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Abstract

Many insurance and reinsurance contracts are contingent on events such as
hurricanes, terrorist attacks or political upheavals whose probabilities are not
known with precision. There is a body of experimental evidence showing that
higher premiums are charged for these “ambiguous” contracts, which may in
turn inhibit (re)insurance transactions, but little research analysing explicitly
how and why premiums are loaded in this way. In this paper we model the effect
of ambiguity on the capital requirement of a (re)insurer whose objectives are
profit maximisation and robustness. The latter objective means that it must
hold enough capital to meet a survival constraint across a range of available
estimates of the probability of ruin. We provide characterisations of when one
book of insurance is more ambiguous than another and formally explore the
circumstances in which a more ambiguous book requires at least as large a
capital holding. This analysis allows us to derive several explicit formulae for
the price of ambiguous insurance contracts, each of which identifies the extra
ambiguity load.
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1 Introduction

A variety of well-known principles exists for the technical pricing of insurance and
reinsurance contracts when the probability of claims is known precisely. However,
many (re)insurance contracts are contingent on events such as hurricanes, terror-
ist attacks or political upheavals whose probabilities are not known with precision.
Such contracts are “ambiguous”. There may be several reasons why contracts are
ambiguous, including a lack of historical, observational data, and the existence of
competing theories, proferred by competing experts and formalised in competing
forecasting models, of the casual processes governing events that determine their
value. Ambiguity is thus a salient feature in the insurance of catastrophe risks such
as hurricane-wind damage to property in the southeastern United States. Here, his-
torical data on the most intense hurricanes are limited, and there are competing
models of hurricane formation (Bender et al., 2010; Knutson et al., 2008; Ranger
and Niehoerster, 2012). This ambiguity is increased by the potential role of climate
change in altering the frequency, intensity, geographical incidence and other features
of hurricanes in the future.

There is by now a body of evidence to show that, faced with offering a contract un-
der ambiguity, (re)insurers increase their premiums, limit coverage, or are unwilling
to provide (re)insurance at all. In the academic literature, much of the evidence is
survey-based: agents in the (re)insurance industry, including insurance actuaries and
underwriters, and reinsurance underwriters, are asked to quote prices for hypothet-
ical contracts in which the probabilities of loss are alternatively unknown or known
(Cabantous, 2007; Hogarth and Kunreuther, 1989, 1992; Kunreuther et al., 1993,
1995; Kunreuther and Michel-Kerjan, 2009). Their responses reveal that prices for
ambiguous contracts exceed prices for unambiguous contracts with equivalent ex-
pected losses, which is consistent with ambiguity aversion1 and thus in line with
a much larger body of evidence on decision-making, starting with Ellsberg’s classic
thought experiments on choices over ambiguous and unambiguous lotteries (Ellsberg,
1961). In the industry, there is also plenty of evidence that prices are increased or
coverage limited in the presence of ambiguity. For example, it is common to find
guidance to the effect that (re)insurers should increase their ‘prudential margins’ (i.e.
capital holdings) under ambiguity (e.g. Barlow et al., 1993) and below we explain
how this leads to higher premiums.

Yet, despite the evidence, there is seemingly little theoretical work that directly
explains ambiguity loadings. In this paper we seek to fill this hole by offering a
formal analysis of the connection between, on the one hand, ambiguous information
about the performance of a book of insurance and, on the other hand, the premium
charged for a new contract. We do so via the capital held against the book: our
starting point is a well-known model of the price of (re)insurance, according to which
the objective is to maximise expected profits subject to a survival constraint (thus in
the tradition of Stone, 1973), which is imposed by managerial or regulatory fiat out
of concern for ensuring solvency or avoiding a downgrading of credit. An example
of such a constraint, imposed by regulation, is the European Union’s new Solvency

1We give formal definitions of ambiguity, ambiguity aversion and related concepts later.
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II Directive (where it is called a Solvency Capital Requirement). Our twist is to
require the capital held to be “robust”, in the sense that the survival constraint is
met no matter which of a set of estimates of the probability of ruin later turns out
to be correct. Our focus is on so-called ’technical pricing’, hence we abstract from
competitiveness effects.

Based on recent contributions to the theory of decision-making under ambiguity, we
characterise circumstances in which one book of insurance is “more ambiguous” than
another, and show conditions under which more ambiguous books entail higher capi-
tal holdings under our robust capital-setting rule. Since one book is more ambiguous
than another only if any ambiguity-averse decision-maker would prefer it – and the
(re)insurer would presumably prefer to hold as little capital as possible – we inter-
pret our results as showing that our rule for robust capital-setting encodes a form of
ambiguity aversion under the conditions we specify. We therefore demonstrate that
our capital-setting rule is consistent with the behavioural evidence cited earlier.

A critical advantage of our capital-setting rule is that it allows us to derive pricing
formulae for ambiguous contracts in a way that makes the effect of ambiguity on
prices transparent. We therefore proceed, using a similar approach to Kreps (1990),
to find pricing expressions under four different distributional assumptions about the
(re)insurer’s information. In each case, we identify an ambiguity load – distinct from
the more familiar risk load – that is increasing in some measure of the ambiguity of
the contract being priced. We hope that these pricing formulae, or further extensions
and refinements of them, may prove practically useful in the industry: one of the con-
sequences of the lack of existing theory is that the practice of loading contract prices
under ambiguity does not appear to have been codified and may often be done using
back-of-the-envelope calculations and heuristics (Hogarth and Kunreuther, 1992).

Our paper is a complement to recent work on how ambiguity, and ambiguity aversion,
on the part of would-be policyholders affects the characteristics of optimal insurance
contracts (Alary et al., 2010; Gollier, 2012). In this work, the insurer is taken to be
ambiguity-neutral, whereas our insurer is ambiguity-averse. Our paper is also related
to recent work on ambiguity aversion and robust control that has taken a similar
approach, but applied it to different problems. Notable examples include Garlappi
et al. (2007) on portfolio selection, and Zhu (2011) on catastrophe-risk securities.
Finally, our paper offers an alternative approach to previous work in the literature
on insurance that has also considered ambiguity under the auspices of ‘model uncer-
tainty’ (e.g. Cairns, 2000). This work assumes ambiguity-neutral insurers, because
it is assumed that a process of Bayesian updating can collapse multiple probability
measures (i.e. models) into a single posterior probability measure over claims/the
returns on the book.

The rest of the paper is organised as follows. Section 2 presents the decision prob-
lem formally. Section 3 considers the relationship between how ambiguous a book of
insurance is and how much capital the (re)insurer must hold, drawing on elements
of Jewitt and Mukerji’s (2012) characterisation of the “more ambiguous” relation.
Section 4 then derives explicit pricing formulae for insurance contracts under ambi-
guity. Finally, Section 5 concludes with a discussion of the descriptive and normative
appeal of our capital-setting rule, and some interpretation of our results.
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2 The underwriter’s decision problem

We take the point of view of a (re)insurance underwriter who faces uncertainty
over the performance of her book and wishes to maximise expected profits subject
to a survival constraint. The classic treatment of this problem characterises the
underwriter’s uncertainty using a single probability measure over the space of events
determining the book’s return. Under this account the underwriter may control the
likelihood of insolvency/ruin by choosing a capital holding, since the likelihood of
ruin is then simply the probability that the book’s losses are not covered by the
capital.

As we explained in the Introduction, there are, however, important cases where the
underwriter’s information does not take the form of a single probability measure
over a space of relevant scenarios. In such cases, she may entertain a multiplicity of
possible measures over the space of payoff-relevant events and not be certain which
of them “correctly” quantifies the uncertainty she faces. Such an underwriter is said
to face ambiguity.

We model this kind of underwriter’s information as follows. There is a metric space,
S, known as the state space, that consists of all of the possible states of the world
that are relevant to the performance of an insurance book, with the Borel σ-algebra
on S denoted B. A book is then a B-measurable mapping from S to R. We denote
the full set of books by F and, where f ∈ F , interpret f(s) = x as the statement
that if s turns out to be the true state of the world, book f will return the monetary
quantity x. A book is thus identical to a “Savage act” (in the sense of Savage, 1954).

In the classic account of this problem, the underwriter is assumed to possess a single
probability measure on B, representing her information about payoff-relevant events.
We, however, wish to allow for cases where the underwriter faces ambiguity and
therefore endow her with a set of measures on B, Π, encompassing all probability
measures she believes might characterise her uncertainty correctly. We refer to Π as
the set of models. Where the underwriter’s book depends, for example, on weather
events, Π may consist of a set of seasonal forecasts, one of which is assumed to be
correct insofar as it accurately measures the likelihood of any member of B. Where
BΠ is a Borel σ-algebra on Π, let ν be the probability measure on BΠ representing
the underwriter’s beliefs about which of the models in Π is correct. We require
supp(ν) = Π.

Using BR for the Borel σ-algebra on R, for any f ∈ F we can define the probability
measure Pf on BR as follows:

Pf (E) =

ˆ
Π
π
(
f−1(E)

)
dν

for any E ∈ BR. In words, given the underwriter’s beliefs about Π, Pf (E) gives
the probability the underwriter places on her book paying out some amount in E.
Throughout this paper, we adopt the convention of using Pf (y) for Pf ({x : x < y}):
the probability, given beliefs ν over the measures Π, that f pays out less than y. We
write Pf ({y}) to indicate the probability under ν that f pays out precisely y.

Let us take as our starting point a familiar model of (re)insurance pricing based on
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maximising expected profit subject to a survival constraint (e.g. Kreps, 1990), in
the tradition of Stone (1973).2 In this model, there is a (re)insurer who, given any
book f ∈ F , sets her capital holding, Zf , as follows:

Zf = min{x : Pf (−x) ≤ θ} (1)

That is, Zf is the smallest holding such that the probability of losses exceeding it is
no more than some benchmark level θ (we take it for granted that (1) well defines
Zf ). Given how we define Pf (.), one can alternatively think of x as the Value at
Risk of book f with respect to the “confidence level” 1 − θ. The requirement that
the (re)insurer holds Zf may be interpreted as a managerial or regulatory constraint
with the magnitude of θ representing the conservatism of the regime responsible for
it. The underwriter thus focuses on the single probability – as measured by Pf – of
her book paying out less than her capital holding. In this sense she treats uncertainty
as described within different models and uncertainty over which model is correct as
equivalent.

We extend this framework to allow the underwriter to exhibit a further concern for
robustness. Specifically, our paper concerns an underwriter who, given her uncer-
tainty over the correct model governing her book’s performance, wishes to limit the
probability of ruin across all models in Π. Thus, where for any π ∈ Π and f ∈ F ,
the measure P πf on BR is defined as:

P πf (E) = π
(
f−1(E)

)
and we adopt the convention of using P πf (y) for P πf ({x : x < y}), she sets Zf
according to:

Zf = min{x : max
π∈Π

P πf (−x) ≤ θ} (2)

In contrast to (1), the capital-setting rule (2) requires the underwriter to limit the
probability of overall ruin – as given by P πf – to no more than θ for all π ∈ Π. Zf is
thus determined by the “most adverse” model for the underwriter holding f in Π, and
x is now the highest Value at Risk, with respect to θ, in Π. We shall only consider
cases where (2) well defines Zf . In Section 5 below we discuss the applicability of
the rule (2) to insurance problems.

3 Ambiguity and the capital holding

Jewitt and Mukerji (2012) provide various choice-based accounts of what it is for
one book to be “more ambiguous” than another. We focus on one of these accounts,
according to which book f is more ambiguous than g whenever any ambiguity-neutral
agent is indifferent between the two books, any ambiguity-averse agent prefers g to f ,
and any ambiguity-seeking agent prefers the f to g. Note that under this definition
what it takes for f to be more ambiguous than g depends on what it means for
an agent to be ambiguity-averse, -seeking, or -neutral. To characterise this we use

2Ignoring, however, his stability constraint on the volatility of the ratio of losses to expenses.
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Kilbanoff et al.’s (2005, KMM) “smooth” representation of choice under ambiguity,
under which preferences, given by the relation � over F , are such that for any
bounded f, g ∈ F :

f � g ⇐⇒
ˆ

Π
φ

(ˆ
S
u(f(s))dπ

)
dν ≥

ˆ
Π
φ

(ˆ
S
u(g(s))dπ

)
dν (3)

where u and φ are continuous, strictly increasing functions, and ν and Π are the
beliefs revealed by �. Under this representation, the ambiguity attitude associated
with � is given by the function φ: � is ambiguity averse if and only if the function
φ is concave, ambiguity neutral iff φ is affine, and ambiguity seeking iff φ is convex.
Where φO is Oskar’s ambiguity attitude and φJ is John’s, Oskar is more ambiguity
averse than John iff there exists a concave map ψ such that φO = ψ ◦ φJ .3

Note that (3) does not constrain the preferences of agents over unbounded books.
This means that if we were to define “more ambiguous” in terms of the choices of
all ambiguity-averse, -neutral, and -seeking agents with preferences consistent with
KMM’s representation, we would never be able to describe one unbounded book
as being more or less ambiguous than another. And as we wish to do just this,
we characterise “more ambiguous” relative to a narrower class of preferences than
those consistent with KMM’s representation. We thus define Pν,Π as the set of all
preferences over F that are consistent with KMM’s representation, that rank any
f, g ∈ F according to (3) provided all the expectations in (3) are defined, and that
share beliefs given by ν and Π. The ambiguity attitude of any �∈ Pν,Π is determined
by the properties of the φ associated with � just as in KMM’s representation. We
say �∈ Pν,Π is f -constrained iff, given the functions u and φ associated with �,´

Π φ
(´
S u(f(s))dπ

)
dν is defined.

The definition below provides the characterisation of “more ambiguous” that we use
throughout what follows. We denote the symmetric component of � using ∼ as
usual.

Definition 1 For any f, g ∈ F , f is Pν,Π-more ambiguous than g iff:

i. For all f - and g-constrained ambiguity-neutral �∈ Pν,Π, f ∼ g;

ii. For any f - and g-constrained �A,�B∈ Pν,Π where �A is ambiguity neutral: if
�B is more ambiguity averse than �A, g �B f ; and if �A is more ambiguity
averse than �B, f �B g.

Where the particular configuration of beliefs is unimportant or obvious from the
context, we will omit the qualification “Pν,Π-” and simply say f is “more ambiguous”
than g. Note condition (i) above and (3) imply that if f is more ambiguous than
g, then Pf = Pg. We describe book f as unambiguous if, for all g ∈ F , either g is
more ambiguous than f or f is not more ambiguous than g. Under the assumption

3The characterisations of ambiguity aversion, ambiguity neutrality, and “more ambiguity averse”
are all founded on more primitive definitions, which are equivalent to the properties of φ under
KMM’s representation. See Jewitt and Mukerji (2012) for details.
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that supp(ν) = Π, f can only be unambiguous if P πf = P π
′

f for all π, π′ ∈ Π. An
ambiguous book is then any book that is not unambiguous.

To state our first results we require some further terminology. First, a Markov kernel
from (Π,BΠ) to itself is any map (π,E) 7→ Kπ(E) such that Kπ is a probability
measure on BΠ. For any pair of books, f and g, we say K π-garbles f into g
whenever, for all E ∈ BR, the following condition holds for all π′ ∈ Π:

P π
′

g (E) =

ˆ
Π
P πf (E)dKπ′ (4)

The existence of a π-garbling from f to g implies that the likelihood that g pays
out in E conditional on any π′ is a weighted average of the likelihood that f pays E
across all π ∈ Π. In this sense, f ’s payoff depends more sensitively on the realisation
of the true probability model than g’s does.

Jewitt and Mukerji describe a Markov kernel K from (Π,BΠ) to itself as ν-preserving
if and only if, for all E ∈ BΠ,

µ(E) =

ˆ
Π
Kπ(E)dν.

Whenever there is a ν-preserving π-garbling from f into g, Pf (E) = Pg(E) for all
E ∈ BR. Thus, where this is so, the underwriter believes the likelihood of f and g
paying out any amount is the same, but she expects her judgement of this likelihood
to change more for f than for g upon learning the true model in Π. Intuitively, a
ν-preserving π-garbling is analogous to a mean-preserving spread familiar from the
analysis of risk: just as a mean-preserving spread preserves the expected payoff of
a prospect, but makes this payoff more sensitive to the true state of the world, a
ν-preserving π-garbling preserves a book’s expected payoff-distribution, but makes
this more strongly dependent on the true model in Π.

Given this, the first result we report from Jewitt and Mukerji should not come as a
surprise.

Proposition 1 [Jewitt-Mukerji 1] For any f, g ∈ F , if there is a ν-preserving π-
garbling from f to g then f is more ambiguous than g.

It thus follows that if there is a ν-preserving π-garbling from f into g, then any
ambiguity-averse agent whose preferences belong to Pν,Π would prefer f to g. Our
treatment of the (re)insurer’s problem does not specify her preferences – we merely
require her to set her capital requirement according to the rule (2) – so we will
not be able to gauge her her ambiguity attitude explicitly in the sense of KMM’s
representation. Nonetheless, if we suppose that the (re)insurer’s shareholders are
able to diversify whatever ambiguity they face, then since a higher capital holding
implies a greater cost to the insurer, it seems natural to suppose that if Pf = Pg
but Zf > Zg, the underwriter would prefer to hold g than f . Thus, if we show that
f ’s being more ambiguous than g implies that f incurs a higher capital requirement,
we could conclude that the decision-making rule (2) is ambiguity averse. This is in
contrast to decision rule (1), which sets Zf = Zg whenever f is more ambiguous
than g and can thus be regarded as ambiguity neutral.
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Our first result shows precisely this, given the sufficient condition from Proposition
1 for f to be more ambiguous than g.

Proposition 2 Suppose Zf and Zg are well defined by (2). Then if there is a ν-
preserving π-garbling from f to g, Zf ≥ Zg.

Proof: Suppose there is a π-garbling from f to g and let π∗g = arg maxπ∈Π P
π
g (−Zg).

By (2) it must be that P
π∗g
g (−Zg) ≤ θ, and if P

π∗g
g (−Zg) < θ then P

π∗g
g (−Zg) +

P
π∗g
g ({−Zg}) ≥ θ. Thus, P

π∗g
g ({x : x ≤ −Zg}) ≥ θ. By (4), maxπ∈Π P

π
f ({x : x ≤

−Zg}) ≥ P πg ({x : x ≤ −Zg}) for all π ∈ Π and hence maxπ∈Π P
π
f ({x : x ≤ −Zg}) ≥

P
π∗g
g ({x : x ≤ −Zg}) ≥ θ. This implies Zf ≥ Zg. 2

3.1 U-Comonotonicity

Proposition 1 applies to any pair of books under any set of beliefs, but it provides
only a sufficient condition for one book to be more ambiguous than another. Thus,
Proposition 2 does not establish that (2) encodes ambiguity aversion over all pairs of
books. However, we can use a second result from Jewitt and Mukerji’s analysis that
provides sufficient and necessary conditions for book f to be more ambiguous than
g, provided f , g, and Π satisfy a certain condition – known as U-comonotonicity –
in relation to each other. U-comonotonicity is likely to hold in many applications
– indeed some of the special cases we examine in Section 4 below require it – so it
is of interest to show that (2) is an ambiguity-averse rule for all books under the
condition. This is the content of our next result.

To begin with we define U-comonotonicity.4

Definition 2 Π is U-comonotone for F∗ ⊂ F iff Π can be placed in a linear order
≥U such that for all non-decreasing bounded functions u:

π ≥U π′ ⇐⇒
ˆ
S
u(f(s))dπ ≥

ˆ
S
u(f(s))dπ′ for all f ∈ F∗

In words, Π is U-comonotone over F∗ if all expected utility maximisers with bounded
utility non-decreasing in money and a book belonging to F∗ would agree on a single
ranking of which of any pair in Π represented “better news” about the true probability
model. This might be the case, for example, where the set F∗ consisted of books
that paid out a fixed sum in case of an extreme weather event: Π could then be
ordered such that π ≥U π′ iff π places a lower probability on the extreme weather
event than π′ does.

To state Jewitt and Mukerji’s characterisation of “more ambiguous” under U-comonotonicity,
we need some additional notation. Let XL be the collection of all lower intervals
in R and – assuming Π is U-comonotone for some set of books – use ΠL for the

4Note this is a special case of a more general definition, which can be found in Jewitt and Mukerji
(2012).
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collection of all ≥U -lower intervals in Π. That is:

XL = {{x : x ≤ x′} : x′ ∈ R} ∪ {{x : x < x′} : x′ ∈ R}
ΠL = {{π : π ≤U π′} : π′ ∈ Π} ∪ {{π : π <U π

′} : π′ ∈ Π}

Now define Pf,ν as the probability measure on BR × BΠ that satisfies:

Pf,ν(E × F ) =

ˆ
F
P fπ (E)dν

for any E ∈ BR and F ∈ BΠ. That is, given the underwriter’s beliefs, Pf,ν(E × F )
is the probability that the true measure lies in F and f pays out in E.

Jewitt and Mukerji’s characterisation5 ambiguity aversion under U-comonotonicity
is as follows.

Proposition 3 [Jewitt-Mukerji 2] Suppose Π is U-comonotone on {f, g}. Then the
following two statements are equivalent:

1. f is more ambiguous than g.

2. For all E ∈ BR, Pf (E) = Pg(E) and for any E×F ∈ XL×ΠL, Pf,ν(E×F ) ≥
Pg,ν(E × F ).

The intuition behind Proposition 3 is that if f is more ambiguous than g, its payoff
distribution is more sensitive to the realisation of the true model in Π and thus the
probability of any adverse payoff (any E in XL) conditional on an adverse model
(any F in ΠL) is higher under f than under g.

The result allows us to show that the capital-holding rule (2) is ambiguity averse for
any pair of acts, f and g provided Π is U-comonotone for {f, g}.

Proposition 4 If Π is U-comonotone on {f, g} and f is more ambiguous than g
then Zf ≥ Zg.

Proof: Let π∗ = arg maxπ∈Π P
π
f ({x : x ≤ −Zf}) and observe that π∗ must be the

≥U -minimum of Π. Thus by U-comonotonicity it follows that π∗ = arg maxπ∈Π P
π
g ({x :

x ≤ −Zg}). As in the proof of Proposition 2 it must be that P π∗g ({x : x ≤ −Zg}) ≥ θ.
Since {x : x < −Zg}×{π∗} ∈ XL×ΠL, Proposition 3 implies P π∗f ({x : x ≤ −Zg}) =

Pf,µ({x : x ≤ −Zg}× {π∗}) ≥ Pg,µ({x : x ≤ −Zg}× {π∗}) = P π
∗

g ({x : x ≤ −Zg}) ≥
θ, and hence that Zf ≥ Zg. 2

5The result reported here is slightly different to that in Jewitt and Mukerji, who define U-
comonotonicity in terms of all non-decreasing (bounded and unbounded) utility functions but
consider only bounded books. Our statement of the result encompasses all books but defines
U-comonotonicity in terms of bounded utility functions; the proof is nonetheless as in Jewitt and
Mukerji with obvious modifications.
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4 Contract Pricing under Ambiguity

We now examine the impact of ambiguity on a more practical level, deriving explicit
expressions for the price of an individual contract given competitive behaviour and a
capital holding set according to (2). In order to obtain expressions that clearly show
how introducing ambiguity leads to a departure from the benchmark pricing formula
in the absence of ambiguity, we need to make assumptions about the distribution of
payoffs under each model and the distribution of model parameters under the mea-
sure ν. We examine four cases, each of which nests the benchmark analysis, chosen
on the basis of their analytical tractability and applicability to real insurance prob-
lems. We only consider contract pricing, thus we ignore deductibles, co-insurance
and other design options that an insurer might use.

4.1 Benchmark: no ambiguity

As a benchmark for what follows and in order to introduce terminology, we begin by
reviewing the case examined by Kreps (1990) where the underwriter’s information
is unambiguous and payoffs are normally distributed. The set of books under con-
sideration is F0 ⊂ F , where F0 is defined relative to a given Π as follows: f ∈ F0

iff the density of f(s) under P πf on {S,B} is normal for all π ∈ Π with mean µf
and variance σ2

f . We define the addition operation over F0 pointwise – that is, for
f, f ′ ∈ F0, f + f ′ = f ′′ where f ′′(s) = f(s) + f ′(s) for all s – and note that F0 is
closed under addition – i.e. if f, f ′ ∈ F0, f + f ′ ∈ F0.

It’s worth emphasising that in this framework we assume that the underwriter sets
her capital holding according to rule (2) – that is, she does exhibit a concern for
robustness as outlined in the Introduction – and we allow Π to be non-singleton –
implying that, across the class of all books, the underwriter may face some ambiguity.
However, because we restrict our focus to F0, a class of unambiguous books, the
underwriter faces no ambiguity and therefore her capital holding rule is equivalent
to that in (1). We adopt this approach in order to make clearer the generalisations
to richer sets of books in subsequent sections.

Where Φ is the cdf of a standard normal and −z = Φ−1(θ), the underwriter’s capital
holding for f ∈ F0 is determined by:

Zf = zσf − µf (5)

We consider an insurer endowed with book f who agrees to an additional contract
c, which is itself a book in F0, thereby ending up with book f ′ = f + c. As a
result of signing c, she needs to increase her capital holding by Zf ′ − Zf , and if
c is competitively priced, then the underwriter’s expected profit from the contract
cannot exceed the opportunity cost of this incremental capital holding. Thus, using
y for the opportunity cost of capital, if c is competitively priced it must be that:

µc = y
(
Zf ′ − Zf

)
(6)

Given (5) this implies:

µc =
yz

(1 + y)
(σf ′ − σf )
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Recalling that where ρc,f is the correlation coefficient for the random variables c(s)
and f(s), σ2

f ′ = σ2
f + σ2

c + 2σcσfρc,f , we have:

σf ′ − σf = σc
2σfρc,f + σc
σf ′ + σf

And hence, where Rc,f := (yz/(1 + y)) (2σfρc,f + σc)/(σf ′ + σf ):

µc = Rc,fσc

Under assumptions described by Kreps,Rc,f may be approximated by (yz/(1 + y)) (ρc,f+
σc/2σf ).

The expected return on c, µc, is equal to the price the insurer charges the coun-
terparty to c, Pc, less the expected loss of c (including administrative costs) to the
insurer, Lc, and we say an insurer is competitive6 whenever it always sets Pc such
that µc satisfies (6). We can now state Kreps’s pricing result, the proof of which is
immediate from the analysis above.

Proposition 5 [Kreps – pricing without ambiguity] If f, c ∈ F0 then a competitive
insurer with book f will set Pc as follows:

Pc = Lc +Rc,fσc (7)

Kreps calls the expression Rc,fσc the risk load for contract c. Note that it arises
solely as a consequence of the underwriter’s need to limit the probability of ruin to
a certain level (encoded in rule (2)): without this constraint the competitive price of
the contract would simply be its actuarially fair cost, Lc. As one would expect, the
risk load is increasing in the riskiness of the contract (measured by σc), the contract’s
correlation with the insurer’s pre-existing book (ρc,f ), the relative riskiness of the
contract compared to the pre-existing book (σc/σf ), and the opportunity cost of
capital (y), and it is decreasing in the acceptable probability of loss (increasing in z
– a decreasing function of θ).

4.2 Mean uncertain; standard deviation known

4.2.1 Mean uniformly distributed

Our first generalisation of Kreps’s framework considers a space of books F1 that,
given some Π and ν, satisfies7: (1.i) for all f ∈ F1 and all π ∈ Π, f(s) is normal under
P πf on {S,B} with mean µπf and variance σ2

f ; (1.ii) for all f ∈ F1, µπf is uniformly
distributed on [af , bf ] given ν on {Π,BΠ}; (1.iii) F1 is closed under addition; and

6Note this our approach does not require the assumption of perfect competition. y may be
interpreted as a managerial target rate of return rather than opportunity cost, in which case it
could be consistent with a monopolistic or oligopolistic insurance industry.

7Note that F1 may not be unique given Π and ν. This is also the case for F2,F3, and F4

introduced below.
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(1.iv) F0 ⊆ F1. Note that it is impossible to satisfy the additivity condition without
violating (1.ii) unless, for all f, f ′ ∈ F1:

µπf ′ = af ′ + (µπf − af )
(bf ′ − af ′)
(bf − af )

(8)

which implies that Π is U-comonotone for F1. In the cases examined here, a more
ambiguous book therefore incurs a higher capital holding as per Propositions 3 and
4 in Section 3.

To illustrate where a structure like this might apply, consider the following example.

Example 1: Suppose our underwriter has a collection of forecasts at her disposal,
all of which agree on the payoff-variance of any given book, but amongst
which there is disagreement over certain books’ payoff-expectations. Specif-
ically, there is a most pessimistic simulation, which reports the lowest mean
payoff for all the books – for book f this is af – and a most optimistic sim-
ulation, which gives the highest reported mean for any book – bf for book f .
For any book, she is sure that the variance is as reported – σ2

f for book f –
and thinks the true mean must lie somewhere between these optimistic and
pessimistic bounds.

She constructs Π and ν using three assumptions.

I The members of Π are ordered according to their pessimism so that (8)
is satisfied and for any c ∈ [af , bf ], µπf = c for one π ∈ Π;

II The distribution of each book f ’s payoffs are approximated as normal
with mean µπf and variance σ2

f under each measure P πf corresponding to
a π ∈ Π; and

III ν is set such that condition (1.ii), imposing a uniform distribution on µπf ,
holds.

I may be justified in case the underwriter finds it reasonable while II is a stan-
dard procedure in empirical modelling. Assumption III is reasonable provided
she has no evidence to suggest any value of µπf in [af , bf ] is more plausible
than any other, in which case the uniformity of µπf follows from the principle
of insufficient reason.

Under these assumptions, any book she considers belongs to F1 given Π and
ν.

Given the decision rule (2), for any f ∈ F1 we have:

Zf = zσf + 3Var[µπf ]− µf (9)

where Var[µπf ] is the variance of the random variable µπf (equal to (1/12)(bf − af )2

under the uniformity assumption).

We now proceed in parallel to the exposition of the previous sub-section, supposing
that a competitive insurer with book f ∈ F1 accepts the further contract c ∈ F1 and
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thereby ends up with the book f ′ = f + c. Using (9) and (6) as above, we obtain:

µc = Rc,fσc +
3y

1 + y

(
Var[µπf ′ ]−Var[µπf ]

)
= Rc,fσc +

3y

1 + y

(
Var[µπc ] + 2Cov[µπc , µ

π
f ]
)

Using the fact that, given (8), Cov[µπc , µ
π
f ] = sd[µπf ]sd[µπc ] and defining

Ac,f,1 :=

(
3y

1 + y

)(
1 +

2sd[µπf ]

sd[µπc ]

)

our first pricing result under ambiguity follows straightforwardly.

Proposition 6 [Pricing with uniform mean] If f, c ∈ F1 then a competitive insurer
with book f will set:

Pc = Lc +Rc,fσc +Ac,f,1Var[µπc ]

It is easy to see how Proposition 6 generalises Proposition 5. If c is unambiguous
then it must belong to F0, in which case Var[µπc ] = 0 and so Pc is set according to (7).
However, if c is in F1 \F0 – that is to say c is ambiguous – then Pc also incorporates
an ambiguity load equal to Ac,f,1Var[µπc ]. The ambiguity load arises because c is
ambiguous and the underwriter’s decision rule encodes a concern for robustness. It
is increasing in Var[µπc ], which may be thought of as an approximate measure of how
ambiguous c is8, implying that insurers facing this structure of uncertainty charge
higher premia for more ambiguous contracts, and it is increasing in the ambiguity
of the pre-existing book (measured by sd[µπf ]).

4.2.2 Mean triangularly distributed

We now consider an alternative space of books, F2, defined such that given Π and ν:
(2.i) for all f ∈ F2 and all π ∈ Π, f(s) is normal under P πf on {S,B} with mean µπf
and variance σ2

f ; (2.ii) for all f ∈ F2, µπf has a symmetric triangular distribution on
[af , bf ] given ν on {Π,BΠ}; (2.iii) F2 is closed under addition; and (2.iv) F0 ⊆ F2.
Conditions (2.i), (2.iii), and (2.iv) mirror their counterparts in the analysis of a
uniform mean. Once again, (2.ii) and (2.iii) may only be satisfied when (8) holds for
all f, f ′ ∈ F2 and Π is U-comonotone for F2.

To illustrate the applicability of F2, we extend Example 1.

Example 2: Suppose the underwriter from Example 1 thinks that, for any book
f , values of µπf closer to the midpoint of the range [af , bf ] are more probable
than those further away from it, i.e., roughly speaking, that models with more
extreme forecasts of the mean loss are less likely to be correct. Provided these
beliefs are reasonably approximated by the assumption that µπf is triangularly

8See discussions on this point in Jewitt and Mukerji (2012) and Maccheroni et al. (2010).

13



distributed9 with minimum af , maximum bf , and mode (af +bf )/2, she might
proceed using assumptions I and II as above, but changing III to make sure
that ν is such that (2.ii) is satisfied. Given Π and ν thus constructed, every
book she considers will belong to F2.

For any f ∈ F2 we have:

Zf = zσf +
√

6sd[µπf ]− µf

which, for f ′ = f + c and f, c ∈ F2, yields:

µc = Rc,fσc +

√
6y

1 + y

(
sd[µπf ′ ]− sd[µπf ]

)
Where we use Ac,f,2 to denote (

√
6y/(1 + y))(2sd[µπf ] + sd[µπc ])/(sd[µπf ] + sd[µπf ′ ]),

which takes the approximate value of (
√

6y/(1+y))(1+sd[µπc ]/2sd[µπf ]) under Kreps’s
assumptions, this gives us:

µc = Rc,fσc +Ac,f,2sd[µπc ]

from which the next pricing result is immediate.

Proposition 7 [Pricing with triangular mean] If f, c ∈ F2 then a competitive in-
surer with book f will set:

Pc = Lc +Rc,fσc +Ac,f,2sd[µπc ]

Once again, the result generalises Proposition 5 by incorporating an ambiguity load
that is zero for c ∈ F0 and increasing in a measure of the ambiguity of c, sd[µπc ]. By
contrast to Proposition 6, however, Proposition 7 implies that Pc is decreasing in the
ambiguity of f (as measured by sd[µπf ]), which means that insurers with ambiguous
books should be more able to accommodate ambiguous contracts.

4.3 Mean known; standard deviation uncertain

We now focus on a space of books, F3, defined for a given Π and ν such that: (3.i)
for all f ∈ F3 and all π ∈ Π, f(s) is normal under P πf on {S,B} with mean µf

and variance
(
σπf

)2
; (3.ii) for all f ∈ F3, σπf has a uniform distribution on [af , bf ]

given ν on {Π,BΠ}; (3.iii) F3 is closed under addition; and (3.iv) F0 ⊆ F3. As in
previous sections, additivity and the uniformity of σπf imply that for any f, f ′ ∈ F3

and π ∈ Π, σπf and σπf ′ are linearly related as follows:

σπf ′ = af ′ + (σπf − af )
(bf ′ − af ′)
(af − bf )

(10)

9We choose this distribution as (2) does not well-define the capital holding unless µπf has a
bounded support.
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Unless F3 = F0, Π is not U-comonotone for F3.

We imagine this case applying to an underwriter in an analogous position to that
described by Example 1, except with a range of estimates of the standard deviation
of losses and certainty over the mean.10

Working as before, we have:

Zf = z(E[σπf ] + 3Var[σπf ])− µf (11)

for any f ∈ F3. And thus, where f, c ∈ F3 and f ′ = f + c, (6) implies:

µc =
yz

1 + y

(
(E[σπf ′ ]− E[σπf ]) + 3(Var[σπf ′ ]−Var[σπf ])

)
Using the fact that E[σπf ′ − σπf ] = E[σπc

2σπf ρcf+σπc
σπ
f ′+σ

π
f

], we obtain

µc = E[Rc,fσπc ] +
3yz

1 + y
(Var[σπf ′ ]−Var[σπf ])

= E[σπc ]E[Rc,f ] + Cov[σπc ,Rc,f ] +
3yz

1 + y
(Var[σπf ′ ]−Var[σπf ])

Now note that Var[σπf ′ ] − Var[σπf ] = Var[σπf ′ − σπf ] − 2Var[σπf ] + 2Cov[σπf ′ , σ
π
f ] and,

given (10), one may verify that Var[σπf ′−σπf ] = Var[σπc ] and Cov[σπf ′ , σ
π
f ] = Var[σπf ]+

sd[σπf ]sd[σπc ]. Thus, defining Ac,f,3 = 3yz
1+y

(
1 +

sd[σπf ]

sd[σπc ]

)
, we have:

µc = E[σπc ]E[Rc,f ] + Cov[σπc ,Rc,f ] +Ac,f,3Var[σπc ]

which gives us our next pricing result.

Proposition 8 [Pricing with uniform standard deviation] If f, c ∈ F3 then a com-
petitive insurer with book f will set:

Pc = Lc + E[σπc ]E[Rc,f ] + Cov[σπc ,Rc,f ] +Ac,f,3Var[σπc ]

Once again, whenever c ∈ F0, the pricing formula above reduces to (7). In contrast
to our previous results, however, introducing ambiguity affects the price of a contract
via two additional terms rather than one. First, as in our earlier results, there is a
term, Ac,f,3Var[σ2

c ], that is increasing in the ambiguity of c. Like the corresponding
term in Proposition 6 but unlike its counterpart in Proposition 7, it is also increasing
in the ambiguity of the pre-existing book f . The second term, Cov[σπc ,Rc,f ], reflects
the fact that uncertainty over σπc leads to uncertainty over the risk load. Note that
the presence of this extra term implies that, in contrast to the other cases examined
so far, the ambiguity load for f, c ∈ F3 could be negative.

10Though note the appeal to the principle of insufficient reason to justify the uniformity of σπf for
all f is weaker here. The underwriter could equally invoke the principle to impose the uniformity
of

(
σπf

)2, in which case the collection of books she considers could not satisfy (3.ii).
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4.4 Mean and Standard Deviation Uncertain

As a final exercise, we consider an informational structure that nests two of the cases
described above: where both the mean and the standard deviation are independently
uniformly distributed. Thus we consider a space of books, F4, that satisfies: (4.i)
for all f ∈ F4 and all π ∈ Π, f(s) is normal under P πf on {S,B} with mean µπf and

variance
(
σπf

)2
; (4.ii) for all f ∈ F4, µπf is uniformly distributed on [af , bf ], σπf is

uniformly distributed on [a′f , b
′
f ], and µπf and σπf are independent given ν on {Π,BΠ},

; (4.iii) F4 is closed under addition; and (4.iv) F0 ⊆ F4. Given this definition, for
any pair f, f ′ ∈ F4, µπf and σπf must satisfy conditions (8) and (10) (the latter with
obvious relabelling). Apart from cases where F4 = F0, Π is not U-comonotone for
F4.

Proceeding in the usual way, we have, for any f ∈ F4:

Zf = z
(
E[σπf ] + 3Var[σπf ]

)
+ 3Var[µπf ]− µf

So for f, c ∈ F4, a competitive insurer with book f prices c such that:

µc =
yz

1 + y

(
(E[σπf ′ ]− E[σπf ]) + 3(Var[σπf ′ ]−Var[σπf ])

)
+

3y

1 + y

(
Var[µπf ′ ]−Var[µπf ]

)
It is then clear that we can progress using steps from our analyses of F1 and F3

above to reach our final pricing formula.

Proposition 9 [Pricing with independent uniform mean and standard deviation]
Where f, c ∈ F4, a competitive insurer with book f will offer:

Pc = Lc + E[σπc ]E[Rc,f ] + Cov[σπc ,Rc,f ] +Ac,f,1Var[µπc ] +Ac,f,3Var[σπc ]

Thus, where books and contracts belong to F4, the ambiguity load for any contract
is simply the sum of a component (Ac,f,1Var[µπc ]) arising due to ambiguity in the
contract’s mean and a component (Cov[σπc ,Rc,f ]+Ac,f,3Var[σπc ]) reflecting ambiguity
in its standard deviation. This additive structure results from our restriction that
the mean and standard deviation are independent; another way of arriving at the
same formula would be to assume that the mean and standard deviation were linearly
related, with higher variances corresponding to lower means.

5 Concluding Remarks

The main contribution of this paper has been to establish a clear connection between
ambiguity and the pricing of insurance under a robust capital-setting rule. We show,
at a general level, that under our capital-setting rule, increasing ambiguity leads to
higher capital-holdings and thus to higher costs. We then show how, under a range
of distributional assumptions, our capital-setting rule gives rise to particular pricing
formulae for insurance contracts, all composed of distinct risk and ambiguity loads.
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But how tenable is our assumption that the capital-setting rule takes the form spec-
ified in (2)? From a descriptive perspective, we have already shown that its im-
plications for pricing decisions are consistent with the behavioural evidence in the
literature11. Furthermore, in some regions the regulatory framework governing in-
surers’ capital holding approximates our rule to some degree. For example, the EU’s
Solvency II Directive mandates (via the Solvency Capital Requirement) a capital
holding to limit the probability of ruin (θ in (2)) at 0.005 over a one-year horizon
and explicitly demands that insurer valuation models fulfil robustness conditions
(Lloyd’s, 2010). In these cases, (2) has obvious descriptive applicability.

Considering the rule from a normative perspective, we note that the concern for
robustness encoded in (2) takes an analogous (if not identical) form to the decision
rule in Hansen and Sargent (2008). The latter has been shown to be equivalent to
Gilboa and Schmeidler’s (1989) axiomatically founded "maxmin" expected utility
model in (Hansen and Sargent, 2001). However, these decision rules are typically
motivated from the perspective of an individual decision maker or social planner –
whether it is rational for a corporate entity to follow them remains an open question.

The results in Section 4 suggest insurance contract prices should be increasing in their
ambiguity (as measured by the variance of their uncertain distributional parameters).
In practice this may not hold if our assumption that models are ordered by their
pessimism over the uncertain parameters is violated, for in these cases increasing
ambiguity in a contract may allow the (re)insurer to “hedge” against the ambiguity
in her pre-existing book. We do not explore this kind of information structure for
reasons of tractability and note that, in any case, our assumption is reasonable for
some classes of insurance book. For instance, models of the losses arising from
natural disasters or terrorism may be ranked according to their pessimism over the
likelihood of these events.

Another interesting feature of our contract-pricing results is that they show no clear
relation between the ambiguity of the pre-existing book and the price of a contract:
for example, Proposition 6, where the mean payoff is uniform, makes Pc increasing
in the ambiguity of the insurer’s book, while Proposition 7, where the mean payoff
is triangular, states the opposite. Which, if either, of these claims is correct tells
us whether, in an optimally structured insurance industry, some firms should “spe-
cialise” in ambiguous insurance contracts while others avoid them or all firms should
bear the same degree of ambiguity. It is thus of interest that our capital-holding rule
does not, in itself, give a definitive answer to this question.

11Of the survey-based studies mentioned in the Introduction, Hogarth and Kunreuther (1992)
is distinctive in that it provides tentative evidence from a sample of actuaries of the decision
procedures they actually followed. There was some evidence of the use of heuristics to load the
premium, such as a simple, ad hoc multiplying coefficient on the expected value of the premium,
or on the variance of the loss distribution. This is at odds with the decision process posited here.
At the same time, however, there was also evidence that actuaries had in mind the effect the new
contract would have on the overall risk of the (re)insurer’s ruin, as in our framework. Indeed, the
risk of ruin is known to be an important consideration more generally when (re)insurers set capital
holdings and price contracts, especially for catastrophe risks (e.g. Kunreuther and Michel-Kerjan,
2009).
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