
Generated using version 3.2 of the official AMS LATEX template

Sensitivity of climate change detection and attribution to the1

characterization of internal climate variability2

Jara Imbers ∗

OCCAM, Mathematical institute, University of Oxford

3

Ana Lopez

Center for the Analysis of time series, London School of Economics

Chris Huntingford

Centre for Ecology and Hydrology

Myles Allen

Atmospheric, Oceanic and Planetary Physics, University of Oxford

4

∗Corresponding author address: Jara Imbers, OCCAM , Mathematical Institute, 24 - 29 St Giles’, Oxford,

OX1 3LB.

E-mail: imbers@maths.ox.ac.uk

1



ABSTRACT5

The Intergovernmental Panel on Climate Change (IPCC) “very likely” statement that an-6

thropogenic emissions are affecting climate is based on a statistical detection and attribution7

methodology that strongly depends on the characterization of internal climate variability.8

In this paper, we test the robustness of this statement in the case of global mean surface9

air temperature, under different representations of such variability. The contributions of10

the different natural and anthropogenic forcings to the global mean surface air temperature11

response are computed using a box diffusion model. Representations of internal climate vari-12

ability are explored using simple stochastic models that nevertheless span a representative13

range of plausible temporal autocorrelation structures, including the short-memory first-14

order autoregressive (AR(1)) process and the long-memory fractionally differencing (FD)15

process. We find that, independently of the representation chosen, the greenhouse gas sig-16

nal remains statistically significant under the detection model employed in this paper. Our17

results support the robustness of the IPCC detection and attribution statement for global18

mean temperature change under different characterizations of internal variability, but also19

suggest that a wider variety of robustness tests, other than simple comparisons of residual20

variance, should be performed when dealing with other climate variables and/or different21

spatial scales.22
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1. Introduction23

At the centre of the climate change debate is the question of whether global warming can24

be detected, and if that is the case, whether or not it can be attributed to anthropogenic25

causes. Optimal fingerprinting is a powerful method of detection and attribution of climate26

change (Hasselmann 1979, 1993; Hegerl et al. 1996) used widely in this area of research. In27

essence, optimal fingerprinting is a multi-regression analysis that searches for the observed28

temperature record response to external drivers or forcings such as changing levels of green-29

house gases, and aerosol loading (human-induced), volcanic activity and variations in solar30

radiation (naturally induced). A key input in the procedure of fitting this multiple regres-31

sion model is an estimate of the internal variability of the climate system, against which the32

statistical significance of anthropogenic and natural signals must be compared. Hence, an33

accurate depiction of this variability is crucial for the robustness of the results.34

In this work we refer to internal variability as the characterization of the variations in the35

climate system that would occur in the absence of natural or anthropogenic forcings, solely36

due to the coupling of atmosphere, ocean, biosphere and cryosphere dynamics. In most cases37

Global Climate Models (GCMs) are used to estimate climate internal variability due to the38

fact that the instrumental records are both, too short to provide a reliable estimate, and39

contaminated by the effects of external forcings. Typically, long GCM control simulations are40

employed for this purpose. This is such a key step in the process of detecting and attributing41

climate change that in fact, for some authors (e.g. (Huybers and Curry 2006)), the debate42

surrounding global warming centers on the uncertainties in the structure and magnitude of43

the internal variability of the climate system.44

Previous studies (Allen and Stott 2003; Huntingford et al. 2006) used increasingly sophis-45

ticated variations of the multiregression technique in order to quantify the statistical signif-46

icance of the anthropogenic signal in temperature trends as simulated by a range of climate47

models. In these studies, long GCMs control simulations are used to estimate internal vari-48

ability on the temporal and spatial scales that are retained in the analysis. Although these49
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authors are careful to attempt the inclusion of model uncertainty in the regression model,50

and test the robustness of their results under changes in the amplitude of the estimated51

internal variability, it is not clear whether or not other aspects of the internal variability52

poorly represented by the climate models (Newman et al. 2009; DelSole and Shukla 2010;53

Klein et al. 1999) do bias statistical estimations of the significance of the anthropogenic54

signal in the observations.55

In this paper we investigate this question by assuming that the internal climate variability56

can be represented by a stochastic process that includes, apart from a white noise component,57

some information about more complex temporal correlations between different states of the58

climate system. We refer to this temporal correlation between different states as the memory59

of the system (also named climate persistence by some authors (Beran 1994; Percival et al.60

2001). Understanding and characterizing the memory of the climate system is problematic61

due to the short length of the observational records when compared to the wide range of62

interconnected timescales. In fact, numerous explanations have been advanced regarding63

internal variability, e.g. Wunsch (2003); Mitchell et al. (1976); Hays et al. (1976) but the64

full characterization of its properties and its interplay with external forcings remains elusive65

(Ghil 2012).66

We use two different stochastic models to represent internal variability: an auto-regressive67

model of the first order (AR(1)) and a fractionally differencing model (FD) (Percival et al.68

2001). These correspond to the two simplest stochastic models (minimal number of pa-69

rameters) that can represent significantly different assumptions about the internal temporal70

structure of the system they describe. While the AR(1) model has the short memory char-71

acteristic of an exponentially decaying autocorrelation function, the FD model has the long72

memory associated to an algebraically decaying autocorrelation function. These two models73

have been considered before as two different but plausible(e.g. Hasselmann (1979), Vyushin74

and Kushner (2009) ) characterizations of the climate internal variability in terms of equally75

simple parametric models. In addition, choosing these simple models allows us to carry out76
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a sensitivity analysis of detection and attribution to well defined parameters whose change is77

easily understood in terms of memory or unresolved variability (white noise) in the climate78

system.79

The paper is organized as follows. In Section 2 we describe the data analyzed. We briefly80

discuss the detection and attribution approach as applied to the one dimensional climate81

model used in our study, and the two stochastic models, exploring the arguments to justify82

using each of them to represent internal climate variability. In Section 3, we discuss how the83

significance of the anthropogenic signal depends on the model chosen to represent internal84

variability. We include an analysis of how consistent are our estimates of internal variability85

with the ones estimated from the CMIP3 control simulations, in order to evaluate whether86

or not the use of these control runs for detection and attribution can potentially bias the87

results. Section 4 is devoted to the conclusions.88

We remark that our goal is to explore the sensitivity of the detection and attribution89

statistics to the representation of internal variability. Therefore, the main assumptions of90

detection and attribution of climate change, namely that the forced responses can be linearly91

superimposed on internal variability and that there are no interactions between forced and92

unforced variability , are assumed to be valid.93

2. Data and Method94

We analyze the problem of the sensitivity of detection and attribution results to internal95

variability in the simplest case, i.e. for the global mean surface air temperature as simulated96

by a one dimensional climate model.97

To estimate the temperature responses to individual forcings we use the box diffusion98

model (BDM) described in Andrews and Allen (2008) and Allen et al. (2009), which can be99

written as100

c
dT

dt
= F − λT − c

dml

√
κ

π

∫ t

0

dT (t′)

dt′
dt′√

(t− t′)
(1)
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where T is the global mean temperature and F is the external forcing. In Allen et al.101

(2009), the heat capacity c = 7.22 W y
m2 ◦K

corresponds to the heat capacity of an ocean mixed102

layer of depth dml = 75m assuming that the ocean covers 70% of the Earth surface. Best es-103

timates for the climate feedback parameter λ and effective ocean diffusivity κ are determined104

using the linear temperature trend attributable to the increase in greenhouse gases over the105

20th century based on fingerprint attribution results (Stott et al. 2006), and the effective106

heat capacity of the atmosphere-land-ocean system implied by the combination of observed107

surface warming (Brohan et al. 2006) and the total ocean heat uptake over the period 1955-98108

(Levitus et al. 2005). This results in κ = 0.10 (mld)2

y
= 562.5m

2

y
, and λ = 1.29 W

m2 ◦K
.109

This BDM, with the specified parameters, can then be used to find the temperature110

responses Ti to different forcings: volcanic (VOL), solar (SOL), greenhouse gases (GHG),111

sulphates (SUL), and all anthropogenic forcings together (ANT). In this way, the tempera-112

ture responses to individual forcings are computed without relying on GCMs.113

Note that observed surface temperatures are used in the estimation of parameters in114

this model, albeit indirectly through the fingerprint results and estimates of effective heat115

capacity. The main impact of varying parameters in the model, however, is to change116

the magnitude of the responses to different forcings. The shape, or time-evolution, of the117

response is primarily driven by the forcings themselves. In our subsequent analysis, we use118

only the temporal shape of the responses, not their magnitude, hence minimizing the risk of119

“double-counting” of data.120

The forcings time series required to estimate the corresponding temperature responses121

using the model in Eq. (1) are obtained from the CMIP5 recommended data sets 1 (Mein-122

shausen et al. 2011). To carry out the detection and attribution analysis observed time series123

of annual global mean temperature are required. We use the observed data from HadCRUT3124

2 for the period 1850−2005 (Brohan et al. 2006), and the HadCRUT4 3 (Morice et al. 2012)125

1http://www.pik-potsdam.de/ mmalte/rcps/
2http://www.cru.uea.ac.uk/cru/data/temperature/
3http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
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data set to test the sensitivity of the results to the addition of the last seven years of obser-126

vations up to 2012 (see section 3). Uncertainties in observed temperatures and estimates of127

forcings are ignored in this paper.128

We additionally use the World Climate Research Programme (WCRP) CMIP3 multi-129

model archive of control simulations to study the internal variability simulated by the state130

of the art climate models (Solomon 2007). For completeness, we have used all the control131

simulations, regardless of drifts. We will comment on the effect of drifts in the control132

segments on the final results in Section 3.133

(i) Detection and Attribution134

The detection of climate change is the process of demonstrating that climate has changed135

in some well defined statistical sense, without providing a reason for that change. Attribution136

of causes of climate change is the process of establishing the most likely causes for the137

detected change with some defined level of confidence (Solomon 2007). In this work we aim138

to detect and attribute climate change by estimating the contribution to the observational139

record Tobs of each of the response temperatures Ti calculated using Eq.(1). In other words,140

we want to obtain the amplitudes βi in the following expression:141

Tobs = Tβ + u, (2)

where T is a matrix with n+ 1 columns including the n forced responses Ti, and a constant142

term to remove the mean. u is an stochastic term that represents the internal climate143

variability with covariance matrix is given by Ω = E(uu†). Under the assumption that u is144

multivariate normal (Allen and Tett 1999), the optimal scaling factors, β = (β1, β2, ..βn+1)145

are given by (Kmenta 1971):146

β̂ =
(
T †Ω−1T

)−1
T †Ω−1Tobs, (3)

and their variance :147
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V (β̂) =
(
T †Ω−1T

)−1
, (4)

where † is used to denote the transpose of a matrix.148

In this work, following standard detection and attribution studies, we consider the fol-149

lowing external forcings: greenhouse gases, sulphates, volcanic and solar. It has long been150

recognized however, that the detection and attribution results are sensitive to the omission of151

potentially important forcings and/or internal modes of variability. Likewise, if signals that152

have some degree of collinearity are included, this can affect the robustness of the results.153

This will be tested in Section a by performing the detection and attribution study consid-154

ering solar, volcanic, and all anthropogenic (ANT) forcing together instead of separating155

greenhouse gases and sulphates into two different signals. The robustness of the detection156

and attribution statistics to separating other modes of internal variability such as ENSO or157

AMO (Atlantic Multi-decadal Oscillation) from the noise u in Eq.(2) has been analyzed in158

references Zhou and Tung (2013) and Imbers et al. (2013). In particular, in Imbers et al.159

(2013) the forced temperatures responses to anthropogenic, solar, volcanic and ENSO and/or160

AMO, are obtained from a series of studies that use different statistical models to single out161

each forced temperature response. Using the same approach as in this paper, it is found that162

the ANT detection statistic is robust in all cases.163

Typically, detection of anthropogenic climate and its attribution to external forcings164

requires defining space and time dependent response patterns (Solomon 2007; Stone et al.165

2007). These patterns are obtained from GCMs transient simulations. On the other hand166

the spatio-temporal structure of internal variability in Ω is estimated from averaging GCMs’167

control simulations over space, time and model ensembles. These calculations are high168

dimensional and require sensible truncation of the space and time domain using techniques169

such as principal components analysis.170

In this paper we use a simpler version of the detection and attribution approach since we171

analyze only the global mean surface temperature, introducing parametric models to charac-172
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terize the global mean internal variability u explicitly as a stationary stochastic process. In173

other words, we formulate the detection and attribution problem as in Eq.(2) but with u a174

function of stochastic parameters that are estimated simultaneously with the scaling factors175

β̂ using a minimum squared error algorithm.176

The first challenge is to choose an adequate stochastic representation for the internal vari-177

ability. The difficulties finding the appropriate stochastic model are due to the uncertainties178

in characterizing internal variability from the observational record, which as discussed be-179

fore, is contaminated by the external forcings and too short relative to the long time scales180

potentially relevant to the current climate variability . In particular, in the observed record181

it is not clear how to separate the decadal from centennial or even longer time scales (Percival182

et al. 2001). Given these uncertainties in the characterization of the internal climate variabil-183

ity we choose to describe it using two models that span a wide range of plausible temporal184

autocorrelations (Vyushin and Kushner 2009). This choice is important to address the fact185

that GCMs simulations do not necessarily capture all the modes of internal variability in186

the system, certainly not variability at longer time scales than centennial. We then choose187

stochastic processes that allow to explore how the results of detection and attribution of188

climate change would change if the internal variability has either long or short memory, and189

assume that this is a necessary (not sufficient) test to evaluate the robustness of the results190

under a wide range of plausible characterizations of the memory of the climate system.191

(ii) Short memory process: AR(1)192

The best known and simplest stochastic representation for discrete geophysical time193

series is the AR(1) model (Ghil et al. 2002; Bretherton and Battisti 2000). In the continuous194

time domain the AR(1) process corresponds to diffusion, which in turn, is the simplest195

possible mechanism of a physical process with inertia and subjected to random noise. In196

the context of climate, this model was first introduced by Hasselmann (1979) to describe197

the internal variability of the climate system under the assumption of time scale separation198
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between oceanic and atmospheric dynamics. In this framework, the faster dynamics of the199

atmosphere can be modeled as white noise acting on the slower and damped dynamics of200

the ocean. Thus, the AR(1) is the simplest model that can explain the “weather ” and the201

“climate” fluctuations as two components of the internal variability. Mathematically, the202

AR(1) is a stationary stochastic process that can be written as:203

ut = a1ut−1 + a0εt (5)

where E(ut) = 0 , a1 and a0 are parameters, and εt represents white noise, ı.e. E(εtεt′) = δtt′ .204

The autocovariance function of this process is determined by a0 and a1 as follows:205

ωAR1(τ) =
a2

0

1− a2
1

a
|τ |
1 (6)

where τ is the time lag. Notice that a1 controls the decaying rate of the autocorrelation206

function and in that sense we can associate it to the memory of the system. On the other207

hand a0 is related to the amplitude of the white noise in the system. From Eq.(6) the208

covariance matrix Ω results:209

ΩAR
i,j =

a2
0

1− a2
1

a
|i−j|
1 (7)

Eq.(5) models the memory of the process such that at a given time t the state of the system210

is a linear function of the previous state (t − 1 ) and some random noise with amplitude211

a2
0 jittering, and hence moving the system away from equilibrium. The autocovariance of212

the process, Eq.(6), decays exponentially with time, so the system has always a much better213

memory of the near past than of the distant past. a1 can take any value in the interval [0, 1),214

a1 = 0 represents the limit in which the system is purely white noise, and a1 → 1 is the215

extreme in which a system is dominated by inertia. In our case, we are characterizing annual216

global mean temperature internal variability with this model, so we are trying to quantify217

the impact of the natural fluctuations in the year to year variation.218

In the detection and attribution analysis, the parametric form of the covariance matrix,219

Eq.(7), is used to simultaneously determine the optimal scaling factors βi in Eq.(3) and220
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the parameters a1 and a0 of the climate noise in Eq.(5) following the Hildreth-Lu method221

(Kmenta 1971).222

(iii) Long memory process: FD223

There is empirical evidence that the spectrum of global mean temperature is more com-224

plex than the spectrum of an AR(1) process (e.g. Huybers and Curry (2006)). Different225

power-law behaviors have been identified in globally and hemispherically averaged surface226

air temperature (Bloomfield 1992; Gil-Alana 2005), station surface air temperature (Pel-227

letier 1997) and temperature paleoclimate proxies (Huybers and Curry 2006). These find-228

ings suggest that in order to thoroughly test the sensitivity of the detection and attribution229

statements to the representation of internal variability, modeling it with other than a short230

memory process such as the AR(1) model might be in order. We then alternatively assume231

that the global mean temperature internal variability autocorrelation decays algebraically,232

allowing for all time scales to be correlated. This long time correlation will clearly have an233

effect in the statistical significance of the anthropogenic signal ( see Eq.(4)).234

Long memory models were motivated initially by hydrology studies (Hurst 1951, 1957)235

and have been employed to model paleoclimatic time series (e.g., Huybers and Curry 2006;236

Pelletier 1997). An spectrum corresponding to algebraic decaying correlations can be con-237

structed for a prescribed range of frequencies as the sum of AR(1) processes or as solutions238

of more complex stochastic differential equations (Erland et al. 2011; Kaulakys et al. 2006;239

Granger 1980). Therefore, a plausible justification to use a long memory process to represent240

the internal variability of the global mean temperature is that it could be thought as the241

result of the superposition of several diffusion processes (AR(1)).242

Applying the law of parsimony, we choose a long memory process with the same level243

of complexity as the AR(1) model. The fractional differencing (FD) model (Beran 1994;244

Percival et al. 2001; Vyushin and Kushner 2009; Vyushin and P.J. Kushner 2012) is defined245

as a stationary stochastic process with zero mean u such that:246
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ut = (1−B)−δεt. (8)

where B is the backshift operator, i.e. But = ut−1 (Beran 1994). The model is fully specified247

by the parameters δ and the standard deviation σe of the white noise εt. The autocovariance248

function is given by the equation:249

ωFD(τ) =
σ2
e sin(πδ)Γ(1− 2δ)Γ(τ + δ)

πΓ(τ + 1− δ)
(9)

As a result the covariance matrix becomes,250

ΩFD
i,j =

σ2
e sin(πδ)Γ(1− 2δ)Γ(|i− j|+ δ)

πΓ(|i− j|+ 1− δ)
. (10)

For large τ the autocorrelation function satisfies limτ→∞ ωFD(τ) = |τ |2δ−1 (Beran 1994).251

From this expression one can see that the autocorrelation decays algebraically, thus the252

name ”long memory”. Since δ controls the decaying rate of the autocorrelation function it253

can be associated to the memory of the system, while σe is characterizes the amplitude of254

the white noise.255

Similarly to the AR(1) case, we use this covariance matrix, Eq.(10), and Eq.(2) and Eq.(3)256

to simultaneously determine the scaling factors βi and the parameters δ and σe following the257

Hildreth-Lu method (Kmenta 1971).258

3. Results259

a. Robustness of detection statistics260

In order to test the robustness of the detection statistics, we find simultaneously the261

scaling factors βi and the stochastic parameters of the internal variability u, using generalized262

linear regression to solve Eq.(2). Notice that when u is modeled as an AR(1) or an FD263

process, the noise covariance matrix Ω in Eq.(3) and Eq.(4) is given by Eq.(7) or Eq.(10)264

respectively. The best estimates of the scaling and noise parameters are chosen as those that265
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minimize the residual white noise in u (Kmenta 1971). Using the Akaike Information Criteria266

we find that both models for u are equally skilful at representing the internal variability given267

the observational record used in our analysis.268

Fig.(1) shows the values of the optimal scaling factors with their 95% confidence intervals269

using the AR(1) (grey line) and the FD (black line) models, when Tobs is the HadCRUT3270

global mean temperature record for the period 1850-2005. In the detection and attribution271

approach, a signal is detected when the corresponding scaling factor is different from 0 with272

95% confidence, while the attribution of a signal requires confidence intervals that include273

one (Allen and Stott 2003; Allen and Tett 1999). When the scaling factors are larger or274

smaller than one, the simulated forced responses are assumed to be over or under estimated275

by the climate model used to simulate them.276

Therefore, in order to test the robustness of the detection statistics , we need to evaluate277

the statistical significance of the scaling factors and the uncertainty in the determination of278

the stochastic models’ parameters. A scaling factor β is defined as statistically significant if279

the null hypothesis (β = 0) can be rejected with 95% confidence. A standard approach to280

find the confidence interval is to define the z score = βi/V (βi))
1
2 ; if this quantity i sampled281

from, for instance, a t-distribution with more than 60 degrees of freedom, the scaling factor β282

will result statistically significant with 95% confidence when z score ≥ 2 (Kmenta 1971). In283

our analysis, due to the correlations present in the noise models, an estimation of the number284

of degrees of freedom is problematic. We use instead a Monte Carlo approach that allows285

a testing of the null hypothesis as follows. For each of the noise models (AR(1) or FD) we286

generate , using the optimal values of the models’parameters, 1000 surrogate samples with287

the same length as the observed record (156 years). We then replace Tobs in Eq.(2) by each288

of these surrogate series, and perform the generalized linear regression with the four forced289

responses on the right hand side of the equation; the aim of this exercise being to estimate290

the optimal values of the scaling factors β and the u parameters that best fit each of the291

surrogate series. We can then perform an empirical evaluation of the null hypothesis: for any292
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given value of the z score or, equivalently, the size of the confidence interval, we aim to find293

what is the proportion of cases where the scaling factor β is different from 0. In particular294

the value of the z score that gives β different from 0 in at most 5% of the cases determines295

the 95% confidence interval. We find that for the GHG signal the z score is 2.22 in the case296

of the AR(1) model and 2.45 in the case of the FD model. In addition, and since we expect297

that due to the stochastic nature of the noise models there will be some uncertainty in the298

determination of their parameters, the values of the noise model parameters estimated with299

this Monte Carlo approach provide an estimate of the uncertainty of the best fit noise model300

parameters when regressing the forced responses on Tobs in Eq.(2).301

Fig.(1) shows that for our detection model, the greenhouse gas signal is detected and302

attributed, the volcanic signal is only detected, and the solar signal is not detected nor303

attributed for both models of internal variability. In the case of the sulphates forcings, the304

result depends on the representation of the internal variability.305

The robustness of the GHG signal detection can be analyzed using Fig.(2) when the306

internal variability is characterized by the AR(1) model or by the FD model in the upper or307

lower panels respectively. The horizontal and vertical axes show the white noise amplitude308

and memory parameters respectively, and the contour lines indicate the significance level of309

the scaling factor βGHG. The diamond symbol shows the best fit of internal variability (for310

each model) when the observed record Tobs is the HADCRUT3 data for the period 1850-311

2005. The uncertainty in the estimation of the best fit, computed using the Monte Carlo312

approach, is shown as the grey cloud of points. It is clear that even when taking into account313

this uncertainty in the parameters, the significance of the detection of the greenhouse gas314

signal is not affected.315

As expected, the significance of the greenhouse gas signal is lower when we represent the316

internal variability as an FD than as an AR(1) process. We find that both stochastic models’317

best fit have similar white noise amplitude, showing that statistically they are similarly good318

at explaining variability, given that this is the residual of the linear fit. The bigger difference319

13



between the two models arises in the memory parameter.320

In the case of the AR(1), a1 is bounded between a1 = 0.25 and a1 = 0.70, and the best321

estimate is a1 = 0.53. In a short-memory process we can translate these values into a decay322

time, which is a well defined time scale given by τ = −1/ ln(a1) in units of years (Kmenta323

1971). Using the range of values of a1 above, the uncertainty in the decay time remains below324

ten years. This means that, according to the AR(1) model, we can explain the fluctuations325

of internal variability by being affected mainly by the previous few years and some random326

white noise.327

In the case of the FD model, the uncertainty in the estimation of δ is much larger and328

spans almost all the allowed values from nearly white noise, δ = 0.12, to δ = 0.5, with a329

best estimate of δ = 0.43. All these values are broadly consistent with the result in Huybers330

and Curry 2006. In particular, we find that there is a 10% probability of the estimated331

parameter corresponding to a non-stationary process (i.e δ → 0.5). Using Eq.(10), we find332

that, for δ close to the limiting value 0.5, the amplitude of the resulting variations would333

be inconsistent even with relatively high-variance reconstructions of paleo-climatic data over334

the past 1-2 millennia (Esper et al. 2012). The presence of poorly-known forced responses335

on these timescales makes it difficult to use paleo-climate data as an explicit quantitative336

constraint in our analysis, but it does suffice to indicate that the relative stability of the337

climate of the Holocene would be unlikely if internal variability of the climate system were338

to conform to an FD process with very high values of δ. Based on this arguments, we can339

ignore the values of δ close to the non-stationary limit (δ → 0.5). Furthermore, in Appendix340

A we explore how the estimation of the stochastic model parameters depends on the length341

of the time series considered and show that values of the parameters corresponding to non-342

stationary processes are likely to be an artifact of the short length of the time series.343

For an algebraically decaying autocorrelation function there is no associated time scale,344

therefore a long memory process does not have a decay time (Beran 1994). Nevertheless, to345

have an intuition about the time scales associated to particular values of δ, one can calculate346
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the time it takes for the autocorrelation function to reduce to 1/e of its initial value (in347

analogy with the e-folding time for the AR(1) model). For the best fit value of δ = 0.43348

for instance, this calculation gives a much longer time than the length of the observational349

record (156 years). This suggests that, according to this model, in the 156 years long record350

all points are highly correlated. Overall, we find that, despite the very different time scales351

that are relevant for the AR(1) and FD characterizations of internal variability, the GHG352

signal detection statistics is robust for both models.353

One interesting question that can be explored using our results is how wrong one would354

have to get the model parameters of the internal variability in order to change the detection355

statement of the greenhouse gas signal. In the case of the AR(1) model we find that the356

greenhouse gas signal would become not statistically significant in a world in which higher357

values of a1 and/or a0 were needed to describe internal variability. In the upper panel of Fig.2358

we see that, to loose statistical significance, one would have to increase the time correlation359

characterized by a1 to more than 0.8 , or triple the white noise parameter a0.360

Hence, the detection statistics for the AR(1) model is very sensitive to the memory361

parameter and relatively less sensitive to the amount of white noise in the process. Thus,362

in terms of the global mean temperature internal variability as simulated by GCMs, our363

findings suggest that the relevant aspect that should be taken into account in a robustness364

test should be the models’ ability to capture correctly the temporal correlations more than365

the total variance, which is in turn conditioned by their ability to capture the most relevant366

dynamical processes, their couplings and feedback mechanisms.367

For the FD process we find a different result. In the lower panel of Fig.(2) we can see368

that for the estimated σe there is no δ for which the process has a greenhouse gas scaling369

factor which is not statistically significant. Thus, this suggests that the greenhouse gases370

detection results are robust under changes in the memory parameter. In fact, for very high371

values of δ, one would still need to double the amplitude of the white noise to change the372

detection statistics. Results in Appendix A suggest that with a longer observational record373
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we would have estimated a smaller δ , but also, that the estimated white noise amplitude374

would not increase significantly. This suggests that if the observed record is relatively short375

to accurately characterize the memory in the FD model, the detection of the greenhouse376

gas signal would still be robust when the length of the record increases. In terms of the377

global mean temperature simulated by GCMs, our results using an FD model suggest that378

the emphasis should be placed on accurately depicting the amplitude of the white noise in379

order to be confident about the detection and attribution statistics.380

In conclusion our results suggests that, in the presumably more realistic case in which the381

internal variability of the global mean temperature is best characterized by a process whose382

temporal structure lies somewhere in between that of an AR(1) and of an FD process, both383

its temporal correlation structure and the white noise amplitude are important for assessing384

the robustness of the signals.385

To close this section we include a brief discussion about the robustness of the detection386

results to the inclusion of the last seven years of observations (up until 2012), and the po-387

tential effect of the collinearity of the greenhouse gas and sulphates temperature responses.388

We used the HadCRUT4 data set to include the last seven years of data in Tobs. Differences389

between the HadCRUT3 global mean temperature time series and the median of the Had-390

CRUT4 global mean temperature time series result in slightly different values of the scaling391

parameters (see Table 1). Therefore, in order to ensure that the results are comparable, we392

use only HadCRUT4 data to analyze potential dependencies on the inclusion of the more393

recent observations and to the number of signals considered.394

Figure (3) shows the results of this sensitivity analysis. We observe that if instead of395

SUL and GHG signals, we only consider a single total ANT signal, the scaling factors for396

the latter are smaller than the GHG ones (see Table (1)). However the ANT signal remains397

detectable for both characterizations of internal variability. Similarly, when adding the last398

seven years of the observed record, the GHG and the ANT signals remain detectable for399

both noise models, but attribution is lost in the case of the GHG.400
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b. CMIP-3 control runs401

In this section we use the same techniques as above to evaluate the control simulations402

used in the detection and attribution of climate change included in the 4th Assessment403

Report of the IPCC. Our goal is to get some insight about the controls’ potential limitations404

to estimate internal variability and how this might impact in the robustness of the detection405

and attribution statistics.406

We take annual global mean temperature segments from the CMIP3 control simulations407

that have the same length as the observational record, 156 years, and fit them to an AR(1)408

and a FD model. Thus, we characterize each control by a set of parameters, a1 and a2
0409

when using an AR(1) model, and δ and σ2
e for the FD model. The results are indicated in410

Fig.(2) by numbers representing different GCMs’ control segments (see table (2)). In both411

cases the spread of points is larger than the spread of the Monte Carlo experiment that412

characterizes the uncertainty in the estimation of the parameters of the internal variability413

for the observed record. Note that the number of control segments for each GCM depends414

on the available number of years of the control simulation in the CMIP3 database. We415

have taken segments of controls which are fully non-overlapping and assume that they are416

independent realizations. Only in the case of the HadCM3 and the CCMA-CGCM3 models417

the number of segments (identified by numbers 22 and 1 respectively in both panels of418

Fig.(2)) is large enough to get some intuition about the uncertainty in the estimate of the419

parameters for those particular GCMs’ controls. The spread of the points corresponding420

to each of these two models suggests that, have we had many more control segments, the421

uncertainty in the estimation of the parameters would have been given by a cloud of points422

with a similar spread as the uncertainty estimate for the parameters corresponding to the423

observational record (grey cloud); and that both uncertainty estimates would have had a424

significant overlap. However, there are other models for which this is not the case.425

The control segments we are investigating are not identical to the ones used in the detec-426

tion and attribution studies, as their intradecadal variability is typically smoothed (5 year427
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means) and segments with drift are discarded (Stone et al. 2007). The argument for smooth-428

ing the temporal variability of the control segments for the 4th Assessment of the IPCC is429

that some modes of internal variability such as ENSO (with a 2-7 years characteristic scale430

of variability) are often not properly depicted by all the GCMs, and this would subsequently431

introduce errors in the estimate of the covariance matrix. In addition, control segments432

with drifts are discarded attributing the drifts to numerical errors. In our case, the control433

segments with a drift (Stone et al. 2007) are few and correspond to those with the highest434

memory parameter values. In the case of the FD model, these are the segments with δ = 0.5435

in the lower panel of Fig. (2) and in the case of the AR(1) model the a1’s are such that, they436

all lie around the contour line for which the GHG scaling factor is not statistically significant437

(thick blue contour line).438

Interestingly, we find in Appendix A that there is a very high correlation between the439

estimates of a1 and δ and the amplitude of white noise for for any given control segment.440

From the point of view of our analysis, one reason for this is that both stochastic models can441

separate the same amount of correlated data from the white noise, and each model explains442

the dynamics with a different memory parameter according to the relevant covariance matrix.443

As a result, although the underlying physical assumptions are very different in these two444

models, we find that the numerical value of the autocorrelation function of both models are445

very similar for the first 156 years as expected.446

To finish this section, we analyze the power spectra of the climate models’ control runs447

and the observations. In Fig.(4) we show the power spectra of the CMIP3 models’ control448

segments and the power spectra of the residuals from the best fit to Tobs, i.e., Tobs− β̂T . The449

latest residuals are the unexplained fluctuations of the climate in our model, after removing450

the temperature response to the forcings. The figure shows that the power spectra of the451

residuals are very similar independently of whether the internal variability is characterized452

as and AR(1) (thick grey line) or an FD process (black line). Since the power spectrum453

is the Fourier transform of the autocorrelation function, finding similar power spectra is454
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equivalent to finding similar covariance matrices; hence this figure is consistent with our455

previous findings about the similarity in magnitude of the autocorrelation functions of the456

fitted internal variability to the 156 years observed record. It is clear that a much longer457

time series is required to appreciate more significant differences in the variability simulated458

by the two stochastic models.459

We can also analyze the link between the ability of a GCM to model different modes of460

internal variability and the implications for the significance of detection and attribution. It461

is clear from Fig.(4) that some control segments display peaks corresponding to the ENSO462

signal with unrealistic high amplitudes , as shown by the high power at the 2-5 years fre-463

quency range. However, Fig.(2) shows that most of these control segments fall in the area of464

the plots that correspond to a significant greenhouse gas signal. Consistently wit the findings465

in Allen and Tett (1999), this analysis suggests that an accurate depiction of all modes of466

internal variability might not be required to ensure the robustness of the detection statistics467

under our detection model.468

Finally, our analysis point towards the need to develop a wider range of techniques to469

assess the robustness of detection and attribution of climate change. The “consistency test”470

described in Allen and Tett (1999) is equivalent to look at the power spectra of GCMs471

runs and compare their (typically) decadal internal variability with the decadal internal472

variability retained in the residuals of the fit to the observed record. The aim of this test473

is mainly to discard the possibility of over-attributing climate change to the anthropogenic474

signal only because climate models under-represent decadal variability. However, studying475

just the amplitude (or power) of internal variability in Fig.(4) does not give us information476

about all the possible impacts that a model imperfection might have on the detection and477

attribution statistics. Thus, there is a need to develop techniques that provide a way to478

evaluate the impact of specific modes of variability and their interactions, and not just their479

amplitude, on the detection and attribution of climate change. Many interesting studies480

have been developed recently (eg. DelSole et al. (2011)) but more work is needed. One481
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advantage of our method is that it does not require to depict modes of internal variability482

accurately, but instead, we can test different assumptions and hypothesis about the internal483

variability structure by assuming that it can be represented by different physically plausible484

stochastic models. The generalization of this approach taking into account spatial patterns485

of variability is work in progress.486

4. Conclusions487

The IPCC very likely statement that anthropogenic emissions are affecting the climate488

system is based on the statistical detection and attribution methodology, which in turn is489

strongly dependent on the characterization of internal climate variability as simulated by490

GCMs.491

The understanding of the internal climate variability has been identified as one of the492

hardest geophysical problems of the 21st century (e.g., Ghil 2001). One of the barriers we493

face to advance our understanding is the lack of long enough reliable observational records.494

We are then left with the problem of having to characterize internal natural variability495

with a relatively short observational record that is in fact contaminated by natural and496

anthropogenic forcings. The alternative to that is to use control simulations of GCMs, with497

the limitations in this case imposed by the fact that many aspects of the internal variability498

are poorly represented by the climate models (Newman et al. 2009; DelSole and Shukla 2010;499

Klein et al. 1999). The way in which these inaccuracies might bias the statistical significance500

of the detection and attribution results is hard to identify.501

In this paper, we test the robustness of the detection and attribution statements in502

the case of global mean surface air temperature, under different representations of such503

variability. We use two different physically plausible stochastic models to represent the504

internal climate variability, and investigate the impact of these choices on the significance505

of the scaling factors in the detection and attribution approach. The two simple stochastic506
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models are chosen to span a wide range of plausible temporal autocorrelation structures, and507

include the short-memory first-order autoregressive (AR(1)) process and the long-memory508

fractionally differencing (FD) process). We find that, independently of the representation509

chosen, the greenhouse gas signal remains statistically significant under the detection model510

employed in this paper. Thus, our results support the robustness of the IPCC detection and511

attribution statement for global mean temperature change.512

Our results also emphasize the need to apply a wider variety of test to assess the ro-513

bustness of detection and attribution statistics. Previous studies carried out a ”residual514

consistency test” which is used to assess the GCMs simulated variability on the scales that515

are retained in the analysis (Allen and Tett 1999) , and tests involving doubling the am-516

plitude of the simulated variability (Tett et al. 1999). However, in the past variations in517

the correlation ( and hence the memory) of the data have not been taking into account in518

the sensitivity tests. In the context of our study, the ”residual consistency test” mentioned519

above is equivalent to exploring the sensitivity of the detection of the greenhouse gas signal520

to variations in the amplitude of the white noise (i.e., shifts on the horizontal direction only521

in both the upper and lower panels of Fig.(2)). We see that for the AR(1) process, this522

”consistency test” is not very helpful and a more appropriate robustness test should include523

constraining the values of the correlation parameter. For a FD process, however, the ”con-524

sistency test” adequately explores the robustness of the results as varying the amplitude of525

the white noise can change their significance.526

We conclude by emphasizing that in this study, headline attribution conclusions for GHG527

and total anthropogenic forcings were found to be insensitive to the choice between two528

representations of internal variability that were deliberately chosen to span a broad range of529

behaviors. Nevertheless, we did find that the significance of detection results were affected530

by the choice of a short-memory versus a long-memory process, indicating a need for checks531

on not only the variance but also the autocorrelation properties of internal variability when532

detection and attribution methods are applied to other variables and regional indices.533
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APPENDIX A541

We use a HadCM3 control simulation of 1000 years to assess how the uncertainty of the542

stochastic parameters depends on the length of the segment, and we refer to this as a finite543

size effect. We estimate the stochastic parameters from the same control simulation but544

increasing its length by 20 years in each step , starting from 99 years. We do this for545

both stochastic models considered in this paper, the AR1 and FD model. In Fig.(5) and546

Fig.(6) the horizontal axis shows the length of the segment and the vertical axis shows the547

estimated parameter. Fig.(5) shows the result for the AR(1) model, in this case the estimated548

a1 oscillates around a fixed value from the beginning. Fig.(6) shows the results for the FD549

model, in this case δ decreases its value until the segment is reaching a length of 300 years.550

Given that the observed record is of 156 years and that the best estimate of the white noise551

amplitude is larger than what we found for the long HadCM3 control run, we can expect552

an overestimation of the δ parameter in the observed 156 years. Thus, we expect that the553

10% probability of δ being such that δ > 0.5 for the Monte Carlo estimation of uncertainty,554

would decrease if we had a longer record.555

We also investigated the correlation between the memory parameters and the white556

noise parameters when fitting and AR(1) and FD stochastic model to the CMIP3 control557

segments. The upper panel of Fig.(7) shows a very high correlation between a1 and δ, each558

color represents a different GCM. The lower panel in Fig.(7) shows a very high correlation559

between a2
0 and σe.560
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AR(1) AR(1) FD FD
1850-2005 1850-2012 1850-2005 1850-2012

VOL 0.46 0.48 0.51 0.53
SOL 2.26 2.03 1.14 0.99
GHG 0.94 0.71 0.91 0.66
SUL 2.47 1.44 2.04 0.93
VOL 0.54 0.52 0.55 0.53
SOL 0.98 1.24 0.58 0.83
ANT 0.76 0.71 0.81 0.73

Table 1. Scaling factors β obtained from the linear regression when using HADCRUT4
observations for two time periods (1850 to 2005 and to 2012), and the forced temperature
responses to VOL,SOL,GHG and SUL forcings , or to VOL, SOL and ANT forcings.
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NCAR-CCSM3
NCAR-PCM1

UKMO-HadCM3

Table 2. CMIP-3 General circulation models used partly on the 4th IPCC Assessment
report. The order on the table is the same as the numbering in previous figures.
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5 AR(1) results of estimating a1 (upper panel) and a2
0 (lower panel) as a function695

of the length of the control segment sampled from the 1000 years long HadCM3696

control run. 38697
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Fig. 1. The 95% confidence intervals of the scaling factors βi derived from the multiregression
of observed temperature changes onto the BDM estimates of the forced responses. The
internal variability is represented by an AR(1) model (grey line) or an FD model (black line)
for the period 1850− 2005
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Fig. 2. Upper panel: Significance of the greenhouse gas signal as a function of the two
stochastic parameters of the AR(1) model: a1 in the y-axis and a2

0 in the x-axis. The best
fit of the observed record is displayed (diamond), showing that the significance is much
greater than 2.22 (thick blue contour line) even considering the uncertainty of the Monte
Carlo experiment (cloud of grey points). Best fits of the CMIP3 control segments of the same
length as the observed record are shown with numbers, where each number represents a GCM
(1-22 ). A total of 33 non-overlapping segments were selected. Lower panel: Significance of
the greenhouse gas signal as a function of the two stochastic parameters of the FD model: δ
in the y-axis and σ2 in the x-axis. The best fit of the observed record is displayed (diamond),
showing its significance is greater than 2.45 (thick blue contour line), even considering the
uncertainty of the Monte Carlo experiment (cloud of grey points).
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Fig. 3. The 95% confidence intervals of the scaling factors βi derived from the multiregression
of observed temperature changes onto the BDM estimates of the forced responses to the three
signals VOL, SOL and ANT (top panels) and VOL, SOL, GHG and SUL (bottom panels).
The internal variability is represented by an AR(1) model (grey line) or an FD model (black
line) for the period 1850 − 2005 (left hand side) and the period 1850 − 2012 (right hand
side), using HadCRUT4
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Fig. 4. Spectra from the individual GCM control simulations (gray), and the spectra of the
residuals of the linear fit to Tobs: Tobs − β̂T , when the internal variability is modeled as an
AR(1) (thick grey line) and an FD (black line) process. We use a logarithmic scale in the
horizontal axis (period) and the vertical axis (spectral density).

37



Fig. 5. AR(1) results of estimating a1 (upper panel) and a2
0 (lower panel) as a function of

the length of the control segment sampled from the 1000 years long HadCM3 control run.
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Fig. 6. FD results of estimating δ (upper panel) and σe (lower panel) as a function of the
length of the control segment sampled from the 1000 years long HadCM3 control run.
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Fig. 7. Upper panel: correlation between the memory parameter of both stochastic models,
δ values (vertical axis) versus a1 values (horizontal axis) obtained from the CMIP3 control
segments considered in our analysis. Lower panel: same for the white noise parameter of
both stochastic models, σe (vertical axis) versus a2

0 (horizontal axis). Each color corresponds
to a different GCM.
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