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Abstract

There are many examples in policy-making, investment and day-
to-day life where the set of contingencies the decision maker can con-
ceive of does not resolve all uncertainty about the consequences of
actions. In such circumstances, the decision maker may neverthe-
less reason that there exist certain aspects of the ‘full’ state space
of which she is unaware, that is, she may think it is possible she is
unaware of something. We call this type of belief conscious unaware-
ness and claim that its presence may lead to a violation of Savage’s
Sure Thing Principle. We then specify a choice setting in which the
decision maker has preferences over a set of actions stated naturally
in English, and over a set of caveats. A caveat maps from the set
of permutations – the product space of the set of contingencies she
can conceive of (her subjective state space, S) and the set of payoff
assignments to the actions – to a space of consequences. We obtain
a representation result under which she prefers action a to a′ if and
only if Eπu [Eµs

φ(w(a))] ≥ Eπu [Eµs
φ(w(a′))], where π and µs are

subjective priors on S and each payoff-profile under subjective state s
respectively, φ and u are utility functions, and w(a) refers to the payoff
a yields in assignment w. By endowing the decision maker with be-
liefs over the set of payoff assignments, we make choice in cases where
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conscious unawareness is a major concern (e.g. climate-change policy)
tractable by means of some of the standard analytical tools of risk and
ambiguity analysis. The representation also allows us to characterise
the decision maker’s attitude towards perceived payoff uncertainty aris-
ing from factors she is unaware of, using properties of the function φ;
in particular, we say she is ignorance averse if and only if φ is con-
cave. Using the same framework, we are able to state a more general
representation that allows us to capture source preference in examples
where the decision maker is consciously unaware.

Keywords: Unawareness, Ignorance, Conscious Unawareness, Am-
biguity, Uncertainty, Ignorance Aversion, Ambiguity Aversion, Non Ex-
pected Utility, Source Preference, “Small Worlds”, Climate Change

JEL Classification Numbers: D81, Q54

1 Introduction

Savage’s (1954) theory of subjective expected utility (SEU) posits a decision
maker (DM) with ready access to a full state space, comprising all possi-
ble “descriptions of reality, leaving no relevant feature undescribed”. The
contingencies that make up the full state space are so finely described that,
whatever action the DM takes, any uncertainty about what consequence that
action might lead to is resolved by the state that transpires and, furthermore,
the DM knows this to be the case.

There are, however, many examples in policy-making, investment and day-
to-day life where the contingencies the DM can conceive of do not resolve
all payoff uncertainty in this manner. Consider, for example, a trader spec-
ulating on the price of oil. Given the large number of factors that determine
the price of oil and the complicated manner in which they interact, it seems
highly doubtful that the trader would be able to formulate a full state space
as in Savage’s framework. Rather, it is likely that the set of contingencies the
trader can conceive of – her subjective state space – omits certain relevant
details or distinctions and thus does not resolve all of the trader’s payoff
uncertainty. Where this is so, we say the trader is unaware of the full state
space.

Clearly, no DM could ever take her own unawareness into account by con-
sidering a list of relevant features that her subjective state space fails to
include: if she could do this, she would not be unaware of these features to
begin with. She may, nonetheless, reason about the possibility that there
exist certain (unspecified) aspects of the full state space of which she is un-
aware. We describe a DM who believes she is unaware of the full state space
as consciously unaware.

Savage’s theory was evidently not designed for consciously unaware agents
and in our view such DMs may be justified in violating SEU. To illustrate

2



this, consider the following example:

Example 1: Suppose the oil trader has the opportunity to perform the
action a, given as “Spend $1 million on six-month oil futures contracts
at $100 per barrel” and assume for simplicity that the trader is aware of
only two possible contingencies relevant to action a: either s1, “peace
holds in the Middle East”, or s2, “war breaks out in the Middle East”.
If s1 occurs, she thinks the oil price in six months’ time could be
anything between $70 and $115, while if s2 occurs, she thinks it could
be anything between $85 and $130.
She may also go to the casino and gamble at a roulette table. She knows
the full set of contingencies relevant to any gamble on the roulette wheel
is simply the set of pockets on the wheel where the ball might land.
Enumerating these pockets 0, 1, . . . , 36, suppose her subjective state
space is just the product S := {s1, s2} × {0, 1, . . . , 36}.
The trader recognises that S does not resolve all the payoff uncertainty
she faces – in particular, any state in S seems consistent with a return-
ing a wide range of payoffs. She is therefore consciously unaware, but
this does not affect all of her choice set equally. For while there is no
state in S that resolves the payoff uncertainty relating to a, every state
resolves the payoff uncertainty pertaining to gambles on the roulette
wheel. We will say that she thus understands gambling on the roulette
wheel, but not purchasing oil futures.
Now imagine she is asked to consider the following “derivative” action:

a′ =
If a pays out more than $1.1 million
receive $1,000, otherwise receive $0

She compares a′ with gambles on the roulette wheel of the following
form:

an =
Receive $1,000 if the pocket number
is less than n, otherwise receive $0

She reports a strict preference for a′ over an for n = 0, . . . , 12, but
strictly prefers an to a′ for n = 13, . . . , 36. If it were the case that the
DM’s preferences satisfied SEU1, then, where E stands for the “event”
of a paying out more than $1.1 million and Ec for the “event” of a not
paying out more than $1.1 million, there would exist some subjective
probability measure, π, on the power set of S × {E,Ec} represent-
ing the DM’s beliefs. Abusing notation by writing {13, . . . , 36} for
{13, . . . , 36} × {s1, s2} × {E,Ec} and E for E × S, under SEU her
strict preference for a13 over a′ would imply:

π({0, . . . , 12})u(1, 000) + (1− π({0, . . . , 12}))u(0)
> π(E)u(1, 000) + (1− π(E))u(0)

(1)

1We imagine payoffs from all actions are received contemporaneously.
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The DM is then asked to consider the “complementary” actions of the
form:

a′′ = If a′ pays out $1,000 receive $0, otherwise receive $1,000
a′n = If an pays out $1,000 receive $0, otherwise receive $1,000

Since it must be that π({0, . . . , 12}) = 1−π({13, . . . , 36}) and π(Ec) =
1− π(E), (1) implies:

π(Ec)u(1, 000) + (1− π(Ec))u(0)
> π({13, . . . , 36})u(1, 000) + (1− π({13, . . . , 36}))u(0)

And therefore, under SEU, her preference for a13 over a′ commits her
to strictly preferring a′′ to a′13.

The DM might, however, reasonably prefer a′13 to a′′, explaining her
choice as follows. The “event” E, unlike {0, . . . , 12}, only describes a
set of payoffs for a, rather than the set of states of the world in which
these payoffs are received, and the DM can conceive of no contingency
that corresponds to these payoff outcomes. She therefore does not
understand actions a′ and a′′. By contrast, the DM can conceive of
the contingencies that resolve the payoff uncertainty that pertains to
a13 and a′13 and she thus understands these actions. She has a general
preference for pursuing actions that she understands – a preference
that SEU cannot accommodate – and hence prefers a13 to a′ and a′13

to a′′.

We propose an alternative to SEU that is consistent with cases such as this.
In our framework, the DM is endowed with a subjective state space, S, and
knows that any action she might carry out will lead to a consequence within
a given space X. The choice set of primary interest is then a set of actions,
A, given as sentences in English describing things to do such as “Spend $1
million on six-month oil futures at $100 per barrel”.

To reveal how the DM conceives of the members of A, we suppose she has
preferences over prospects akin to the “derivative” actions described in Ex-
ample 1. These are defined by introducing, for each s ∈ S, the set Ws

consisting of all maps from A to X. Ws is interpreted as the list of every
possible profile of payoffs A might induce if the subjective state s were to
occur: it is the set of permutations under s. If the DM did not think state s
resolved all of the payoff uncertainty pertaining to action a – what we term
not understanding action a – then she would be willing to gamble on mul-
tiple permutations in Ws that assigned different payoffs to a. We interpret
the DM’s willingness to gamble on a permutation in Ws as the same as her
regarding the payoff profile it stands for as possible if s occurs.

Our representation is obtained by applying familiar regularity conditions
over various choice sets. First, we assume that her preferences over the set
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of Anscombe-Aumann acts defined on S are consistent with SEU and thus
encode a unique subjective prior on S, π, and a utility function, v, that
represents her attitude to risky gambles on X. This implies that the DM’s
choices are consistent with SEU over the set of actions she understands.
Second, we assume the DM has conditional preferences on maps from Ws to
X for every s. Imposing well-known assumptions, we can obtain a subjective
prior, µs, on each Ws and a utility function φ on X, such that we find action
a is preferred to a′ if and only if:∑

s∈S
π(s)u

(ˆ
Ws

φ(w(a))dµs

)
≥

∑
s∈S

π(s)u
(ˆ

Ws

φ(w(a′))dµs

)
(2)

where u := v ◦φ−1 and we write w(a) for the consequence action a produces
in the payoff profile w.

The form of the representation in (2) and the way we derive it from our
assumptions are familiar from Klibanoff et al.’s (KMM, 2005) smooth model
of decision under ambiguity, but the motivation and structural setting un-
derpinning our result is quite different. Our DM does not depart from SEU
because she faces ambiguity over the true probability density function (pdf)
over the state space; rather, our DM believes that the subjective state space
she has in mind is insufficiently rich to identify every action’s payoff and
hence that there are actions in her choice set that she does not understand.
When choosing from a choice set that includes some actions she understands
and some that she does not, she may wish to exercise particular caution
(or recklessness) over the actions she does not understand, and hence vi-
olate SEU. We discuss the connection between this sort of behaviour and
ambiguity aversion below.

We hope that our representation will be particularly helpful in various policy
settings where the fact that there is unawareness is a major concern. One
such domain is policy on climate change. Here, the state of scientific knowl-
edge about the links between emissions of greenhouse gases and changes to
physical climate variables such as temperature, precipitation and sea level is
recognised to be far from exhaustive (IPCC (2007); Stainforth et al. (2007)),
and our understanding of the interface between the climate and the econ-
omy is thought to be similarly incomplete (e.g. Heal and Kristroem (2002);
Stern (2007); Weitzman (2009)). Under such circumstances, some of the
states we envisage – even described at the most minute level of detail we
can conceive of – seem consistent with almost any payoff, no matter what
climate policy we pursue. This means not only that (in our view) conscious
unawareness should be a significant consideration in climate policy, but also
that the problem is very difficult to analyse using existing decision models
(including those that can accommodate conscious unawareness). Our theory
makes choice problems such as these analytically tractable.
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To illustrate, suppose that a policy maker’s subjective state space consists
of the contingencies s and s′, where:

s =
“Global temperature depends sensitively on the atmospheric

concentration of greenhouse gases”

s′ =
“Global temperature does not depend sensitively on the

atmospheric concentration of greenhouse gases”

and that she has a choice between the following actions:

a = “Cut greenhouse gas emissions by 50% by 2050”
a′ = “Cut greenhouse gas emissions by 30% by 2050”

Consider the task of conducting an economic evaluation of these climate-
policy actions (i.e. a cost-benefit analysis), in which the set of consequences
is just a range of possible monetary outcomes. Given our degree of un-
derstanding of the problem, it seems reasonable to allow that both a and a′

could pay out any amount inX under both s and s′. Other representations of
choice under conscious unawareness (for example Mukerji (1997), Ghirardato
(2001)) do not allow the DM to hold beliefs about the relative likelihood of
either action paying any given consequence under either of the states. They
therefore require the policy maker to regard a and a′ as equally good in both
states and, given any action, that she is indifferent between which of the
two states does transpire. Yet it seems obvious that the policy maker would
regard state s as “bad news” under either action and that, given s, the policy
maker would prefer to carry out a over a′. Such preferences are consistent
with our theory and would imply that Eµs [φ(w(a))] > Eµs [φ(w(a′))] and
Eµs′ [φ(w(a))] > Eµs [φ(w(a))].

Another advantage of allowing beliefs overWs andWs′ is that we can capture
DMs’ aversion (or predilection) towards less well-understood actions in a
familiar fashion. Consider two ways to reduce the atmospheric concentration
of greenhouse gases. The first, b, involves the replacement of fossil-fuel power
plants with renewables, such as onshore wind farms. The second, b′, involves
the use of a ‘geo-engineering’ technique, whereby iron is poured into the
oceans, in order to stimulate blooms of phytoplankton, which remove carbon
dioxide from the atmosphere. Suppose that under the policy maker’s µs,
the expected net monetary benefits of b are equal to b′, but that the pdf
on X entailed by b′ and µs is a mean-preserving spread of that entailed
by b and µs. One might say that the policy maker “better understands” b
than b′ given the occurrence of state s. Always preferring actions over less
well understood alternatives with the same expected payoff – what we call
ignorance aversion – is equivalent to the concavity of the function φ in our
framework. This mirrors exactly the characterization of risk aversion in SEU
theory and ambiguity aversion in KMM’s approach.

6



The rest of this paper is organised as follows. First, we introduce the ele-
ments of the choice setting and the DM’s preferences, before setting out our
assumptions and result. Then we give behavioural characterisations of “igno-
rance aversion” and “more ignorance averse”, showing that these are formally
equivalent to concavity properties of the function φ. In Section 4 we set out
a somewhat generalised version of our representation that can accommodate
“source preference”, before ending with a discussion of our assumptions and
the connection between this work and that on ambiguity. All proofs are in
the Appendix.

2 Choice and Representation

The DM chooses from a set of actions (denoted A with typical members
written a, a′) that are sentences in English describing possible things to do,
such as “Build sea defences”, “Invest $5 million in Microsoft”, or “Mow the
lawn”. Her preferences over A are represented by the binary relation �∗ on
A with asymmetric and symmetric components �∗ and ∼∗. �∗ is the pref-
erence relation of primary interest to us, but we arrive at our representation
indirectly by placing restrictions on the DM’s preferences over different sets
to A and then requiring �∗ to be consistent with these other relations in a
particular way.

To introduce these additional preferences, first let there be a consequence
space X with generic elements x, x′, equal to some bounded interval on the
real line. One way to interpretX is as encompassing all the ex ante monetary
valuations the DM might attribute to the result of an action. Such an inter-
pretation would be consistent with investment choices, for example. Second,
we assume our DM is endowed with a finite topological space, S – called her
subjective state space with typical members s, s′ – that is composed of every
contingency she can conceive of. Write E for 2S , the subjective event space.
The assumptions we make later on will implicitly require that for any E ∈ E ,
S \E is conceived of as equivalent to “E does not occur”, so we always inter-
pret S as a collectively exhaustive account of what might happen, according
to what the DM can conceive of. However, we do not assume that the DM
can conceive of every detail relevant to her choice, that is, any s might not
be so finely described that the DM would know the payoff any action would
lead to were s to occur.

Let B be the Borel σ-algebra of X and denote the set of countably additive
probability measures on B using ∆(X). The set of Anscombe-Aumann acts,
F , is then the set of all mappings from S to ∆(X), with typical elements
f, f ′. Any f is interpreted as a prospect that pays out a lottery with payoff
distribution f(s) in the event of any subjective state s, just as in Anscombe
and Aumann (1963), except with S taking the place of an objective state
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space. The DM’s preferences over Anscombe-Aumann acts are given by the
relation �AA on F . We discuss the observability of �AA in Section 5 below.

Now define G := XA with typical elements g, g′. Endowing G with the topol-
ogy of pointwise convergence, let W be the product space G × S containing
typical members w, w′. W is interpreted as the set of permutations that
might arise: that is, it comprises every possible state combined with every
possible payoff profile over A. A permutation resolves all uncertainty over
what member of S obtains and all payoff uncertainty pertaining to A: so
w = {s, g} represents the permutation where s occurs and each action a
pays out g(a). (We will usually write ws(a) to refer to g(a) where this is so.)
For each s ∈ S, define Ws : s× G, the subspace of permutations in which s
obtains, and let Bs be the Borel σ-algebra generated by the relative topology
on Ws.

Using this, we can introduce a further choice set, dubbed the space of caveats
and denoted C. C is defined as the set of B-measurable functions from W to
X, with typical members of C called caveats and written c, c′ etc. A caveat
is interpreted as a prospect that pays out some amount depending on what
permutation obtains: its structure can thus be similar to the “derivative”
actions described in Example 1. If the subjective state s occurs and the
payoff profile over A turns out to be g, then caveat c pays out c(w) where
w = {s, g}. For clarity, we show how this formal structure could be used to
describe the choice setting in Example 1.

Example 1, continued. We have the subjective state space S and an in-
terval of possible monetary payoffs, X. Supposing the space of actions
is just {a, a0, . . . , a36}, and writing s1,0 for the subjective state “Peace
holds in the Middle East and the ball lands in pocket number 0”, Ws1,0

is the set of permutations where s1,0 obtains. For instance, “s1,0 is
true, a pays out x, a0 pays out x0, . . . , a36 pays out x36” is a member
of Ws1,0 . Where g(a) = x and g(ai) = xi for i = 0, . . . , 36, we use the
compact notation {s1,0, g} for this permutation.

a′, which we described as a “derivative action” in the Introduction,
is really a caveat in this framework, so we write it as c here. Under
all permutations where a pays out more than $1.1 million, it delivers
$1,000; in all others it pays nothing. Thus, we have c(w) = $1, 000 for
w ∈ {{s, g} : g(a) > $1, 100, 000} and c(w) = $0 for all other w.

We suppose the DM is endowed with a preference relation � over C with
asymmetric and symmetric components � and ∼ (we consider the observ-
ability of this relation later on in Section 5).

Our first restriction on � is a familiar independence condition. To state it, we
use the notation {c, s; c′} to refer to the caveat c′′ that satisfies c′′(w) = c(w)
if w = {s, g} for any g ∈ G and c′′ = c′(w) otherwise. In words, c′′ pays
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out the same as c whenever s occurs and the same as c′ under any other
subjective state. The restriction is then as follows:

Axiom 1 (Independence) For any c, c′, c′′ ∈ C, c � {c′, s; c} iff {c, s; c′′} �
{c′, s; c′′}.

Given Independence, we can define a conditional preference �s for each s ∈ S
as c �s c′ iff {c, s; c′′} � {c′, s; c′′} for any c′′ ∈ C. We say state s is null
whenever c ∼s c′ for all c, c′ ∈ C.
We call the next restriction on � an “Assumption” rather than an “Ax-
iom” because its behavioural content is not immediate. More primitive be-
havioural conditions that are equivalent to it have been described by Wakker
(1985).

Assumption 1 (Caveat-SEU) Every s ∈ S is either null or such that
there exists a bounded, continuous, strictly increasing function φs : X → R
and a probability measure on Bs, denoted µs, such that:

c �s c′ ⇐⇒
ˆ
Ws

φs(c(w))dµs ≥
ˆ
Ws

φs(c′(w))dµs (3)

for all c, c′ ∈ C, and there is at least one non-null s for which there exists an
E ∈ Bs with 1 > µs(E) > 0.

The restriction that for one s there is some E ∈ Bs such that 1 > µs(E) > 0
implies that the DM does not regard the payoff of all actions as certain
conditional on all non-null states. In our presentation, this is the essence of
conscious unawareness. It corresponds to Walker’s (2011) characterisation
of “the DM believes that if s occurs she may be unaware of something” as
her willingness to gamble on some action paying out both more than and
less than some payoff x in the event of s.

As indicated in the Introduction, we wish to interpret each of the φs func-
tions as reflecting the DM’s inherent attitude towards actions she does not
understand. To make this more tenable, we impose a further assumption on
� that has the effect of allowing us to set φs = φs′ for every s, s′ ∈ S. Write
θs,c for the probability measure on B defined as θs,c(Z) = µs{w : c(w) ∈ Z}
(note this is well-defined as caveats are B-measurable).

Assumption 2 (State Independence) If s, s′ are non-null, θs,c = θs′,c′ ,
and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

It is clear that we could obtain a “state dependent” version of Theorem 1
below if we were to drop Assumption 2. We do not pursue this project here.

Turning now to �AA, we assume that it is consistent with the following.
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Assumption 3 (AA-EU) There exists a bounded, continuous, strictly in-
creasing function v : X → R and a unique countably additive probability
measure on B, denoted π, such that:

f �AA f ′ ⇐⇒
∑
s∈S

π(s)Ef(s)[v(x)] ≥
∑
s∈S

π(s)Ef ′(s)[v(x)] (4)

for all f, f ′ ∈ F .

As with Assumption 1, AA EU can be generated from more basic conditions
on �AA from Wakker (1985).

There is a sense in which the set of caveats and the set of Anscombe-Aumann
acts intersects, and the next restriction implies that �AA and � are isomor-
phic over this intersection. To see this, write x for the degenerate lottery
that pays out x, and define Fδ as the set of Anscombe-Aumann acts such
that for every s ∈ S, f(s) = x for some x. Then define Cδ as the set of
caveats that satisfy c({s, g}) = c({s, g′}) for all s ∈ S and any g, g′ ∈ G.
Clearly, for any c ∈ Cδ there exists some f ∈ Fδ such that f(s) = c(s, g) for
all s, and for any f ∈ Fδ there is a c ∈ Cδ with the property c(s, g) = f(s)
for all s. Where c ∈ Cδ, use fc to refer to the member of Fδ that yields the
same payoff in each state as c does.

In a similar way, we may also connect the set of actions with the space of
caveats. For each action a, use ca for the caveat that satisfies ca(s, g) = g(a)
for all s and note that ca pays out x if and only if a turns out to yield x
under one of the members of S.

Our final restriction connects the three preference relations as follows.

Axiom 2 (Reduction) The relations �∗, �AA, and � are mutually con-
sistent insofar as:

a. For any a, a′ ∈ A∗, a �∗ a′ if and only if ca � ca′.

b. For any c, c′ ∈ Cδ, c � c′ if and only if fc �AA fc′ .

One way of interpreting Reduction is as the requirement that the DM regards
the pairs a and ca, and c and fc as identical prospects. This only makes sense
if the DM thinks of S as an exhaustive account of what might happen – that
is, if E ⊂ S does not occur, S \ E must – and that she knows that all
possible consequences of the actions lie within X. Since it is always possible
to imagine a catch-all contingency (“none of the above occurs”), requiring
the DM to conceive of an exhaustive subjective state space does not seem
overly demanding2. And for many economic problems such as investment or

2Walker (2011) gives behavioural conditions under which the DM’s preferences reveal
that she conceives of the full state space in this way.
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policy decisions, it would be taken for granted that the set of consequences
is known (for example, X might be a set of monetary quantities, measured
in equivalent terms).

We are now ready to state our first representation theorem.

Theorem 1 The following two claims are equivalent:

1. �∗, �, �AA satisfy Independence, Reduction, Caveat SEU, State In-
dependence, and AA-EU.

2. There exist bounded, continuous, strictly increasing real maps u and φ,
and a set of probability measures on each of {Bs}s∈S, {µs}s∈S and on
E, such that for every a, a′ ∈ A:

a �∗ a′ if and only if∑
s∈S

π(s)u
(ˆ

Ws

φ(ca(w))dµs

)
≥

∑
s∈S

π(s)u
(ˆ

Ws

φ(ca(w)dµs

)
(5)

And, furthermore, π is unique, the measures µs are unique whenever
s is non-null, φ is unique up to a positive affine transformation, and
whenever φ̃ = αφ+ β, the corresponding ũ satisfies ũ(αx+ β) = u(x)
for all x ∈ φ(X).

3 Ignorance Aversion

In Example 1, we explained the DM’s violation of SEU by appeal to a general
preference for actions she better understood over those she did not. We called
this general tendency ignorance aversion. In this section we provide a formal
behavioural definition of what it is for a DM to be ignorance averse and
conditions under which one DM may be said to be more ignorance averse
than another. We show that, under the representation of Theorem 1, these
have neat mathematical characterisations in terms of the concavity of the φ
function.

To define ignorance aversion formally, we need to introduce some more ter-
minology. Say caveat c is φ-risk-free iff

´
Ws

φ (c(w)) dµs =
´
Ws′

φ (c(w)) dµs′
for all non-null s, s′ ∈ S. In other words, c is φ-risk free whenever it pays out
the same – in terms of the expected value of φ – in every state. Of course, a
φ-risk-free caveat may not be devoid of payoff uncertainty, as it could be that
the DM does not understand it and thus considers multiple payoffs possible
at various states.

For any caveat, let ηc be the probability measure on B defined as:

ηc(E) =
∑
s∈S

π(s)µs
(
c−1(E) ∩Ws

)
11



Observe that since caveats are B-measurable, ηc(E) is defined for all E ∈ B.
For any probability measure η on B, use Eη[x] for the degenerate caveat that
pays out Eη[x] under every permutation.

Consider a DM choosing between two φ-risk-free caveats which yield the
same expected value of φ, one of which she understands and one of which
she does not. If her preferences can be represented as in Theorem 1 and
she is ignorance averse, she would surely opt for the caveat she understands,
since the two caveats are identical in all other respects. This is the intuition
behind the following definition.

Definition 1 (Ignorance Aversion) The DM is ignorance averse iff, for
any φ-risk-free caveat c, Eηc [x] � c.

Just as, in the standard SEU framework, risk aversion is equivalent to the
concavity of the DM’s utility function and, in KMM, ambiguity aversion is
the same as the concavity of the DM’s utility function over second-order lot-
teries, under our representation ignorance aversion is formally characterised
by the concavity of the DM’s φ function, as the next result shows.

Proposition 1 Given the representation of Theorem 1, the DM is ignorance
averse iff φ is concave.

In the Appendix we give a parallel result that shows that u is concave if and
only if the DM is averse to mean-preserving spreads of payoffs across states,
that is, just in case he displays what we term φ-risk aversion.

Suppose now there are two DMs, A and B, and we wish to compare their
attitudes towards ignorance. Denote A’s preferences over C by �A and B’s
by �B. If their beliefs about what the caveats are likely to pay out in each
state are the same, and A prefers some φ-risk-free caveat c (which she might
not understand) to a degenerate action x (which she does understand), then,
if she is more ignorance averse than B, B must also prefer c to x. This is the
content of the following definition.

Definition 2 (“More Ignorance Averse”) DM A is more ignorance averse
than DM B iff they share the same beliefs µs for all s ∈ S and for any φ-
risk-free caveat c and degenerate caveat, x:

c �A x =⇒ c �B x (6)

Once again, we find that under our representation, A’s being more ignorance
averse than B is analogous mathematically to the properties of comparative
risk aversion in SEU and comparative ambiguity aversion in KMM.
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Proposition 2 Suppose A and B are two DMs whose preferences are rep-
resented as in Theorem 1, with φA and φB representing their respective atti-
tudes towards ignorance. Then A is more ignorance averse than B iff there
exists some strictly increasing concave function, ψ, such that φA = ψ ◦ φB.

As noted by KMM when stating a parallel result, Proposition 2 implies that
if φA and φB are twice continuously differentiable, then A is more ignorance
averse than B iff:

−
φ′′A(x)
φ′A(x)

≥ −
φ′′B(x)
φ′B(x)

Thus, provided the differentiability conditions are met, one might refer to
−φ′′(x)/φ′(x) as the coefficient of absolute ignorance aversion.

4 Application to Source Preference

It has been argued (for example, in Heath and Tversky (1991) and Chew
et al. (2008)) that DMs’ choices between uncertain prospects may hinge on
the source of uncertainty these prospects’ payoffs depend on, where a source
may be thought of as a distinct algebra of events. Such decision-making
may be irreconcilable with the representation of Theorem 1, as the following
example shows.

Example 2: Imagine the oil trader from Example 1 is presented with a
choice set that includes a and the action b = “Invest $1 million on
the NASDAQ index, liquidating the position in 6 months’ time”. For
simplicity, suppose her subjective state space is now made up of only
the states s1 and s2, which concern whether war breaks out in the
Middle East, as in Example 1. She thinks that if s1 occurs, b might
yield anything between $700,000 and $1.3 million.

She is then offered to choose between the caveats as1 , a′s1 , bs1 , and b
′
s1

below:

as1 =
“If a pays out more than $1.1 million and s1 occurs,
receive $1000, otherwise receive $0”

a′s1 = “If as1 pays out $1000, receive $0, otherwise receive $1000”

bs1 =
“If b pays out more than $1.2 million and s1 occurs,
receive $1000, otherwise receive $0”

b′s1 = “If bs1 pays out $1000, receive $0, otherwise receive $1000”

The trader reports strict preferences for as1 over bs1 and for a′s1 over b
′
s1 .

Supposing her preferences satisfy Independence, this implies that she
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violates the Caveat-SEU, because whereEa = {{s, g} : s = s1 and g(a) >
1, 100, 000} and Eb = {{s, g} : s = s1 and g(b) > 1, 200, 000}, as1 �s1
bs1 implies:

µs1(Ea)φ(1000) + (1− µs1(Ea))φ(0)
> µs1(Eb)φ(1000) + (1− µs1(Eb))φ(0)

while a′s1 �s1 b
′
s1 implies:

(1− µs1(Ea))φ(1000) + µs1(Ea)φ(0)
> (1− µs1(Eb))φ(1000) + µs1(Eb)φ(0)

which is impossible if µs1 is a probability.

However, the DM may rationalise her preferences as follows. She does
not understand either action and regards Ea and Eb as roughly equally
likely. But whereas the payoffs from as1 and a′s1 depend on a “source
of uncertainty” – namely the payoffs resulting from a – about which
she, as an oil trader, considers herself an expert, those from bs1 and b′s1
depend on a source she feels less comfortable speculating on. This is
consistent with Heath and Tversky’s (1991) “competence hypothesis”.

Preferences such as those described in Example 2 may be accommodated in
a generalised version of Theorem 1.

To show this, we want to differentiate between sources of uncertainty in
terms of actions, so, for any A ⊆ A, let CA ⊆ C be the set of A-caveats,
defined as {c : g(a) = g′(a) for all a ∈ A implies c({s, g}) = c({s, g′})}. A-
caveats are caveats whose payoff depends only on the true subjective state
and the payoff-profile generated by the actions in A. Define WA,s as the
finest partition of Ws with the property that g(a) = g′(a) for all a ∈ A
implies {s, g} and {s, g′} belong to the same element of WA,s. Then let BA,s
be the Borel σ-algebra generated by the relative topology on WA,s.

Once again we assume that � satisfies Independence so that the preference
relation �s is defined for every s ∈ S. This allows us to define a source as
follows:

Definition 3 {BA,s}s∈S forms a source if and only if, it satisfies:

i. For all non-null s, there exists a bounded, continuous, strictly increas-
ing function φA,s : X → R and a probability measure on BA,s, denoted
µA,s, such that for all c, c′ ∈ CA:

c �s c′ ⇐⇒
ˆ
WA,s

φA,s (c(w)) dµA,s ≥
ˆ
WA,s

φA,s
(
c′(w)

)
dµA,s(7)

and for at least one non-null s, there is a E ∈ BA,s such that 1 >
µA,s(E) > 0.
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ii. There is no A′ ⊃ A such that
{
Bs,A′

}
s∈S satisfies part (i).

Chew and Sagi (2008) give minimal conditions on which a source may be
distinguished by the DM’s preferences; Wakker (1985) then gives behavioural
axioms under which part (i) of the definition may be satisfied. Abusing
terminology, we say action a belongs to source {BA,s}s∈S whenever a ∈ A.
Our generalised version of Theorem 1 weakens Caveat-SEU to the following.

Assumption 4 (Source Dependence) Every action in A belongs to a
source.

For any source, we wish to ensure that φA,s = φA,s′ from (7) for all s, s′ ∈ S.
As before, this will make it possible to talk of the DM’s ignorance attitude
with respect to a certain source of uncertainty. To achieve this we need to
impose a somewhat weaker form of State Independence to that in Section 2.

Assumption 5 (State Independence∗) If s, s′ are non-null, c, c′, c′′, c′′′

belong to CA for some source A, θs,c = θs′,c′ and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

Once again, a “state dependent” rendering of Theorem 2 below would be
possible in the absence of Assumption 5.

A final behavioural condition, which is implied by Assumption 1 but not by
Assumption 4, is that the set of all A-caveats for all any source A is linearly
ordered by �.

Axiom 3 (Ordering) Let A be the set of all sources. � is transitive and
complete on

⋃
A∈A CA.

Note that Ordering allows for substantial incompleteness of � over C. If one
thinks of the caveats whose payoffs depend on the full payoff profile over A
as being the “most complicated” caveats in C, Ordering means that the DM
only needs to form preferences over the most complicated caveats in case
there is a source to which every action belongs.

Given Source Dependence, we say the DM understands action a if and only
if a ∈ A and, for all non-null s, µA,s(E) = 1 where E ⊆ {{s, g} : g(a) = x}
for some x. That is, the DM understands a if she believes that S resolves
all payoff uncertainty pertaining to a.

Theorem 2 The following two claims are equivalent:

1. �∗, �, �AA satisfy Reduction, Independence, Ordering, Source Depen-
dence, State Independence∗, and AA-EU.
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2. Every action a belongs to a source A(a); there is a bounded, continuous,
strictly increasing real map u and a probability measure π on E; for each
A(a) there is a bounded, continuous, strictly increasing map φA(a) and
a set of probability measures on each of

{
BA(a),s

}
s∈S,

{
µA(a),s

}
s∈S;

and for any a, a′ ∈ A:

a �∗ a′if and only if∑
s∈S

π(s)u

(ˆ
WA(a),s

φA(a) (ca(w)) dµA(a),s

)

≥
∑
s∈S

π(s)u

(ˆ
WA(a′),s

φA(a′) (ca′(w)) dµA(a′),s

)

And, furthermore: π is unique; µA(a),s is unique for all A(a) and non-
null s; φA is unique up to an affine transformation, and if φ̃A = αφA+
β, the associated ũA is such that is such that ũA(αx+ β) = uA(x) for
x ∈ φ(X); and for all a, A(a) is unique iff the DM does not understand
a, and a ∈ A(a′) for all a′ ∈ A otherwise.

The uniqueness part of Theorem 2 implies that the set of all actions the DM
does not understand may be partitioned according to the source they belong
to. Thus, it is only possible for two actions to belong to separate sources if
the DM understands neither of them.

5 Discussion

Theorems 1 and 2 show how one can represent mathematically the behaviour
of consciously unaware decision makers who violate SEU but observe cer-
tain weaker regularity conditions. The results therefore offer foundations
for incorporating this kind of decision-making into a wide range of areas
of economic theory, including game theory, finance, and policy analysis, as
well as facilitating the empirical analysis of such DMs. The fact that these
representations maintain much of the technical and intuitive apparatus of
SEU means that (we hope) such an integration could be achieved without
departing radically from existing analytical methods in these areas.

In this concluding section we discuss two broad issues concerning our repre-
sentations. The first of these is the observability of the preference relations
� and �AA, which bear most of the weight of our assumptions. For whereas
�∗, the DM’s preferences over actions, may be elicited straightforwardly,
it might be objected that � and �AA are defined on inherently subjective
objects – namely, maps that are defined in terms of S – and are thus not
readily observable.
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Walker (2011) shows how, in a choice setting similar to that used here, a
DM’s subjective state space may be revealed by his preferences over a set of
prospects defined in terms of the set A. In principle, one could therefore un-
cover S using that approach and then test whether the DM’s preferences over
caveats and Anscombe-Aumann acts were consistent with our assumptions.
Though we acknowledge this testing procedure is likely to be infeasible in
most practical settings, we note that most other representations in the liter-
ature, including SEU and KMM’s model, are guilty of the same charge.

The second issue is the relation between the effect of conscious unawareness
and ambiguity, in particular the connection between KMM’s representation
and our own. Our explanation for why the DM in our initial example violated
SEU – that she was ignorance averse – closely parallels the explanation of
the Ellsberg paradox in terms of ambiguity aversion. Under both accounts,
the DM exhibits a tendency to choose prospects whose payoff structure (be
it the probability distribution over states or the mapping from states to
consequences) is known to her, and this tendency is inconsistent with SEU
because it leads to a violation of Savage’s P2, the Sure Thing Principle.

To see precisely how each violation of P2 arises, recall Ellsberg’s (1961)
“single-urn” thought experiment, where a DM may gamble on whether a ball
drawn from an urn containing 90 balls is red, green, or yellow. She knows
that there are 30 red balls and that each of the remaining 60 balls is either
green or yellow, though in unknown proportion. Writing R, G, and Y for the
respective events corresponding to “The ball drawn is red / black / yellow”,
suppose the DM is offered the choice between prospect a, which pays out
$100 in case of R and $0 otherwise, and prospect b, which pays out $100 in
case of B and $0 otherwise. Since a and b pay out the same under event Y ,
the Sure Thing Principle requires that the DM’s preference between a and
b is independent of the amount they pay under Y (provided it is the same).
Thus, if she prefers a to b, she should also prefer a′, which pays out $100 in
case of R ∪ Y and $0 otherwise, to b′, which pays out $100 if G ∪ Y and $0
otherwise. In KMM, an ambiguity averse DM – reasoning that the prospects
a and b′ are ambiguous whereas a′ and b are not – may, however, prefer a to
b and b′ to a′.

In our theory, an analogous case would be where S comprised s1 and s2
and Ws2 could be paritioned into {E,E′} such that 1 > µs2(E) > 0. The
DM could then be offered the choice between caveat c1, defined such that
c1(w) = 100 if w = {s1, g} for any g and c1(w) = $0 otherwise, and c2,
which satisfies c2(w) = $100 if w ∈ E and c2(w) = $0 otherwise. Under the
Sure Thing Principle, the DM prefers c1 to c2 if and only if she prefers c′1,
which pays out $100 if c1(w) = $100 or any permutation in E′ occurs and
$0 otherwise, over c′2, which pays out $100 if s2 obtains and $0 otherwise.
However, if she is ignorance averse, the DM may reason that she understands
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c1 and c′2 but not c′1 and c2, and thus report a preference for c1 over c2 and
c′2 over c′1.

Although these two cases have very similar structures, the way they are
respectively accommodated in KMM’s representation and ours is somewhat
different. In KMM’s treatment of Ellsberg’s single-urn example, the DM’s
preferences reveal that she considers various probability measures on 2{R,G,Y }

possible. All of these measures assign the same probability to R and G∪ Y ,
but not all assign the same probability to G and R∪Y . This is what explains
her preferences for a over b and b′ over a′. In our treatment of the analogous
case, the DM’s preferences reveal that she considers multiple payoff profiles
under s2 possible: under all these profiles, c1 and c′2 yield a determinate
payoff, but under different profiles c2 and c′1 pay out different amounts.
Thus, while the violation of Savage’s P2 in our theory has uncertainty over
the way actions map from states to consequences as its genesis, in KMM
the axiom fails because of uncertainty over the true probability measure on
events. To cope with examples where both these forms of uncertainty were
present, one would need a more general theory that nested both KMM’s
representation and our own.

A further distinction between the way ambiguity features in KMM and the
way conscious unawareness works here is in how the DM’s attitude towards
them relates to her appetite for risk. In KMM’s representation, the DM is
portrayed as evaluating prospects, first by computing their expected util-
ity under each possible probability measure (and thus accounting for their
riskiness under each measure), and then by calculating their expected value
given the likelihood she attaches to each measure (thereby accounting for
their ambiguity). Her attitudes towards uncertainty may thus be decom-
posed into separate attitudes towards risk and ambiguity. Here, by contrast,
the DM’s attitude towards risk is given by the function v and her attitude
to ignorance by φ, and the two are connected by the identity v = u ◦ φ. Her
ignorance attitude is thus a component of her risk attitude in our theory.

It should be stressed that this does not mean conscious unawareness could
not be used – as KMM’s approach has been – to explain phenomena that
do not seem reconcilable with SEU and standard measures of risk aversion.
An example of this is the “Equity Premium Puzzle” in financial economics,
which Collard et al. (2011) have explained in terms of ambiguity aversion.
This is simply because it need not be the case under our representation that
a �∗ a′ iff Eηca [v(x)] ≥ Eηca′ [v(x)].

Finally, although there is no dynamic aspect to our representation, we note
that a dynamic treatment of conscious unawareness might involve departures
from the Bayesian paradigm that would not be called for in the presence of
ambiguity. Essentially this is because, in the presence of conscious unaware-
ness, the DM may increase her knowledge of the full state space over time,
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something that is impossible in the presence of ambiguity. Updating in the
presence of unawareness is an active area of research and has been studied
by Karni and Viero (2011).

A Appendix

A.1 Proof of Theorem 1

Observe that Caveat-SEU implies that all actions belong to a single source,
in which case State Independence and State Independence are equivalent.
Therefore the result follows from Theorem 2. �

A.2 Lemma A.1

We note the following result (reported as Lemma 6 in KMM), which is in-
voked in the proofs below.

Lemma A.1 If φ : X → R is a continuous function and X ⊆ R is convex,
then φ is concave iff there exists a λ ∈ (0, 1) such that for all x, y ∈ X where
x 6= y:

φ(λx+ (1− λ)y) ≥ λφ(x) + (1− λ)φ(y)

A.3 Proof of Proposition 1

First note that where c is a risk-free caveat and s′ is a non-null state,
Eηc [φ(x)] =

∑
S π(s)

´
Ws

φ(c(w))dµs =
´
Ws′

φ(c(w))dµs′ ·
∑

S π(s). Thus:

Eηc [φ(x)] =
ˆ
Ws

φ(c(w))dµs (8)

for all non-null s ∈ S.
Under the representation, δEηc [x] is preferred to the risk-free caveat c iff:

∑
S

π(s)u (φ(Eηc [x])) ≥
∑
S

π(s)u
(ˆ

Ws

φ (c(w)) dµs

)
which, given (8), holds iff:

u (φ(Eηc [x])) ≥ u (Eηc [φ(x)])

Since u is strictly increasing, this is equivalent to:

φ (Eηc [x]) ≥ Eηc [φ(x)] (9)
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Now if φ is concave, it is immediate from Jensen’s inequality that (9) will be
satisfied for any risk-free caveat, so the DM is ignorance averse.

Working in the other direction, suppose that the DM is ignorance averse and
recall that, for some s there exists a member of Bs, E, such that 1 > µ(E) >
0. For any x, y ∈ X with x 6= y, there is a caveat c satisfying c(w) = x for
all w ∈ E, c(w) = y for all w ∈ E′, and c(w) = φ−1 (µ(E)φ(x) + µ(E′)φ(y))
for all w ∈Ws′ where s′ 6= s. Evidently, c is a risk-free caveat.

The next step is to show that Eηc [x] ≤ µs(E)x + (1 − µs(E))y. Suppose
instead that Eηc [x] > µs(E)x+ (1− µs(E))y. This could only hold if:

φ−1 (µs(E)φ(x) + (1− µs(E))φ(y)) > µs(E)x+ (1− µs(E))y

which (since s is non-null) implies:

φ−1 (µs(E)φ(x) + (1− µs(E))φ(y)) >
π(s) (µs(E)x+ (1− µs(E))y) +

(1− π(s))φ−1 (µs(E)φ(x) + (1− µs(E))φ(y))

It follows that:

µs(E)φ(x) + (1− µs(E))φ(y) > (10)

φ

[
π(s) (µs(E)x+ (1− µs(E))y) +

(1− π(s))φ−1 (µs(E)φ(x) + (1− µs(E))φ(y))

]
But under the representation, (10) can be satisfied iff c �s δEηc [x]. Since
by construction it must be that c ∼s′ δEηc [x] for all other s′, it follows by
Independence that c � δEηc [x], contradicting the initial supposition that the
DM was ignorance averse. We thus conclude Eηc [x] ≤ µs(E)x+(1−µs(E))y.

If Eηc [x] ≤ µs(E)x + (1 − µs(E))y then the fact that δEηc [x] � c implies
δEµs [x] � c where δEµs [x](w) = µs(E)x + (1 − µs(E))y for all w. Since c is
risk-free, this can only hold if δEµs [x] �s′ c for all s′. For state s it must
therefore be that:

φ (µs(E)x+ (1− µs(E)y)) ≥ µs(E)φ(x) + (1− µs(E))φ(y) (11)

This argument shows that (11) is true for any any x, y where x 6= y. Since
µs(E) ∈ (0, 1), Lemma A.1 implies that φ is concave. �

A.4 Proof of Proposition 2

For any risk-free caveat c, write ceA(c) for φ−1
(´

Ws
φ(c(w))dµs

)
(where s

is non-null). Under the representation we have:

c �A x ⇐⇒ uA (φA(ceA(c))) ≥ uA (φA(x))
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Which, since uA and φA are strictly increasing, holds iff ceA(c) ≥ x. If
φA = ψ ◦ φB for a concave ψ then by Jensen’s inequality we have ceB(c) ≥
ceA(c) for any risk-free c, from which it follows immediately that A is more
ignorance averse than B.

Suppose now that A is more ignorance averse than B and define ψ := φA ◦
φ−1
B , which must be strictly increasing under the representation. We proceed

as in the proof of Theorem 2 in KMM. Take a non-null s such that there
exists a E ∈ Bs such that 1 > µs(E) > 0 and any risk free c. ceB(c) ≥ ceA(c)
requires:

φ−1
B

(ˆ
Ws

φB(c(w))dµs

)
≥ φ−1

A

(´
Ws

φA(c(w))dµs
)

which, since φA = ψ ◦ φB, implies:

ψ

(ˆ
Ws

φB(c(w))dµs

)
≥
´
Ws

(ψ ◦ φB)(c(w))dµs (12)

For any x, y ∈ X with x 6= y, (12) holds for c such that c(w) = x if w ∈ E
and c(w) = y otherwise. Thus, one can invoke Lemma A.1 to establish that
ψ is concave. �

A.5 Proof of Theorem 2

The proof follows a similar path to that for KMM’s Theorem 1. We show
that the axioms imply the representation and uniqueness properties.

Under Independence and Source Dependence, for source A there is at least
one non-null state s such that there exists an E ∈ Bs with µ(E) ∈ (0, 1).
By State Independence∗, whenever c, c′ ∈ CA, c �s c′ iff Eθs,c [φA,s′(x)] ≥
Eθs,c′ [φA,s′(x)] for all non-null s′ ∈ S. This implies that for any non-null
s′, s′′, φA,s′(x) = αφA,s′′(x) + β for some (α, β) ∈ R++ × R, and hence that
for any non-null s′ and c, c′ ∈ CA, c �s′ c′ iff

´
WA,s′

φA,s(c(w))dµA,s′ ≥´
WA,s′

φA,s(c′(w))dµA,s′ . Now proceed setting φA = φA,s

Since φA is continuous and strictly increasing, for every c ∈ CA and every
non-null s ∈ S, there is some unique x ∈ X such that where c′ ∈ Cδ satisfies
c′({s, g}) = x for all g, {c′, s; c} ∼ c. For each c ∈ CA, let cδ be some
member of Cδ such that {cδ, s; c} ∼ c for all s. By iterated applications of
Independence, for any c, c′ ∈ CA it must be that c � c′ iff cδ � c′δ.
Reduction then requires that c � c′ iff fcδ � fc′δ , which by AA-EU is equiv-
alent to: ∑

S

π(s)v (cδ(s)) ≥
∑
S

π(s)v
(
c′δ(s)

)
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Since φA and v are both strictly increasing and continuous, there exists some
strictly increasing and continuous uA such that v = uA ◦ φA. Hence c � c′

iff: ∑
S

π(s)uA(φA(cδ(s))) ≥
∑
S

π(s)uA(φA(c′δ(s))) (13)

Given Caveat-SEU we have:

{c, s; cδ} ∼s cδ ⇐⇒
ˆ
WA,s

φA(c(w))dµA,s = φA(cδ(s))

So by construction (13) implies that c � c′ iff:

∑
S

π(s)uA

(ˆ
WA,s

φA(c(w))dµA,s

)
≥

∑
S

π(s)uA

(ˆ
WA,s

φA(c′(w))dµA,s

)

And then Reduction yields that for any a, a′ ∈ A, a �∗ a′ iff ca � ca′ .
Finally, consider any a, a′ ∈ A. Source Dependence implies that there exist
sources A(a) and A(a′) such that a ∈ A(a) and a′ ∈ A(a′). By Reduction,
Ordering, and the reasoning above, it must be that a � a′ iff (ca)δ � (ca′)δ
iff f(ca)δ � f(c′a)δ

. The latter implies:∑
S

π(s)v ((ca)δ(s)) ≥
∑
S

π(s)v ((ca′)δ(s))

Which as we have shown is equivalent to:

∑
S

π(s)uA(a)

(ˆ
WA(a),s

φA(a)(c(w))dµA(a),s

)
≥

∑
S

π(s)uA(a′)

(ˆ
WA(a′),s

φA(a′)(c
′(w))dµA(a′),s

)

as required.

AA-EU implies imply that π is unique and caveat-EU implies that µA,s is
unique for all non-null s; and it is obvious that if s is null, the representation
is valid for any arbitrary µA,s. By assumption, φA is unique up to a positive
affine transformation and v = uA◦φA, so it is immediate that if φ̃A = αφ+β
then the associated ũA satisfies ũA(αx+ β) = uA(x) for x ∈ φ(X).

Finally, suppose a ∈ A(a) ∩ A(a′) where A(a) 6= A(a′). We show that this
can only be the case where for all non-null s there is some x such that
µs ({{s, g} : g(a) = x}) = 1: that is, where the DM understands a. Clearly,
if the DM does understand a, then a belongs to all sources, so the uniqueness
claim follows from this.
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Imagine that a ∈ A(a)∩A(a′) whereA(a) 6= A(a′) and that for some s there is
an x such that 1 > µs ({{s, g} : g(a) = x}) > 0. Definition 3 implies A(a) 6⊆
A(a′) and A(a) 6⊇ A(a′), so there exists an a′′ ∈ A(a)\A(a′); since a′′ /∈ A(a′),
the DM does not understand a′′. The fact that the DM does not understand
a implies that whenever c �s c′ iff

´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs for
c, c′ ∈ Ca, φa is unique up to a positive affine transformation. Since the same
holds for a′′, it follows that c �s c′ iff

´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs
for all c, c′ ∈ Ca′′ and hence (given Ordering) that whatever sources a belongs
to, a′′ also belongs to, a contradiction. �

A.6 φ-Risk Aversion

For each c, write φc =
∑

S π(s)
´
Ws

φ(c(w))dµs, that is, the expected value
of φ(x) under the probability measures π and {µs}s∈S . φ−1(φc) is then the
consequence that yields this value of φ.

Definition 4 (φ-Risk Aversion) The DM is φ-risk averse iff for any c ∈
C, φ−1(φc) � c.

Proposition 3 Under the representation, provided there are at least two
non-null states in s, the DM is φ-risk averse iff u is concave.

Proof: This result echoes part of KMM’s Proposition 1 and the proof has
the same structure.

The DM’s being φ-risk averse is equivalent to:

u

(∑
S

π(s)
ˆ
Ws

φ(c(w))dµs

)
≥

∑
S

π(s)u
(ˆ

Ws

φ(c(w))dµs

)
for all c ∈ C. Jensen’s inequality thus ensures that if u is concave, the DM
is φ-risk averse.

Now suppose that the states s and s′ are non-null and that the DM is φ-risk
averse. Note that since φ is continuous, φ(X) – the range of u – is a convex
subset of the real line. Take any x, y ∈ φ(X) where x 6= y and, letting
a = φ−1(x) and b = φ−1(y), consider the caveat, c, that satisfies c(w) = a
for all w ∈ Ws and c(w) = b otherwise. Since it must be that φ−1(φc) � c,
we have:

u (π(s)x+ (1− π(s))y) ≥ π(s)u(x) + (1− π(s))u(y)

Since π(s) ∈ (0, 1) and given Lemma A.1, this means that u is concave. �
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