 1996). The PDA

approach, on the other hand, can benefit from the ad-

ditional dynamical information contained in a larger

window. To account for model inadequacy outside PMS,

one might apply the model as some form of weak con-

straint (Miller et al. 1994; Zupanski 1997) rather than as

a strong constraint (Sasaki 1970). Bennett et al. (1993,

1996) show that some applications of the model dy-

namics as a weak constraint in a 4DVAR approach can

outperform the approach using it as a strong constraint.

Although rarely phrased in this way, the WC4DVAR

approach can be viewed either as a search for pseudo

orbits of a deterministic model given a specified dy-

namical noise model or as a search for trajectories of

a fully specified stochastic model. Following Lorenc

(1986), the version ofWC4DVAR (Zupanski 1997; Judd

2008) considered below is derived with the assumption

of Gaussian IID observational noise13 and Gaussian IID

pointwise model error. While this may prove preferable

to assuming that the deterministic model is perfect, it is

long known that in numerical weather prediction the

pointwisemodel error is not IID (e.g., Orrell et al. 2001).

Making a model stochastic does not remove the basic

challenges posed by model inadequacy, unless doing so

makes the model perfect.

Following the maximum likelihood principle, the

probability of y2n11, . . . , y0 given s2n11, . . . , s0, that is,

p(y2n11, . . . , y0 j s2n11, . . . , s0) is proportional to

exp

(
2
1

2
�
0

t52n11

[h(yt)2 st]
TG21

t [h(yt)2 st]

)

3 exp

(
2
1

2
�
0

t52n12

[yt 2F(yt21)]
TQ21

t [yt 2F(yt21)]

)
,

(3)

whereG andQ are the observational error and pointwise

model error covariance matrices, respectively. The

WC4DVAR cost function is derived by taking the log-

arithm of the above equation; that is,

Cwc5
1

2
�
0

t52n11

[h(yt)2 st]
TG21

t [h(yt)2 st]

1
1

2
�
0

t52n12

[yt 2F(yt21)]
TQ21

t [yt 2F(yt21)]. (4)

In practice, an additional background term may be used

to take account of the information either from previous

estimates or from any available prior distribution of the

initial state. Note that although the expression of the

first term in the cost function is the same as the term in

the 4DVAR cost function, they are different in the sense

that in the original 4DVAR case the estimate of the

model states y2n11, . . . , y0 are states along a single

trajectory of the model [i.e., yt 2 F(yt21) 5 0], while in

the WC4DVAR case those states form a pseudo orbit

[i.e., yt 2 F(yt21) 6¼ 0]. It is also assumed that the dif-

ference between yt and F(yt21) is well described by an

IID Gaussian process with Q; Q must be specified a pri-

ori if Eq. (4) is to be evaluated. The difference between

yt and F(yt21) is the imperfection error of the pseudo

orbit y2n11, . . . , y0, which is expected to be minimized

by the second term of the cost function. In practice,

WC4DVAR is often implemented so as to obtain pseudo

orbits of the model by maintaining the balance that such

13 In practice, meteorological observations commonly contain

systematic errors correlated in time.
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a pseudo orbit stays close to the observations but with

small imperfection errors; justification of the initial speci-

fication of Q in practice remains a challenge. A similar

challenge has long plagued the specification of G as well.

There are some similarities between PDAc and

WC4DVAR: (i) both can be applied to an assimilation

window to produce an estimate of model states (analy-

sis) and (ii) the time series of analyses produced by both

approaches is a pseudo orbit of the deterministic model,

each with its own corresponding sequence of imperfec-

tion errors.

There are also fundamental differences between

PDAc and WC4DVAR. Despite there being multiple

realization of the WC4DVAR approach, each of them

requires some similar input assumptions—specifically,

that the pointwise model error is IID Gaussian. The

PDAc approach does not require this assumption; indeed,

this was stressed as a strength of the PDA approach as

early as Judd and Smith (2004). The assumption that the

pointwise model error is IID Gaussian is known to be

unrealistic on both theoretical and empirical grounds—

a fact reflected by the practice of dropping this term in the

forecast model. Implementing theWC4DVAR approach

forces the imperfection error toward this assumption.

Arguably, this weak constraint is an improper constraint

(also see Judd 2008).

In the PDAc approach, however, no such assumption

regarding the pointwise model error is ever made. From

Fig. 1, it is obvious that the pointwise model error is not

IID in the state space. Results in the previous section

show that the PDAc approach can, in practice, produce

informative imperfection errors. For models recurrent

in the model state space, the imperfection errors can be

used in forecast mode [as in Smith (1992)]. And it has

been shown that, as the imperfection errors in European

Centre for Medium-RangeWeather Forecasts (ECMWF)

operationalmodels (T42 andT63) vary slowly in time, they

can be used to reduce the forecast RMS error (Orrell et al.

2001).

The WC4DVAR approach also assumes observa-

tional noise to be IID, while meteorological observa-

tions often have systematic observational errors (Lu and

Browning 1998). The PDAc approach requires no as-

sumption of the observational noise model. In practice,

the WC4DVAR approach [Eq. (4)] suffers from local

minima as does 4DVAR. It is shown in Du (2009) that

the performance of the WC4DVAR approach de-

teriorates as the length of the assimilation window in-

creases; for PDAc, this is not the case. Most strikingly,

WC4DVAR requires rather large error covariance

matrices to be specified as a priori where PDAc does not.

Indeed, PDAc provides information on the pointwise

model error.

More generally, the variational approaches see data

assimilation as a statistical problem: one is looking for an

optimal trajectory. PDAc, on the other hand, sees data

assimilation as more similar to a control problem: one is

looking for the control perturbations required to keep

a pseudo orbit of the model close to the observations.

6. Ensemble Kalman filter versus PDAc

The sequential approach used here is the ensemble

adjustment Kalman filter (Anderson 2001, 2003) with

covariance inflation in order to account for model in-

adequacy. The comparison is made first in the lower-

dimensional case in order to ease visualization of the

evidence. Both PDAc and EnKF are applied to the two-

dimensional Ikeda model–system pair and the ensemble

results in the state space are plotted. Four examples of

the estimated states are shown in Fig. 5. Whether the

state estimations lie on the system attractor may prove

irrelevant outside PMS. Sampling from (near) themodels

attractor can again be more efficient than sampling the

full volume in the model state space. In Fig. 5, the en-

semble produced by the PDAc approach is visibly rela-

tively closer to the target state. In Fig. 5 (top), the EnKF

ensemble manages to cover the target state, while in

Fig. 5 (bottom), the EnKF ensemble members are far

from the target state. Note that inflation increases the

spread of the ensemble, but it does not change the subspace

spanned by the ensemble (Hamill 2006). For example, in

the bottom-right panel, the EnKF ensemble members

are almost lying along the line parallel to the y axis; in such

a case, inflating the ensemble will not move any of the

members toward the target state in the x direction.

To measure the difference between these two ap-

proaches quantitatively, the initial condition ensemble

is translated into a predictive distribution function by

standard kernel dressing (Brocker and Smith 2008).

Each ensemble member is replaced by a Gaussian ker-

nel centered on that member; this makes a continuous

distribution (a non-Gaussian sum of Gaussian kernels).

The width of each kernel (the standard deviation of the

Gaussian, called the ‘‘kernel width’’) is determined by

optimizing the ignorance score in a training set. (The

training set is then discarded; it is not used in the eval-

uation below.)

The performance of a state-estimation technique can

be evaluated with the ‘‘log p score’’ or ignorance score

(Good 1952; Roulston and Smith 2002). The ignorance

score is the only proper local score for continuous var-

iables (Bernardo 1979; Raftery et al. 2005; Brocker and

Smith 2007). Although there are also nonlocal proper

scores, the authors prefer using ignorance as 1) it has

a clear interpretation in terms of information theory,
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2) it is local, and 3) it can be easily communicated in

terms of effective interest returns (Good 1952; Roulston

and Smith 2002; Hagedorn and Smith 2009). The igno-

rance score is defined by

S[p(y),Y]52 log2[p(Y)] , (5)

where Y is the outcome and p(Y) is the probability of

event Y. In practice, given K forecast–outcome pairs

(pt, Yt, t 5 1, . . . , K), the empirical average ignorance

skill score is

SEmp[p(y),Y]5
1

K
�
K

i51

2log2[pi(Yi)] . (6)

The PDAc approach is compared with the EnKF

approach in both the lower-dimensional Ikeda system–

model pair and higher-dimensional Lorenz96 system–

model pair. In both cases, the state-estimation performance

is evaluated by empirical ignorance.

Table 1 shows the comparison between EnKF and

PDAc (details of the experiments are given in appendix B)

using the ignorance score (the optimized kernel width is

FIG. 5. Ensemble results from both EnKF and PDAc for the Ikeda system–model pair. The target state is centered in each panel (large

cross); the square is the corresponding observation, and the background dots indicate samples from the Ikeda map attractor. The EnKF

ensemble is depicted by 512magenta dots. The PDAc ensemble is depicted by 512 green dots. Each panel is an example of state estimation.

TABLE 1. Ignorance score and kernel width of initial-condition ensemble for the Ikedamodel–system pair and Lorenz96 model–system

pair; the noise model isN(0, 0.052) andN(0, 0.52), respectively. The 512-member ensembles generated by PDAc and EnKF are compared.

Lower and upper are the 90% bootstrap resampling bounds of the ignorance score. The statistics are calculated based on 8192 assimi-

lations and 4096 bootstrap samples are used to determine the resampling bounds.

Systems

Ignorance Lower Upper Kernel width

EnKF PDAc EnKF PDAc EnKF PDAc EnKF PDAc

Ikeda 22.66 23.67 22.76 23.70 22.51 23.64 0.056 0.0023

Lorenz96 23.32 24.08 23.40 24.12 23.23 24.04 0.45 0.26

492 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



also presented). From the table, it is clear that the en-

semble generated by the PDAc approach outperforms

significantly the ensemble generated by EnKF in both

experiments. Relative ignorance between the two ap-

proaches is found to be around 1 bit in the Ikeda exper-

iment and 0.75 bits in the Lorenz96 experiment, which

can be interpreted as the PDAc approach placing, on

average, 100% (and 68%) more probability density near

the outcome than the EnKF approach. The much smaller

kernel width for the PDAc ensemble also indicates that the

PDAc ensemble members are more concentrated around

the (projection of) target state than the EnKF ensemble.

7. Conclusions

In this paper, the problem of estimating the current

state(s) of a model outside PMS is addressed. In prac-

tice, the assumption of a perfect model is unrealistic as is

the assumption that model inadequacy is IID in time. A

PDA approach with a stopping criterion, PDAc, allows

state estimationwithout the assumption of a perfectmodel.

The PDAc approach is shown to produce pseudo orbits

that are consistent with the observations and yield im-

perfection error as an output that reflects state-dependent

model error in the examples considered. The differences

between the WC4DVAR approach (Miller et al. 1994;

Zupanski 1997) and the PDAc approach are stressed, and

the fact that WC4DVAR requires an additional assump-

tion about the dynamics of model error is noted.

Comparisons between the PDAc approach and

the EnKF approach have been made both in the lower-

dimensional Ikeda map and in the higher-dimensional

Lorenz96 model. By looking at the ensemble results

in the model state space and statistically evaluating

the ensemble using ignorance, it is demonstrated that

the proposed approach systematically outperforms the

EnKF approach considered (Anderson 2001, 2003) in both

cases. Additional comparisons on the same datawithmore

sophisticated filters would be welcome.

The reasons that PDAc outperforms EnKF and

WC4DVAR are easily understood. Given the illustra-

tion by Judd et al. (2008) that PDAc is deployable on

large-scale models, its evaluation in a true operational

context is hoped to contribute to the improvement of oper-

ational state estimation, data assimilation, and forecasting.
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APPENDIX A

Details of System–Model Pairs

a. Ikeda system–model pair

The Ikeda map was introduced by Haramel et al.

(1985) based on Ikeda’s model of laser pulses in an op-

tical cavity (Ikeda 1979). It is a common testbed in data

assimilation studies (e.g., Hansen and Smith 2001; Judd

and Smith 2004). With real variables, it has the form

Xn11 5g1 u(Xn cosf2Yn sinf) , (A1)

Yn115 u(Xn sinf1Yn cosf) , (A2)

where f5b2a/(11X2
n 1Y2

n). With the parameters

a5 6, b5 0.4, g5 1, and u5 0.83, the system is believed

to be chaotic. The imperfect Ikeda model is obtained by

using the truncated polynomial to replace the trigono-

metric function in ~F; that is,

cosu5 cos(v1p)12v1v3/62v5/120, (A3)

sinu5 sin(v1p)1211v2/22v4/24, (A4)

where the change of variable tovwas suggested by Judd

and Smith (2004) since u has the approximate range

from21 to25.5, and2p is conveniently near the middle

of this range. In this case, the model state and the system

state share the same state space. Generally, the truncated

Ikeda model is a good approximation to the Ikeda

system.

b. Lorenz96 system–model pair

A system of nonlinear ordinary differential equations

(Lorenz96 system) was introduced by Lorenz (1995) and

called model II. It is a common testbed in data assimi-

lation studies (e.g., Fertig et al. 2007; Leeuwen 2010).

The variables involved in the system are analogous to

some atmospheric variables regionally distributed around

the Earth. The mathematical functions of the system are

dxi
dt

52 xi22xi211 xi21xi112 xi 1F2
hxc

b
�
n

j51

yi,j ,

(A5)

dyj,i

dt
5 cbyj11,i(yj21,i 2 yj12,i)2 cyj,i 12

hyc

b
xi (A6)

for i 5 1, . . . , n, and j 5 1, . . . , m. The system used in

experiments presented in this paper contains n 5 18

variables x1, . . . , x18 with cyclic boundary conditions

(where xn11 5 x1). Like the large-scale variables xi, the
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small-scale variables yj,i have the cyclic boundary con-

ditions as well (that is, ym1j,i 5 yj,i11). In experiments

considered in this paper, m 5 5. The coefficients used

are b 5 c 5 F 5 10, for which the small-scale variables

tend to fluctuate 10 times more rapidly but with 10 times

smaller magnitude than the large-scale variables. For

more information, see Lorenz (1995) and Orrell et al.

(2001).

The Lorenz96 model I is

dxi
dt

52 xi22xi211 xi21xi112 xi 1F . (A7)

Small dynamical variables y in the system equations

[Eqs. (A5) and (A6)] are not included in the Lorenz96

imperfect model. The magnitude of error made by the

imperfect model depends on the coupling parameter hx,

hy, and in experiments presented in this paper, both hx
and hy are set to be 1. In this system and model pair

setting, the model state space and the system state space

are different.

APPENDIX B

Experiments’ Details

Details of the experiments discussed in the paper are

given here. Table B1 provides specific experimental

details of the PDA implementation conducted in the

paper. The ensemble adjustment Kalman filter (Anderson

2001, 2003) is applied to produce an ensemble of initial

conditions. Large ensemble sizes (512 members) have

been considered in this case so as to avoid some of the

complications required in operational implementations

(i.e., ensemble covariance localization). Covariance in-

flation is adopted to improve (perhaps artificially) the

appearance of EnKF data assimilation results. For each

experiment, the inflation parameter value is properly

tuned in order to achieve best ignorance score. The in-

flation parameter values are 1.04 for the Ikeda experi-

ment and 1.07 for the Lorenz96 experiment.
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