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ABSTRACT

State estimation lies at the heart of many meteorological tasks. Pseudo-orbit-based data assimilation

provides an attractive alternative approach to data assimilation in nonlinear systems such as weather

forecasting models. In the perfect model scenario, noisy observations prevent a precise estimate of the

current state. In this setting, ensemble Kalman filter approaches are hampered by their foundational as-

sumptions of dynamical linearity, while variational approaches may fail in practice owing to local minima in

their cost function. The pseudo-orbit data assimilation approach improves state estimation by enhancing

the balance between the information derived from the dynamic equations and that derived from the

observations. The potential use of this approach for numerical weather prediction is explored in the

perfect model scenario within two deterministic chaotic systems: the two-dimensional Ikeda map and

18-dimensional Lorenz96 flow. Empirical results demonstrate improved performance over that of the two

most common traditional approaches of data assimilation (ensemble Kalman filter and four-dimensional

variational assimilation).

1. Introduction

The quality of forecasts from dynamical nonlinear

models depends both on the model and on the quality of

the initial conditions. Even under the idealized condi-

tions of a perfect model of a deterministic chaotic

nonlinear system and with infinite past observations,

uncertainty in the observations can make identification

of the exact state impossible (Berliner 1991; Lalley 2000;

Judd and Smith 2001). Such limitations make a single

‘‘best guess’’ prediction a suboptimal approach to state

estimation—an approach that would be frustrated even

in ideal cases. Alternatively, an ensemble of initial

conditions can better reflect the inescapable uncertainty

in the observations by capturing the sensitivity of each

particular forecast. A major application of state esti-

mation is in the production of analyses of the state of the

atmosphere in order to initialize a numerical weather

prediction (NWP) model (e.g., Lorenc 1986; Keppenne

and Rienecker 2002; Kalnay 2003; Anderson et al. 2005;

Houtekamer et al. 2005). This paper is concerned with the

identification of the current state of a nonlinear chaotic

system given a sequence of observations in the perfect

model scenario (PMS). The use of imperfect models is

discussed elsewhere (Du and Smith 2014, hereafter Part II).

In PMS, there are states that are consistent with the

model’s long-term dynamics and states that are not; in

dissipative systems the consistent states are often said to

‘‘lie on themodel’s attractor.’’ Intuitively, it makes sense

to distinguish those states that are not only consistent

with the observations but also consistent with the model’s

long-term dynamics in state estimation. The problem of

state estimation in PMS is addressed by applying the

pseudo-orbit data assimilation (PDA) approach (Judd

and Smith 2001; Judd et al. 2008; Stemler and Judd 2009)

to locate a reference trajectory (a model trajectory

consistent with the observation sequence; Gilmour 1998;

Smith et al. 2010) and constructing an initial condition

ensemble by using the model dynamics to sample the

local state space. The PDA approach is shown to be more

efficient1 and robust in finding a reference trajectory than

four-dimensional variational assimilation (4DVAR). The

differences between PDA and 4DVAR are discussed.

Ensemble Kalman filter (EnKF) approaches provide an
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alternative to 4DVAR. Illustrated here both on a low-

dimensional map and on a higher-dimensional flow,

PDA is demonstrated to outperform one of the many

EnKF approaches—that is, the ensemble adjustment

Kalman filter (Anderson 2001, 2003). It is suggested

that this is a general result.

The data assimilation problem of interest is defined

and alternative approaches are reviewed in section 2. A

full description of the methodology of the PDA ap-

proach is presented in section 3. In section 4, the

4DVAR approach and the PDA approach are con-

trasted using the two-dimensional Ikeda map and the

18-dimensional Lorenz96 flow. Comparisons between

the EnKF approach and the PDA approach for the

same two systems are made in section 5. Section 6

provides a brief summary and conclusions.

2. Problem description

The problem of state estimation is addressed within

the perfect model scenario focusing only on nonlinear

deterministic dynamical systems.2 Let ~xt 2 R
~m be the

state3 of a deterministic dynamical system at time t 2 Z.

The evolution of the system is given by F(~xt, ~a):R
m/R

m

with ~xt11 5F(~xt, ~a), where F denotes the system dy-

namics that evolve the state forward in time in the

system state space R
m and the system’s parameters are

contained in the vector ~a 2 R
l. In PMS, assume the

mathematical structure of F is known while uncertainty

in the values of ~amay remain. Note that PMS does not

require knowing the parameters of the system. Robust

approaches have been proposed to identify the pa-

rameter values (e.g., Schittkowski 1994; McSharry and

Smith 1999; Pisarenko and Sornette 2004; Tarantola

2004; Smith et al. 2010; Du and Smith 2012). This paper,

however, considers only the strong case where both the

model class (i.e., the mathematical structure of F ) and

the model parameter values ~a are identical to those of

the system. In PMS, the system state and the model

state share the same state space and are thus ‘‘sub-

tractable’’ (Smith 2006). Define the observation at time

t to be st 5 h(~xt)1ht, where h(�) is the observation

operator that projects the true system state ~x into ob-

servation space. For simplicity, h(�) is taken to be the

identity operator below. Full observations are made;

that is, observations are available for all state variables

(all components of x) at every observation time.4 The

ht 2 R
m represent observational noise (or ‘‘measurement

error’’). The statistical characteristics of the observational

noise (i.e., the noise model) for ht are known exactly.

The problem of state estimation in PMS consists of

forming an ensemble estimate of the current state ~x0 given

(i) the history of observations st, for t 5 2n 1 1, . . . , 0;

(ii) a perfect model class with perfect parameter values;

and (iii) knowledge of the observational noise model.

The various approaches that have been developed to

address this problem divide into two major categories:

the sequential approaches and the variational ap-

proaches. Sequential approaches can be built on the

foundation of Bayesian theory, which conceptually

generates a posterior distribution of the state variables

by updating the prior distribution with new observations

(Cohn 1997; Anderson and Anderson 1999). Unfor-

tunately, application of the complete approach is com-

putationally prohibitive in state estimation (Hamill

2006). An approximation to the Bayesian approach,

called the Kalman filter, introduced by Kalman (1960),

is optimal only for linear models and a Gaussian ob-

servational noise. To better address the state estimation

problem in nonlinear cases, the extended Kalman filter

(Jazwinski 1970; Gelb 1974; Ghil andMalanotte-Rizzoli

1991; Bouttier 1994) uses tangent linear dynamics to

estimate the error covariances while assuming linear

growth and normality of errors. The extended Kalman

filter performs poorly where nonlinearity is pronounced;

more accurate state estimates are available from en-

semble Kalman filter approaches (Evensen 1994;

Houtekamer and Mitchell 1998; Burgers et al. 1998;

Lermusiaux and Robinson 1999; Anderson 2001; Bishop

et al. 2001; Hamill et al. 2001), which have been de-

veloped using Monte Carlo5 techniques. While these fil-

ters admit the non-Gaussian probability density function,

only the mean and covariance are updated in these se-

quential approaches; information beyond the second

2For linear systems, see Wiener (1949), Kalman (1960), and

references therein.
3 In the perfect model scenario, the true state ~x is in the same

state space as the model state x and ~m5m. Motivation for the use

of tildes in this context can be found in Smith (2002).

4As shown elsewhere (Judd et al. 2008; Du 2009; Smith et al.

2010), various generalization to partial observations can be made.

The approach could be applied in operational weather forecasting

following Judd et al. (2008), using available 3DVAR analysis. The

general case of partial observations will be considered elsewhere.

In short, one could take a two pass approach to PDA, first using

background information (e.g., the climatology distribution) of the

unobserved state variables with the observations frozen to obtain

initial estimates of unobserved state variables, and then applying

full PDA as discussed below with those estimates of unobserved

state variables and the original observed state variables. While

interesting, discussion of this case is omitted here. Note there is

some loss of generality in assuming full observations.
5As stressed by a reviewer, not all ensemble Kalman filter ap-

proaches need be considered as Monte Carlo approaches.
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moment is discarded. Stressing the impact of these linear

assumptions, Lawson and Hansen (2004) demonstrated

that inaccuracies in state estimation are to be expected if

the dynamics are nonlinear owing to higher moments of

the distribution of the state variables. Another well-

known sequential approach, the particle filter (Metropolis

and Ulam 1944), is fully nonlinear in both model evolu-

tion and analysis steps. It, however, suffers from the

so-called curse of dimensionality, which prevents the

particles from staying ‘‘close’’ to the observations in

a large-dimensional system (Snyder et al. 2008). Varia-

tional approaches [e.g., four-dimensional variational

assimilation (Dimet and Talagrand 1986; Lorenc 1986;

Talagrand andCourtier 1987; Courtier et al. 1994)], based

upon maximum likelihood estimation, consist of shoot-

ing techniques that seek a set of initial conditions cor-

responding to a system trajectory that is consistent with

a sequence of system observations; this is a strong con-

straint (Courtier et al. 1994; Bennett et al. 1996). In

PMS, the variational approaches both are computa-

tionally expensive and are known to suffer from local

minima owing to chaotic likelihoods (where the likeli-

hood function of initial conditions is extremely jagged

for chaotic systems). This was pointed out by Berliner

(1991); see also Miller et al. (1994) and Pires et al.

(1996). The approach presented in this paper applies the

PDA approach to locate a reference trajectory and

construct an initial condition ensemble by sampling the

local state space. Khare and Smith (2011) applied a

similar approach with a target of indistinguishable states

(Q density) to form an initial-condition ensemble. More

details about PDA and indistinguishable states can be

found in Du (2009). State estimation outside PMS is

discussed in Part II.

3. Pseudo-orbit data assimilation in sequence space

The analytic intractability of the relevant probability

distributions and the dimension of the model state space

suggest the adoption of a (Monte Carlo) ensemble scheme

(Lorenz 1965; see also Smith 1996 and Leutbecher and

Palmer 2008) to account for the uncertainties of obser-

vations in state estimation approach. The ensemble ap-

proach is by far the most common for quantifying

uncertainty in operational weather forecasting (e.g.,

Toth and Kalnay 1993; Leutbecher and Palmer 2008).

An algorithm may generate an ensemble directly, as

with the particle filter and ensemble Kalman filters, or

an ensemble may be generated from perturbations of

a reference trajectory. The approach presented in this

paper belongs in the second category. Of course, the

quality of the state estimates will vary strongly with the

quality of the reference trajectory(s). The pseudo-orbit

data assimilation approach (Judd and Smith 2001;

Ridout and Judd 2002; Judd and Smith 2004; Stemler and

Judd 2009) provides a reference model trajectory given

a sequence of observations. A brief introduction to the

PDA approach is given in the following paragraph.

Let the dimension of the model state space be m and

the number of observation times in the window be n.

The sequence space is an m 3 n dimensional space in

which a single point can be thought of as a particular

series of n states ut, t52n1 1, . . . , 0. Here each ut is an

m-dimensional vector. Some points in the sequence

space are trajectories of the model and some are not.

Define a pseudo orbit, U [ fu2n11, . . . , u21, u0g, to be

a point in the m 3 n dimensional sequence space for

which ut11 6¼ F(ut) for any
6 component ofU. This implies

that U corresponds to a sequence of model states that is

not a trajectory of the model. Define the mismatch as an

m3 (n2 1) dimensional vector (e2n11, . . . , e21), where

the component of the mismatch at time t is et 5 jF(ut)2
ut11j, t 5 2n 1 1, . . . , 21.

By construction, model trajectories have a mismatch

of zero. A gradient descent (GD) algorithm (details in

the following paragraph) can be used to minimize the

sum of the squared mismatch errors. Define the mis-

match cost function to be

C(U)5�e2t . (1)

The pseudo-orbit data assimilation minimizes the mis-

match cost function for U in the m 3 n dimensional se-

quence space. The minimum of the mismatch cost

function can be obtained by solving the ordinary dif-

ferential equation:

dU

dt
52$C(U) , (2)

where t denotes algorithmic time. An important ad-

vantage of PDA is that the minimization is done in the

sequence space: information from across the assimila-

tion window is used simultaneously. Let the elements of

U corresponding to the model state at a given time be

called a component of the pseudo orbit. PDA optimizes

all components simultaneously.

The observations themselves projected into themodel

state space define a pseudo orbit—call this pseudo orbit

the observation-based pseudo-orbit S [ fs2n11, . . . ,

s21, s0g; with probability 1 that it will not be a trajectory.

6 Technically, the inequality need hold only for one pair of

consecutive components in the sequence space vector. Alterna-

tively, one could define pseudo orbits so as to include trajectories;

in this paper, this is not done.
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In practice, the minimization is initialized with the

observation-based pseudo orbit; that is, 0U 5 S, where

the presuperscript 0 on U denotes the initial stage of the

GD.After every iteration of theGDminimization,Uwill

be updated. Recall that the pseudo orbit is a point in the

sequence space; it is updated in the sense that under the

GD algorithm it moves toward the manifold of trajec-

tories. All points on the trajectory manifold have zero

mismatch (each is a trajectory) and only points on the

trajectory manifold have zero mismatch. To iterate the

algorithm, one needs to differentiate the mismatch cost

function given by

›C(U)

›ut
5 23

8<
:
2[ut112F(ut)]dtF(ut) t52n1 1

[ut 2F(ut21)]2 [ut11 2F(ut)]dtF(ut) 2n1 1, t, 0

ut 2F(ut21) t5 0

, (3)

where dtF(ut) is the Jacobian of the model F at ut. The

ordinary differential equation [Eq. (2)] is solved using

the Euler approximation.

The mismatch cost function has no local minima other

than on the manifold7 for which C(U) 5 0 (Judd and

Smith 2001). Let the result of the GD minimization be
aU, where a indicates discrete algorithmic time in GD

(i.e., the number of iterations of the GD minimization).

As a / ‘, aU [ fau2n11, . . . ,au0g asymptotically

approaches a trajectory of the model. In other words,

PDA takes the observation-based pseudo orbit toward

a model trajectory (i.e., toward the trajectory manifold).

That trajectory need not shadow the observations in any

sense (Smith et al. 2010); its merits for state estimation

must be demonstrated empirically.8 In practice, the GD

minimization is run for a finite time and thus a pseudo

orbit is obtained9 rather than a trajectory. (In the ex-

periments presented in the paper, the minimization is

terminated after 1024 minimization iterations.) Each

component of a pseudo orbit defines a model trajectory.

To keep the notation clear, denote the pseudo orbit

obtained from some large finite GD runs as y2n11, . . . ,

y0 and iterate the middle component10 y2n/2 forward

to create a segment of model trajectory z2n/2, . . . , z0
[y2n/2 [ z2n/2 and zt11 5 F(zt)]. Such a model trajectory

defines a reference trajectory. The middle component is

expected to provide a better estimate of model state at

that time than the end component at its time, as the

middle component has information from both its past

and its future, while the end component only has in-

formation from its past. It is important to note that al-

though the PDA approach can be applied to any length

of observation window, given finite computational re-

source a reference trajectory corresponding to the

midcomponent will almost certainly diverge from the

pseudo orbit when n is large, simply as a consequence of

sensitivity to initial conditions. Themidcomponent need

not always be used.

To form an ensemble of initial conditions,11 first

generate a large number of model trajectories, called

candidate trajectories, from which ensemble members

can be selected. Ensemble members are drawn from the

candidate trajectories according to their relative like-

lihood given the segment of observations. There are

many ways to produce candidate trajectories; three

methods of producing candidate trajectories are listed

here: (i) Sample the local space around the reference

trajectory. One can perturb the starting component of

the reference trajectory and iterate the perturbed

component forward to create candidate trajectories.

(ii) Perturb the whole segment of observations st, t 5
2n 1 1, . . . , 0 and apply PDA onto the perturbed or-

bit to produce the candidate trajectories—that is, the

same way that the reference trajectory is produced.

(iii) Similar to method (ii), perturb the reference tra-

jectory and repeat PDA. Although methods (ii) and

(iii) may produce more informative candidates, they

are obviously more expensive than method (i) since the

GD minimization must be repeated. To make the com-

putational cost between PDA and other state-estimation

approaches more comparable, method (i) is used to

generate candidate trajectories to produce the results

presented in the paper. (Details about computational

7Back substitution of the solution of u02 F(u21)5 0 into Eq. (3)

shows that the only critical points for C(U) have ut 2 F(ut21) 5
0 for all t in 2n 1 1 # t # 0.

8 In fact, the trajectory need not be near the observations at all.

The authors conjecture that the manifolds of interest have large

reach in the high-dimensional sequence space, and thus the ‘‘curse

of dimensionality’’ comes to the aid of PDA.
9 Such a single pseudo orbit itself may provide a good estimation

of the trajectory over the window.
10 If n is odd, take y(2n11)/2.

11 Ideally, one forms a perfect ensemble under the model by

sampling the states that define model trajectories that are consis-

tent with past observations. This is, however, prohibitively ex-

pensive computationally.
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costs can be found in appendix C.) The perturbations to

the starting component z2n/2 are generated using a ran-

dom variable z, z is Gaussian with zero mean and stan-

dard deviation sp 2 R
m, and sp is a constant diagonal

matrix estimated by standard deviation of the difference

between ~x2n/2 (the truth) and z2n/2. In practice, the value

of sp would have to be determined empirically. (Values

of sp for the experiments below are given in Table B1.)

Given Ncand candidate trajectories, the relative like-

lihood of each is then used to select ensemble members

of the assimilation. To form an Nens-member ensemble

estimate of the current state, randomly draw Nens tra-

jectories from Ncand candidate trajectories according to

their log-likelihood function over the time interval

(2n/2, 0). Specifically,

L(z*)5
1

2
�
0

t52n/2
[h(zt*)2 st]

TG21[h(zt*)2 st] , (4)

where G21 is the inverse of the covariance matrix of the

observational noise and zt* denotes a candidate trajec-

tory. The end component (at t 5 0) of each selected

candidate trajectory z0* is treated as an ensemble mem-

ber. In this case, each ensemble member is then of equal

weight avoiding any confusion regarding how to in-

terpret the Q density in Judd and Smith (2001).

4. Contrasting 4DVAR with PDA

4DVAR is a popular approach to noise reduction in

data assimilation (Dimet and Talagrand 1986; Lorenc

1986; Talagrand and Courtier 1987; Courtier et al. 1994).

4DVAR is a shooting technique that seeks initial con-

ditions of system trajectories consistent with a sequence

of system observations. It aims to find the initial state of

a model trajectory that minimizes a cost function re-

flecting the misfit between the trajectory and the ob-

servations. The 4DVAR cost function is

C4DVAR5
1

2
(x2n112 xb2n11)

TB21(x2n112 xb2n11)

1
1

2
�
0

t52n11

[h(xt)2 st]
TG21[h(xt)2 st] , (5)

where x2n11 is the initial state and xt11 5 F(xt), x
b
2n11 is

the background (or first guess) at t 52n 1 1, B is the

background error covariance matrix, st reflects the ob-

servations at time t, andG is the covariance matrix of the

observational noise. The second term of the cost func-

tion can be easily derived from the maximum likelihood

estimate under the assumption that the observational

noise model is independent and identically distributed

(IID) Gaussian. The first term (background term) of the

cost function aims to take account of the information

from previous estimates (and any other available prior

distribution of the initial state). The background xb2n11 is

typically provided by the 4DVAR analyses from pre-

vious cycles. An estimation of B is required to minimize

the cost function. For 4DVAR experiments conducted

here, B is obtained iteratively [following Fertig et al.

(2007)] as follows. Initially run 4DVAR using an arbi-

trary background covariance matrix B0, then compute

the covariance B1 of the difference between the true

state12 and the background at all of the assimilation times.

Next, run 4DVAR using B1 as the background error co-

variance matrix and again compute the covariance B2 of

the difference between the true state and the background.

Repeat this process until the estimated background co-

variance matrix does not change significantly.

As in PDA, the 4DVAR analysis provides a reference

trajectory for use in building an initial condition en-

semble. Although both PDA and 4DVAR use the in-

formation of both the model dynamics and the

observations to produce the model trajectories, there

are fundamental differences between them.

The PDA cost function itself does not constrain the

result to stay close to the observation-based pseudo or-

bit [Eq. (1)]. The GD minimization is, however, initial-

ized with the observation-based pseudo orbit.13 Unlike

the 4DVAR approach, the PDA approach does not

penalize aU if it strays far from the observation-based

pseudo orbit; in fact, the PDA approach is almost cer-

tain to force aU to move away, on average, from the

observation-based pseudo orbit as the minimization

goes further and further (see Part II). The 4DVAR ap-

proach is derived from the maximum likelihood esti-

mate in the case of additive IID Gaussian observational

noise. For other noise models, including those non-

Gaussian in distribution or with either spatial or tem-

poral correlations (red noises), 4DVAR is expected to

converge to an incorrect solution (Lu and Browning

1998). That is, the true state is not the minimum of the

4DVAR cost function even in expectation. The PDA

approach itself does not impose any significant assump-

tions on the noise model.

Another important difference is that the 4DVAR

approach considers only model trajectories, adjusting

the initial condition of each model trajectory only to

minimize its cost function in the m-dimensional state

space [Eq. (5)]. It starts with a model trajectory and ends

12Using knowledge of the true states in this way confers some

advantage to 4DVAR—an advantage not given to PDA.
13Onemay initialize the GDminimization with a better series of

analyses if it is available.
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with a model trajectory. The PDA approach converges

to a model trajectory by minimizing the mismatch cost

function in the n 3 m dimensional sequence space. It

starts from a pseudo orbit and, if run to completion,

approaches at a model trajectory. In practice, given only

finite computational power, only a pseudo orbit is

reached and, of course, each component of a pseudo

orbit will (with probability 1) define a unique trajectory.

The behavior of the 4DVAR cost function can

sometimes vary so strongly with the assimilation window

that Berliner (1991) dubbed it a ‘‘chaotic likelihood.’’

The number of local minima14 in the 4DVAR cost

function increases with the length of the data assimila-

tion window (Miller et al. 1994; Pires et al. 1996). The

results trapped in the local minima are likely to be in-

consistent with the observations. Gauthier (1992),

Stensrud and Bao (1992), and Miller et al. (1994) have

performed 4DVAR experiments with the Lorenz63

system (Lorenz 1963). They each found that perfor-

mance of 4DVAR varies significantly depending on the

length of the assimilation window, and difficulties arise

with the extension of the assimilation window owing to

the occurrence of multiple minima in the cost function.

Applying the 4DVAR approach, one faces the dilemma

between the impacts of local minima with a long as-

similation window and the loss of information from the

model dynamics given only a short window. The mis-

match cost function in PDA avoids this dilemma. Al-

though the cost function itself does not have a unique

minimum, all minima of the mismatch cost function are

model trajectories. The major limitation of longer as-

similation windows in PDA is merely computational

cost. And, as a longer assimilation window allows more

information from the model dynamics and observations,

the quality of the assimilation improves.

To contrast the model trajectory produced in practice

by 4DVAR with that generated by PDA, both ap-

proaches are applied to the Ikeda map (Ikeda 1979;

Haramel et al. 1985) and to the 18-dimensional Lorenz96

system (Lorenz 1995). Details of the systems are given in

appendix A. For each system, five different length as-

similation windows are tested. For the Ikeda map, as-

similation windows with lengths between 4 and 16 steps

are considered—for Lorenz96, lengths between 12 and

60 h. In the case of Lorenz96, 6 h indicates 0.05 time unit

of the Lorenz96 system; assuming that 1 time unit is

equal to 5 days, the doubling time of the Lorenz96 sys-

tem roughly matches the characteristic time scale of

dissipation in the atmosphere [see Lorenz (1995) for

details]. PDA uses a GD minimization algorithm; the

minimization terminates after 1024 GD iterations for

each assimilation. 4DVAR uses a nonlinear conjugate

gradient descent algorithm15 (using the Fletcher–Reeves

formula; Shewchuk 1994) to minimize its cost function;

the minimization terminates when the derivative of the

cost function is small. (Details are given in appendix B.)

The second term of the 4DVAR cost function in

Eq. (5) [specifically (1/n)�0
t52n11(xt 2 st)

TG21
t (xt 2 st),

which is the distance between the observation-based

pseudo orbit and the model trajectory] and the dis-

tance between the true states and model trajectory

[(1/n)�0
t52n11(xt 2 ~xt)

TG21
t (xt 2 ~xt)] are interpreted as di-

agnostic tools to evaluate the quality of the model trajec-

tories generated. Results are presented in Tables 1 and 2.

When the assimilation window is relatively short, both

4DVARandPDA tend to generatemodel trajectories that

are closer to the true states than to the observation-based

pseudo orbit.16 This happens both in the Ikeda and in

Lorenz96 experiments, where each approach provides

TABLE 1. Distance between the observation-based pseudo orbits

and themodel trajectory generated by 4DVARand PDA for Ikeda

map, and distance between the true states and the model trajectory

generated by 4DVAR and PDA for the Ikeda map. The columns

show the average distance (average) and the 90% bootstrap re-

sampling bounds (lower and upper). The noisemodel isN(0, 0.052).

The statistics are calculated based on 8192 assimilations and 4096

bootstrap resamples are used to calculate the resampling bounds.

Window

length (steps)

Distance from observations

Average Lower Upper

4DVAR PDA 4DVAR PDA 4DVAR PDA

4 1.81 1.65 1.74 1.59 1.88 1.72

6 11.5 1.77 8.80 1.72 14.5 1.83

8 45.2 1.85 38.9 1.81 51.9 1.90

12 105.5 1.91 97.7 1.87 113.0 1.95

16 174.0 1.95 165.3 1.91 182.9 1.98

Distance from truth

4 0.24 0.60 0.22 0.55 0.27 0.65

6 9.83 0.38 7.01 0.35 12.6 0.41

8 43.1 0.27 37.6 0.25 49.0 0.30

12 103.6 0.17 96.5 0.16 111.9 0.18

16 172.4 0.13 164.0 0.12 182.4 0.14

14As stressed by a reviewer, it is conceivable that local minima

are not a problem in all types of models as the window length

increases.

15 4DVAR shows similar results under GD, conjugate gradient

descent was employed to relieve any concerns about conver-

gence in local minima. GD is retained for PDA inasmuch as it is

adequate for our purposes and has advantages outside PMS (see

Part II).
16Although the trajectories are slightly farther away from the

observation-based pseudo orbit, they are still consistent with the

observational noise.
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effective noise reduction. Note 4DVAR outperforms17

PDA for very short windows. For the larger window

lengths, however, PDA yields consistently the best re-

sults. Given the information available from the obser-

vations in a longer-window, PDA provides better state

estimation than short-window 4DVAR. When the ref-

erence trajectory is ‘‘closer’’ to the true state of the sys-

tem, a better ensemble is expected.

Various ‘‘fixes’’ have been proposed to allow the ap-

plication of 4DVAR with a long window length avoid-

ing local minima (see Pires et al. 1996 and references

therein). Voss et al. (2004) also applied a multiple-

shooting approach to address the local minima problem—

an initial-value approach to short windows, resembling

a similar spinup procedure applied to 4DVAR using

multiple short windows. The approach remains ex-

pensive and Voss’s examples show varying success.

Abarbanel et al. (2009) successfully applied synchro-

nization to smooth the (cost function) surfaces in the

space of parameters and initial conditions. Abarbanel’s

approach also requires extensive computations and may

prove more applicable to parameter estimation. In

practice, application of 4DVAR has been restricted to

relatively short windows. PDA can exploit information

available in longer windows (see also Judd et al. 2004).

Within PMS, there is valuable information both in the

observations and in the model dynamics in longer win-

dows of observations. When the model is imperfect, this

case is less easy to make; focusing on pseudo orbits,

however, still holds an additional advantage over 4DVAR:

the ability to diagnose model error (this point is dis-

cussed in Part II).

5. Ensemble Kalman filter versus PDA

Another well-established approach to state estima-

tion is sequential estimation (Kalman 1960; Anderson

and Moore 1979; Kaipio and Somersalo 2005). With

sequential approaches, one integrates the model for-

ward until the time that observations are available; the

state provided by the model at that time is usually called

the first guess. The first guess is then modified using the

new observations. Sequential approaches encode all

knowledge gleaned from the past in the current state

information. Alternatively, when windows over time are

considered, an observation inconsistent with the dy-

namics of any trajectory over that window can be iden-

tified as such. Sequential approaches cannot do this. This

is not a question of assigning an appropriate prior for the

observational noise distribution, but rather one of seeing

the dynamical inconsistency of a given observation

within a particular region of state space. More generally,

in high-dimensional nonlinear dissipative systems, the

quest for a general encoding of such information ana-

lytically is misguided:18 a given procedure must dem-

onstrate its superiority in each case. Ensemble Kalman

filter approaches (Evensen 1994; Burgers et al. 1998;

Houtekamer and Mitchell 1998; Lermusiaux and

Robinson 1999; Anderson 2001; Bishop et al. 2001;

Hamill et al. 2001) can explore some nonlinearity. There

are many different ensemble Kalman filters; the ap-

proach used here is the ensemble adjustment Kalman

filter (Anderson 2001, 2003). Large ensemble sizes (512

members) have been considered in this case so as to

avoid some of the complications required in operational

implementations (i.e., ensemble covariance localiza-

tion). Covariance inflation is adopted to improve the

EnKF data assimilation results.19 For each experiment

the inflation parameter value is tuned to optimize the

ignorance score. Values of inflation parameter for each

TABLE 2. Distance between the observation-based pseudo orbits

and the model trajectory generated by 4DVAR and PDA for the

Lorenz96 system, and distance between the true states and the

model trajectory generated by 4DVAR and PDA for the Lorenz96

system. The columns show the average distance (average) and the

90% bootstrap resampling bounds (lower and upper). The noise

model is N(0, 0.052). The statistics are calculated based on 8192

assimilations and 4096 bootstrap resamples are used to calculate

the resampling bounds.

Window

length (h)

Distance from observations

Average Lower Upper

4DVAR PDA 4DVAR PDA 4DVAR PDA

12 16.3 15.58 16.2 15.51 16.4 15.65

24 17.1 15.91 17.0 15.86 17.1 15.97

36 24.7 16.06 24.1 16.01 25.2 16.10

48 39.7 16.13 38.7 16.10 40.8 16.17

60 56.0 16.17 53.8 16.14 58.2 58.0

Distance from truth

12 1.62 1.73 1.59 1.70 1.65 1.77

24 1.07 1.09 1.04 1.07 1.09 1.11

36 8.22 0.93 7.69 0.92 8.77 0.94

48 23.0 0.86 22.0 0.85 24.0 0.87

60 39.2 0.81 36.8 0.80 41.4 0.82

17 Closer to the true state of the system.

18Arguably, Kalman foresaw this in footnote 4 of his original

paper (Kalman 1960).
19 To ensure the EnKF implementations are high-quality

benchmarks, experiments paralleling those of Sakov and Oke

(2008) were performed. Specifically, the EnKF approach was ap-

plied to Lorenz96 with 40 variables; the RMS result reflects the

RMS results of various versions of EnKF presented in Fig. 4 of

Sakov and Oke (2008) to within 5%.
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experiment are given in appendix B. Even after these

adjustments toEnKF, its performance is inferior to PDA.

The comparison is first made in the lower-dimensional

case in order to provide easily visualized evidence. Both

PDA and the EnKF are applied in the two-dimensional

Ikeda map and the resulting ensemble is plotted in the

state space (the details of the experiments are given in

appendix B). Four examples are shown in Fig. 1; in all

panels the ensemble produced by the PDA approach is

not only closer to the true state but also reflects the

dynamical manifolds as the ensemble members lie near

the system attractor. While the EnKF ensemble has its

own distinctive structure, the ensemble members do not

lie along the system attractor. This is expected in gen-

eral, inasmuch as the EnKF approach assumes a second-

moment closure, the distributions are assumed to be

fully described by means and covariances (Anderson

and Anderson 1999; Lawson and Hansen 2004; Hamill

2006). This may also lead to filter divergence or even

catastrophic filter divergence, as reported byHarlim and

Majda (2010). In the top panels of Fig. 1, the EnKF

ensemble is distributed about the true state and fairly

close to the model’s attractor, while in the bottom

panels, the ensemble members are systematically off the

attractor and not well distributed about the true state.

To assess the difference between these two approaches

quantitatively, the initial-condition ensemble is trans-

lated into a predictive distribution function by standard

kernel dressing (Brocker and Smith 2008). Each ensem-

ble member is replaced by a Gaussian kernel centered on

that member, providing a continuous distribution (a non-

Gaussian sum of Gaussian kernels). The width of each

kernel (the standard deviation of the Gaussian, called the

‘‘kernel width’’) is determined by optimizing the igno-

rance score, introduced below.

The performance of a state-estimation technique can

be evaluated with the ‘‘log p score’’ (ignorance score;

Good 1952; Roulston and Smith 2002). The ignorance

score is the only proper local score for continuous var-

iables (Bernardo 1979; Raftery et al. 2005; Brocker and

Smith 2007). Although there are other nonlocal proper

scores, the authors prefer using ignorance as it has

a clear interpretation in terms of information theory and

can be easily communicated in terms of effective interest

FIG. 1. Ensemble results from both EnKF and PDA for the Ikeda map. The true state is centered in each panel

(large cross), the square is the corresponding observation, and the background dots indicate samples from the Ikeda

map attractor. The EnKF ensemble is depicted by 512magenta dots. PDA ensemble is depicted by 512 green crosses.

Each panel is an example of one case of state estimation.
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returns (Good 1952; Roulston and Smith 2002; Hagedorn

and Smith 2009), not to mention the lack of any com-

pelling example in favor of the general use of nonlocal

scores. The ignorance score is defined by

S[p(y),Y]52log2[p(Y)] , (6)

where Y is the outcome and p(Y) is the probability of

event Y. In practice, given K forecast–outcome pairs

(pi, Yi, i 5 1, . . . , K), the empirical average ignorance

skill score is

SEmp[p(y),Y]5
1

K
�
K

i51

2log2[pi(Yi)] . (7)

The PDA approach is compared with the EnKF ap-

proach in both the lower-dimensional Ikeda map and

higher-dimensional Lorenz96 flow (the details of the

systems are given in appendix A). Noise models of the

form h;N(0,s2
ns) are considered where each element

ofh is identically distributed. In both cases the empirical

ignorance score is computed using 8192 assimilations.

Table 3 shows the comparison between EnKF and PDA

using the ignorance score (the optimized kernel width is

also presented). To quantify the robustness of the result,

90% bootstrap resampling bounds of the ignorance

score are also presented. From the table, it is clear that in

both experiments the ensemble generated by PDA sig-

nificantly outperforms the one generated by EnKF. In

the Ikeda experiment, the relative ignorance between

the two approaches is found to be around 1.4 bits for the

noise model with sns 5 0.05 and 1.8 bits for sns 5 0.01.

This can be interpreted as PDA placing, on average,

160% (and 250%) more probability mass on the out-

come than EnKF. In the Lorenz96 experiment, relative

ignorance between the two approaches is found to be

around 0.8 bits for the noise model with sns 5 1 and

0.5 bits for sns 5 0.1, which can be interpreted as PDA

placing, on average, 75% (and 40%) more probability

mass on the outcome than EnKF. The smaller kernel

width for the PDA ensemble also indicates that the

PDA ensemble members are more concentrated around

the true state than the EnKF ensemble. Note that al-

though PDA seems to outperform EnKF, the compu-

tational cost for PDA is much greater in order to obtain

pseudo orbit with small mismatch errors. (Computa-

tional cost is discussed in appendix C.) This cost is sub-

stantially reduced outside PMS, as with imperfect

models PDA need not approach a trajectory. This issue

is discussed in Part II.

6. Conclusions

Anewmethodology for state estimation in the perfect

model scenario is introduced. This pseudo-orbit data

assimilation (PDA) approach aims to identify a ref-

erence trajectory about which an ensemble can be

assembled.

The well-established 4DVAR approach is contrasted

with the PDA approach. Results for the 4DVAR ap-

proach based on the two-dimensional Ikedamap and the

18-dimensional Lorenz96 flow are limited by the oc-

currence of local minima. It has been noted by Miller

et al. (1994) and Pires et al. (1996) that 4DVAR suffers

from the multiple local minima when applied to long

windows. Long windows, on the other hand, allow

benefits from having more dynamical information; PDA

can exploit these benefits. The 4DVAR approach is

expected to fail in practice in cases of chaotic likelihood

(Berliner 1991). PDA can solve this problem posed by

Berliner (H. Du and L. A. Smith 2014, unpublished

manuscript).

Comparisons between the PDA approach and the

EnKF approach have beenmade in the lower-dimensional

Ikeda map and a higher-dimensional Lorenz96 model.

By looking at the ensembles generated in the state space

of the Ikedamap, the structure of the ensemble obtained

by the PDA approach seems to be more consistent with

TABLE 3. Ignorance score and optimized kernel width of initial condition ensemble for the Ikeda map and Lorenz96 system for various

noise models. The 512-member ensembles generated by the PDA approach and the EnKF approach are compared. Lower and upper are

the 90% bootstrap resampling bounds of the ignorance score, the statistics are calculated based on 8192 assimilations, and 4096 bootstrap

resamples are used to calculate the resampling bounds.

Systems sns

Ignorance Lower Upper Kernel width

EnKF PDA EnKF PDA EnKF PDA EnKF PDA

Ikeda 0.01 25.04 26.86 25.09 26.91 25.00 26.81 0.005 0.0002

0.02 24.22 25.77 24.26 25.79 24.17 25.75 0.016 0.0005

0.05 22.72 24.11 22.77 24.15 22.68 24.06 0.021 0.001

Lorenz96 0.1 27.42 27.93 27.46 27.98 27.37 27.89 0.01 0.009

0.5 24.79 25.36 24.85 25.41 24.74 25.30 0.08 0.06

1 23.62 24.43 23.69 24.47 23.56 24.38 0.41 0.1
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the model dynamics (closer to the attractor) than that of

the ensemble produced by the EnKF approach. By

evaluating initial-condition ensembles using ignorance, in

both the Ikeda map and Lorenz96 model experiments, it

is demonstrated that the PDA approach systematically

outperforms the EnKF approach considered (Anderson

2001, 2003). The failure ofEnKF is due in large part to the

loss of information beyond the second moment.

One might ask why any approach might be expected

to provide better state estimation than the statistically

‘‘most likely’’ state given the observations. In dynamical

systems with attractors, the statistically most likely state

given only the observations will not lie on the attractor

(with probability 1); similarly, the trajectory that gen-

erated the observations will not provide the most likely

state at t5 0 (with probability 1). By allowing the use of

long windows of observations, PDA gains access to

more information in the dynamics; this allows more

‘‘balanced’’ states in the sense that relationships be-

tween components of the state vector are preserved.

This includes relationships that reflect dynamically re-

alized states (speaking loosely, states ‘‘on the attractor’’

and assuming one exists). If the system admits coherent

structures, longer trajectories near realized states will

reflect more realistic structures and their evolution, as

observed by Judd et al. (2008). The key here is reducing

the role of statistical distance (which does not respect

such structures) and increasing the attention to the geo-

metry of the realized flow (which does); longer windows

are an advantage here (Judd et al. 2004, 2008). Within

PMS, PDA might be applied to determine initial states

for 4DVAR, thereby extending the window length ac-

cessible to 4DVAR. Outside the perfect model scenario,

PDA finds states more consistent with the model dy-

namics at the cost of optimizing the statistical fit in the

examples considered; this is arguably a generalization of

balance to include time and coherent structure (see Part

II). The aim is for coherent structures of the system to be

reproduced to the extent that the model can reproduce

them, and then not to be perverted to improve an in-

appropriate statistical fit to the observations. A de-

scription of PDA outside PMS is presented in Part II.

Data assimilation for deterministic nonlinearmodels will

always be a challenging task. PDA provides a step

forward by allowing an enhanced balance between

extracting information from the dynamic equations

and information in the observations.
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APPENDIX A

Dynamical Systems

The Ikeda map was introduced by Haramel et al.

(1985) based on Ikeda’smodel of laser pulses in an optical

cavity (Ikeda 1979). With real variables it has the form

Xn115 g1 u(Xn cosf2Yn sinf) , (A1)

Yn115 u(Xn sinf1Yn cosf) , (A2)

where f5b2a/(11X2
n 1Y2

n). With the parameters

a5 6, b5 0.4, g5 1, and u5 0.83, the system is believed

to be chaotic. Figure A1 shows the attractor of the Ikeda

map in the state space.

A system of nonlinear ordinary differential equations

(Lorenz96 system) was introduced by Lorenz (1995).

The variables involved in the system are intended to

resemble an atmospheric variable regionally distrib-

uted around the Earth. For the system containing

m variables x1, . . . , xm with cyclic boundary conditions

(where xm11 5 x1), the equations are

dxi
dt

52xi22xi21 1 xi21xi112 xi 1F , (A3)

where the parameter F is set to be 10 in all of the ex-

periments considered following Smith (2000) and Orrell

(1999). The model is simulated using a standard fourth-

order Runge–Kutta scheme. The simulation time step is

0.01 time unit and the model time step is 0.05; that is,

each model time step is conducted by five steps of the

fourth-order Runge–Kutta integrator.

FIG. A1. The attractor of the Ikeda map.
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APPENDIX B

Experiments’ Details

Details of the experiments discussed in the paper are

given here.

d PDA

(i) Generate pseudo-orbit aU by minimizing the mis-

match cost function using GD. A fixed GD mini-

mization step size is used. The minimization stops

after 1024 GD iterations (i.e., a 5 1024 here).

(ii) A reference trajectory is obtained by iterating the

middle state of aU forward in time until t 5 0.

(iii) Generate a number of candidate trajectories by

perturbing the starting component of the reference

trajectory and iterate forward in time until t 5 0.

(iv) Select ensemble members from candidate trajec-

tories by random draw according to the log-likeli-

hood function of the candidate trajectories.

Table B1 provides specific experimental details of

the PDA implementation conducted in the paper.
d 4DVAR

A model trajectory is generated by minimizing the

4DVAR cost function [Eq. (5)] using a nonlinear con-

jugate gradient descent algorithm (using the Fletcher–

Reeves formula; Shewchuk 1994). The minimization

step size is calculated by using the secant (Allen and

Isaacson 1998) method to approximate the second

derivative. The minimization terminates when the de-

rivative of the cost function is small—specifically, when

the ratio of the length of the derivative vector in the

updatedmodel state to that of the initial state is smaller

than 1024.

d EnKF

The ensemble adjustment Kalman filter (Anderson

2001, 2003) is applied to produce an ensemble of initial

conditions. Large ensemble sizes (512 members) have

been considered in this case so as to avoid some of the

complications required in operational implementa-

tions (i.e., ensemble covariance localization). Covari-

ance inflation is adopted to improve the EnKF data

assimilation results. For each experiment the inflation

parameter value is properly tuned in order to achieve

a better ignorance score. Table B2 provides specific

experimental details of the EnKF implementation

conducted in the paper.

APPENDIX C

Computational Costs

Information concerning the computational costs is

provided here.

d PDA versus 4DVAR

For each minimization step, 4DVAR requires run-

ning the initial state lw 2 1 steps forward (lw is the

assimilation window length), PDA requires running

lw 2 1 states one step forward. Both approaches

therefore require running the model lw 2 1 times.

When calculating the gradient of the cost function,

PDA requires the adjoint of the model for each state

vector within the assimilationwindow; 4DVAR requires

TABLE B1. Details of the PDA implementation. Note that for results comparing PDA with 4DVAR, window length varies as stated in

Tables 1 and 2.

Ikeda Lorenz96

Observational noise N(0, 0.012) N(0, 0.022) N(0, 0.052) N(0, 0.12) N(0, 0.52) N(0, 12)

Window length 16Dt 16Dt 16Dt 32Dt 32Dt 32Dt
No. of GD iterations 1024 1024 1024 1024 1024 1024

GD step size 0.1 0.2 0.4 0.2 0.4 0.8

Perturbation sp 0.002 0.005 0.01 0.02 0.08 0.12

No. of candidates 4096 4096 4096 4096 4096 4096

No. of ensemble members 512 512 512 512 512 512

TABLEB2.Details of theEnKF implementation. Note that the initial ensemble is generated by perturbing the observationwith the inverse

of observational noise; the first 1000 assimilations (as transient) are not considered in the evaluations.

Ikeda Lorenz96

Observational noise N(0, 0.012) N(0, 0.022) N(0, 0.052) N(0, 0.12) N(0, 0.52) N(0, 12)

Inflation parameter 1.0 1.01 1.02 1 1.02 1.04

No. of ensemble members 512 512 512 512 512 512
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not only the adjoint of the each model state along the

trajectory within the assimilation window but also

multiplying those adjoints together, which makes

4DVAR slightly more expensive. The computational

cost for the other parts of each approach is known to

scale at a lower order than the cost of the model

integrations. In general, the computational cost per step

for PDA and 4DVAR is rather similar. Computational

costs decrease when an algorithm converges more

quickly; while 4DVAR often converges in fewer itera-

tions than PDA, it also converges significantly further

from a desired target than PDA in long windows; in

short windows it is comparable.
d PDA versus EnKF

For EnKF, each ensemble member requires one

model integration; the computational cost for updat-

ing the analysis ensemble is O(n2ens p1 n3ens 1 n2ensm)

(Tippett et al. 2003), where nens is the ensemble size,m

is the dimension of model state space, and p is the

number of observations (m in our case). For PDA

(implemented according to the experiments presented

in the paper) to generate the reference trajectory

requires 10243 (lw2 1) model runs. To generate the

candidate trajectories and for selecting ensemble

members, it requires 43 (lw/22 1) model runs for

each ensemblemember. The rest of the computational

cost for PDA is known to scale at lower order than the

cost of the model integrations. Obviously, the compu-

tational cost for PDA is significantly more expensive

than for EnKF. As shown in Part II, the cost of PDA is

substantially reduced when it is applied outside PMS;

this makes PDA feasible in practice. A more efficient

minimization algorithmwould further reduce the cost.

In short, PDA is shown to provide significantly

improved state estimation at a higher cost than EnKF

and a comparable cost to 4DVAR. The extent to which

the improved state estimation justifies the additional

cost will vary with the details of the application. A

central aim of this paper is merely to establish that

results from PDA are in fact distinct and, at times, can

be superior.
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