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Abstract

This paper investigates the nature of model error in complex de-

terministic nonlinear systems, such as weather forecasting models.

Forecasting systems incorporate two components, a forecast model

and a data assimilation method. The latter projects a collection of ob-

servations of reality into a model state. Key features of model error

can be understood in terms of geometric properties of the data projec-

tion and a model’s attracting manifold. Model error can be resolved

into two components, a projection error, which can be understood

as the model’s attractor being in the wrong location given the data

projection, and direction error, which can be understood as the tra-

jectories of the model moving in the wrong direction compared to the

projection of reality into model space. Our investigation introduces

some new tools and concepts, including, the shadowing filter, causal

and non-causal shadow analyses, and various geometric diagnostics.

Various properties of forecast errors and model errors are described

with reference to low dimensional systems, like Lorenz’s equations,

then an operational weather forecasting system is shown to have the

same predicted behaviour. The concepts and tools introduced show
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promise for the diagnosis of model error and the improvement of en-

semble forecasting systems.

1. Introduction

In operational numerical weather prediction (NWP), data assimilation is a process

whereby a series of observations is transformed into a single best-guess model

state or an ensemble of model states from which forecasts are to be launched. In

the perfect model scenario, an ensemble would consist of a set of model states,

each the end point of a model trajectory consistent with observations of the sys-

tem. If the system evolves on an attractor, then the ensemble members should lie

on the attractor. If they do not, then it can be easily shown for nonlinear systems

that having states not on the attractor can significantly degrade forecasts (Judd

2003). Even when the model is imperfect, sampling the full state space of the

model is less efficient than sampling the manifold of states consistent with the

model dynamics; in high-dimensional models the difference in efficiency can be

vast. And even a single “best guess” forecast can benefit from being consistent

with longer term dynamics of the model. In this paper we present a series of ar-

guments and numerical experiments to support three conjectures. First, attracting
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manifolds exist in operational weather models. Secondly, model states can be

found which lie much closer to the relevant manifold than the output of current

data assimilation algorithms. Thirdly, these states are beneficial to model devel-

opment and forecasting. This extends earlier work on low dimensional chaotic

maps (Judd et al. 2004b) to the Navy Operational Global Atmospheric Prediction

System (NOGAPS) (Baker et al. 1998).

In section 2 we first provide a brief overview of some important properties

of nonlinear dynamical systems from a geometric point of view. It is noted that

model states can be expected to evolve toward an attracting manifold, which is

of lower dimensional than the entire state space. We argue that forecast errors

can be resolved into two distinct components: one due to initial conditions not

being on the attracting manifold, the other due to model error. We argue that

using initial conditions on the attracting manifold (a shadow analysis) would be

expected to provide benefits in a wide class of dynamical models, including im-

proved forecasts and detection of model error. To establish our claims we discuss

the signatures and geometry of various error growths. This enables us to highlight

potential shortcomings of forecast systems.

It is not easy to visualise the decomposition of uncertainty in high-dimensional

spaces. In section 3 we introduce methods to extract information about the dynam-
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ics of uncertainty and error growth from different initial conditions in operational

weather models. First a method for locating analyses on (or near) the attracting

manifold is introduced. We then show how low order polygons (triangles and

tetrahedra) can be employed to effectively extract information from a handful of

trajectories in a high-dimensional space and displaying it in an intuitively acces-

sible form. We derive the behaviour we expect to see in these graphs if indeed

attracting manifolds are relevant to dynamics.

Section 4 presents the results from exploring these ideas in high-dimensional,

operational weather model. We show that the dynamics indicate that an attracting

manifold plays a significant role in the dynamics of NOGAPS, suggesting that

operational forecasting systems might usefully take this into account. We also

note how this style of analysis can provide strategic insight into the details of

model inadequacy, in addition to improving tactical skill by sampling near the

model attracting manifold, and only near that manifold. Conclusions are presented

briefly in section 5.
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2. Geometry, Statistics, and Model Error

Dissipative nonlinear dynamical systems can have a variety of geometric struc-

tures that can be used to help understand the system. These structures include

invariant sets, slow manifolds, inertia manifolds, and attractors. Here our inter-

est is attracting manifolds, which we will define as forwardly invariant manifolds

that are attracting, in the sense that there is a neighbourhood of the manifold that

trajectories enter and do not leave. In this section we begin by discussing the role

attracting manifolds play in understanding model error, introducing the idea of

shadow analyses, and exploring some of the dynamical behaviours and geometri-

cal relationships associated with model error.

The geometry of linear systems is straight forward, and consequently most

features of linear systems are revealed through appropriate choice of metric and

basis vectors, which define a global coordinate system. The geometry of nonlinear

systems is complex with a rich variety of structures. Features of nonlinear systems

can sometimes be revealed by employing nonlinear coordinate systems. These

useful coordinate systems are often defined by local properties of the system. For

example, a coordinate system that moves with state or a coordinate system defined

by local singular vectors. In the following discussion, particularly sections 2c and

2d, we employ different nonlinear coordinates where necessary, often implicitly.
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When and how this is done is discussed in an appendix to avoid unnecessarily

obscuring the main points with technical details.

2a. Lessons from Lorenz

Much is known about the properties of the Lorenz equations (Lorenz 1963; Spar-

row 1982; Guckenheimer and Holmes 1983) and new discoveries continue to be

made (Tucker 2000). The attractor of the Lorenz equations is a complex object

and what is often referred to as its “butterfly-shaped attractor” might be better

thought of as an attracting manifold. It is not necessary for us to be precise here;

thinking of the “butterfly wings” as being a branched two-dimensional attracting

manifold is sufficient to visualize the following.

One of the important properties of the Lorenz system is sensitivity to initial

conditions: two states close together on an attracting manifold will move apart

over time, until eventually they will be far apart. This implies that even with a

perfect model any uncertainty in the initial state leads to growing forecast errors

and eventual failure of the forecast. It is often stated that forecast errors will grow

exponentially, generally this is not what happens (Smith et al. 1999), it is only

what happens on average. Even on the attractor states can move closer together

before moving apart.
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Another important property of the Lorenz system is that almost all states

quickly evolve to states close to an attracting manifold, and remain close. The

attracting manifold represents physically realisable states of the system, that is,

one always expects to find the Lorenz system in a state close to an attracting man-

ifold.

Sensitivity to initial conditions and the existence of an attracting manifold

are properties of many nonlinear dissipative systems, although the latter property

may not be obvious. The Lorenz equations cannot be solved exactly, but can

be numerically integrated to reveal the three dimensional structure of the attract-

ing manifold. For NWP models it is impossible to visualise an attracting man-

ifold, not only is the state space dimension enormous (on the order of 106–107

for operational models), but also the recurrence time (time to go “once around”

the attractor) is even more enormous (on the order of 1030 years (van der Dool

1994)). Nonetheless the existence of an attracting manifold can be deduced. Dis-

sipative systems must have an attractor, and sensitivity to initial conditions and

the existence of attracting manifolds can be surmised from the spectrum of local

Lyapunov exponents and singular values. Later we will provide evidence using

new geometric methods.
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2b. Data assimilation, models, and attracting manifolds

Data assimilation uses observations of reality to obtain an analysis, a state of

the model. What the analysis represents is open to interpretation, especially for

imperfect models. Here we consider the relationship between an analysis and the

a model’s attracting manifold.

Data assimilation should really be thought of as an aspect of the modelling

process. The process of assimilating data implements a mapping from observa-

tions of reality into model states, and by doing so provides concrete meaning to

the model variables. This mapping may involve some statistics to account for ob-

servational errors. With a perfect model there is an isomorphism between reality

and model states1.

If a deterministic model were perfect, then there is a true state, under the iso-

morphism. This true state would give perfect forecasts for all time. Indeed the

isomorphism and determinism imply that the property of giving perfect forecasts

can be taken as a definition of what a true state of a model means. This true state
1Isomorphism here means that for every state of reality there is a corresponding unique state

of the model. Consequently, there is mapping between observed quantities and model variables.
There are many perfect models, with different isomorphisms, but each is isomorphic to the others.
Observations may be inaccurate, or incomplete, or both. Inaccuracy alone is sufficient to prevent
determination of the true state (Judd and Smith 2001). If the system is finite dimensional, then
Takens Theorem implies that generically the isomorphism can be achieved by time-delay embed-
ding (Takens 1981).
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must be a state on, or very close to, the attracting manifold of the model. When

data is assimilated into a perfect model to obtain an analysis one expects some

random variation of the analysis due to observational errors. Therefore, the analy-

sis may be thought of as a random variable distributed about the true model state.

Data assimilation for a perfect model is a statistical process of estimating the true

state or an ensemble representation of our knowledge (or uncertainty) about the

true state. If the assimilation of data were ideal, then the expected location of the

analysis is the true state2. Hence, for a perfect model and ideal data assimilation,

the analysis is on, or close to, the attracting manifold. There is no sensible alter-

native; failure to put the analysis close to the attracting manifold is a failure of

the data assimilation method. (It is known that some data assimilation methods

(optimal interpolation, 3D variational assimilation, Kalman filter) do not obtain

an analysis close to the attracting manifold even in a perfect model scenario (Judd

2003), although later we describe a shadowing filter which appears to.) It should

also be noted that the expected location of an analysis traces a path over time.

With a perfect deterministic model and unbiased data assimilation, this path is a

trajectory of the model dynamics.

2Achieving this may be difficult even with a perfect model (Judd and Smith 2001). It is possible
that it can only be achieved in retrospect using observations from both the past and future (Ridout
and Judd 2001). Even then there are situations when the true state cannot be determined (Judd
2007a).
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If a deterministic model is imperfect, then there is no true state for the model;

with an imperfect model there cannot be an isomorphism between reality and

model, and there can be no state of the model that provides perfect forecasts.

Data assimilation provides an analysis, but it is not clear how to interpret what the

analysis is. It is certainly not valid to interpret the analysis as an estimate of a true

state of the model3. The analysis will still be a random variable, but there need

not be any special relationship between the expected location of an analysis and

an imperfect model’s attracting manifold.

In both the perfect and imperfect model scenario, the mapping from observa-

tions to model states that data assimilation provides should be considered part of

the model, and so, the term model error may refer to errors of the mapping or the

dynamics, and the source of error is not necessarily separable.

2c. Two types of model error, and shadow analyses

Our goal is to obtain a model and data assimilation method that are useful for

forecasting given available resources, where useful might mean close to being

perfect by some measure. The previous section implies that a perfect model re-

3Although it may be useful to interpret a state obtained by data assimilation as an approxima-
tion of the “true state” of the atmosphere, the model and the atmosphere are different in terms of
state space and dynamics. Consequently, no state of an imperfect model can ever represent a “true
state” of the atmosphere.
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quires having a data assimilation method that produces analyses that lie close to

the attracting manifold of the model, and that the expected location of the analyses

over time traces a trajectory of the model.

It should be clear that there are essentially two different types of error that

require tuning: one tuning ensures that the analyses lie on an attracting manifold

of the model, the other tuning ensures that the expected location of the analyses

over time traces a trajectory of the model. Figure 1 may help to illuminate the

following discussion.

[Figure 1 about here.]

If the location of an attracting manifold is known for a model, then a projection

can be defined that maps each model state to a corresponding state on the attracting

manifold. This is typically a nonlinear projection4. Then for any analysis not on

the attracting manifold, there is a corresponding shadow analysis; it is the shadow

of the analysis on the attracting manifold under the projection. The difference

between an analysis and its shadow analysis will be referred to as projection error.

Given a sequence of shadow analyses that are on an attracting manifold, one

can test whether these analyses are a trajectory by computing a forecast from
4The term projection is used here in the sense of a topological retract. A retract is a continuous

mapping of the entire space into a subspace. In the present context the subspace is the attracting
manifold. This mapping will typically be nonlinear. Ideally the projection also retracts trajectories;
that is, trajectories in the entire state space are mapped to trajectories on the attracting manifold.
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a shadow analysis and compare this with the next (verifying) shadow analysis.

These one-step forecast errors will be referred to as direction error.

Shadow analyses, along with projection and direction errors are illustrated in

figure 1(a). Projection and direction errors will depend on the projection used to

obtain shadowing analyses; indeed a badly chosen projection can produce spuri-

ous direction errors. (Ideally the projection should map trajectories to trajectories

on the attracting manifold, which will avoid spurious direction errors.) Further-

more, one needs to take care when computing direction errors to minimize the

effects of analyses being random variables influenced by observational errors.

In practice, using several original analyses to obtain a given shadow analysis

will assist at minimizing random effects. It is useful to consider two different

kinds of shadow analysis. A causal shadow analysis uses only information up

to the present time, that is, it is obtained using only original analyses (or obser-

vations) from the past (possibly distant past) and present; it uses no information

from future analyses or observations. A non-causal shadow analysis uses infor-

mation from the past, present and future, including the distant past and far future.

Obviously, non-causal shadow analyses cannot be used for real-time forecasting,

but they are arguably the highest quality and most appropriate verifications. Non-

causal shadow analyses play an important role in investigating model error; espe-
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cially in the computation of direction errors. By incorporating information from

the past and future a non-causal shadow analysis will have smaller random varia-

tion than a causal shadow analysis5.

2d. Forecast errors

Forecast error is usually defined as the difference between a forecast and truth,

which is, strictly speaking, impossible to calculate, because the truth is unknown.

At best, one must substitute some proxy for truth. Two common proxies are ob-

servations of reality, or some analysis state. Working with observations of real-

ity (verification in observation space) and working with analyses (verification in

model space), each have their own advantages and disadvantages. When a model

is perfect, then these two alternatives are equivalent, because there is an isomor-

phism between reality and model. When the model is imperfect, then verification

against observations requires introducing a mapping from model space to obser-

vation space. This mapping need not be unique, nor need it be possible to “invert”

the mapping that data assimilation provides. This mapping (like the mapping that

data assimilation provides) should be considered as part of the model. The map-

5In fact, in a perfect model of a hyperbolic system, when observation errors are sufficiently
small, it can be shown that as information is gathered from further in to the past and future a
non-causal shadow analysis will converge to the true state (Ridout and Judd 2001).
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ping is another source of model error that needs to be accounted for.

For our present purposes, verification in model space has the convenient ad-

vantage that we do not need to contend with a third source of model error. Con-

sequently, in the following we will use analysis states as proxies for truth when

investigating forecast errors. A disadvantage of using analyses is that variances

and co-variances of errors are not as readily available as they are for simple ob-

servations. Since we are more interested in dynamical features, we avoid this

difficultly by working with an energy-like norm when comparing model states.

Define the forecast error of a given analysis to mean the difference ‖y(t) −

x(t)‖ between a forecast x(t) and a suitably chosen verifying analysis y(t) at

given lead time t, where the forecast x(t) is the trajectory starting at the anal-

ysis x0 = x(0) at t = 0. To understand the nature of these forecast errors

we investigate the geometric relationship between analysis states, the attracting

manifold, and shadow analyses. Figure 1(b) illustrates the essential geometrical

relationship between a sequence of analyses, their corresponding shadow analy-

ses, and forecast trajectories starting from the analysis and its shadowing analysis

at t = 0. In this section we decompose the forecast errors into three different

sources: sensitivity to initial conditions, entrainment with an attracting manifold,

and accumulation of direction errors. These effects are illustrated in figure 2 as
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we now describe.

[Figure 2 about here.]

If a sequence of analyses have fairly constant projection error6, as illustrated

in figure 1(a), then a forecast trajectory from an analysis at t = 0 will move

towards the attracting manifold and away from the verifying analyses. In fact, we

should predict that rather than seeing approximately exponential growth of errors,

figure 2 curve (A), we will see errors that increase with an approximately inverted

exponential decay as illustrated in figure 2 curve (B); see appendix for a more

detailed discussion of this and the following arguments. This observation will be

true regardless of whether the model includes direction error, the approximately

inverted exponential decay only requires fairly consistent projection error, and

sufficiently fast motion onto the attracting manifold.

Now consider forecasting future shadow analyses from the shadow analysis at

t = 0, see figure 1(b). Since all these states are already on the attracting manifold,

it follows that the principle source of forecast errors will be due to sensitivity to

initial conditions, or accumulated direction error, or a combination of both. Sen-

sitivity to initial conditions should result in more or less exponential increase in

6The projection error could result a model bias (attractor in wrong location) or from random
errors in a high-dimensional space producing a chi-squared distribution with many degrees of
freedom.
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errors, but direction errors should accumulate to give a more or less linear increase

in forecast errors, see figure 2 curves (A) and (C). Whether approximately expo-

nential or linear increase of errors dominates depends on the relative magnitudes

of the singular values of the tangent map and the magnitude of direction errors. Of

course, the singular vectors can change direction and magnitude along the forecast

trajectory, so other higher order (nonlinear) effects may be in evidence.

Finally, consider how the original analysis performs at forecasting the future

shadow analyses. Because the forecast trajectory moves away from the future

analyses toward the attracting manifold where their shadow analyses lie, one

should anticipate that forecasts from the original analysis will be better at fore-

casting future shadow analyses than they are at forecasting future analyses. Ini-

tially we expect to see a decrease in distance between the analysis forecast and

shadow analyses, but this distance should then increase as a result of sensitivity

to initial conditions and accumulated direction error, see figure 2 curve (D). Of

course, nonlinear effects could have an effect too.

Hence, figure 2 shows four different and distinctive error curves depending on

where the forecast is started, and what is being used as the verification. The rela-

tive slopes of these graphs initially depend on the relative magnitudes of stable and

unstable singular values, the magnitude of the direction errors, and the magnitude
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of random variation of analyses due to observational error. Figure 2 corresponds

to a situation where three conditions are met. Firstly, the largest magnitude of

stable singular values are much larger than the largest magnitude of the unstable

singular values, so that errors in stable directions dissipate faster than errors in un-

stable directions grow. Secondly, accumulation of direction errors dominates the

unstable singular values. Thirdly, the magnitude of random variation of analyses

due to observational error is small compared to the projection error, or just finite

variance in a system with large dimension7.

It might be noted that a similar behaviour to curves A and B in figure 2 has

been noted in operational weather models by Lorenz (1982) and has been stud-

ied by many others (Dalcher and Kalnay 1987; Nicolis 2004a,b; Simmons et al.

1995; Simmons and Hollingworth 2002; Reynolds et al. 1994; Vannitsem and

Toth 2002). Previous work has proposed algebraic models for the observed er-

ror growth, whereas we provide a geometric interpretation. Section 4 provides

evidence in support of our interpretation for an operational weather model.

7If the observational errors have finite variance and the system has a large dimension, then
projection error will have an approximately chi-squared distribution, with many degrees of free-
dom. Such a distribution is approximately Gaussian with small variance relative to the mean. This
implies the projection error will be approximately constant.
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3. Analytical tools and methods

In order to provide evidence that the phenomena described in the previous section

are significant in an operational weather forecasting model, we have employed

analytical tools and methods that are either new or not previously employed in

a NWP context. These tools are used to obtain our shadow analyses and to in-

vestigate the geometric relationship of analyses, shadow analyses and forecasts to

reveal the influence of an attracting manifold.

3a. Shadowing filter

A shadowing filter is a method of obtaining from an initial sequence of analyses

another sequence of analyses that are closer to being a trajectory of a model. We

will use the shadowing filter to obtain our shadow analyses. There is no guarantee

that the shadowing analyses will be closer to the model’s attracting manifold, but

we will present evidence later that for the NOGAPS model this was indeed the

case. The shadowing filter we use employs gradient descent of indeterminism.

Gradient descent of indeterminism is well established in filtering (Davies 1992,

1994; Grassberger et al. 1993; Grebogi et al. 1990; Hammel 1990). Originally in-

troduced and demonstrated for simple chaotic systems, only recently has a good
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theoretical understanding of its convergence been obtained (Ridout and Judd 2001;

Judd 2007c). New theoretical and experimental results have shown that gradient

descent of indeterminism could be practical for NWP (Judd et al. 2004b), in partic-

ular, experimental results have shown that in a perfect model scenario high qual-

ity shadowing pseudo-orbits could be obtained with a T21L3 quasi-geostrophic

model. These results motivated the present investigation using NOGAPS, which

is considerably more complex than any model previously analyzed by these meth-

ods.

Let f be a forecast model defined on a d-dimensional state space Rd, so that

for x ∈ Rd, f(x) is the forecast for a fixed time period, which is typically 6 hours

for operational data assimilation cycles of weather models. Let x = (x0, . . . , xw),

denote an arbitrary sequence of w + 1 time ordered states xi ∈ Rd, running from

the past to the present, with time separation being the forecast period of f . The

quantity w is called the window width. The window width is an integer, but it is

often more convenient to think of it in units of time, that is, multiply w by the

forecast period of f , so that window width is the time period between the first and

last states in the sequence.
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Define the mean squared mismatch, or indeterminism, of x by

I(x) =
1

w

w∑
i=1

‖xi − f(xi−1)‖2. (1)

Observe that I(x) = 0 if, and only if, x is a trajectory. Furthermore, it can be

shown that I(x) has local minima only where I(x) = 0 (Judd and Smith 2001;

Ridout and Judd 2001).

Given an initial sequence of states y = (y0, . . . , yw) ∈ R(w+1)d we can obtain

a new sequence of states x = (x0, . . . , xw) with smaller indeterminism by moving

down the gradient of I(x). For example, consider x to be a function of a scalar s

and solve the differential equation,

dx

ds
= −∂I

∂x
, x(0) = y, (2)

where I is considered a function of x(s). That is, start at y and move continuously

in the steepest descent direction of I . Solving the integration by a fixed-step Euler
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method reduces equation (2) to the iteration

xi 7→ xi −
2∆

w
×



−A(xi)(xi+1 − f(xi)), i = 0,

(xi − f(xi−1))
−A(xi)(xi+1 − f(xi))

, 0 < i < w,

(xi − f(xi−1)), i = w,

(3)

where ∆ is the step size, and A(xi) is a suitable approximation of the adjoint

df(xi)
T (Judd et al. 2004b). That is, we have defined an iterative algorithm, where

at each step every state xi is moved slightly according to the mismatch of the fore-

cast from the past (xi− f(xi−1)), and the mismatch of the forecast into the future

(xi+1 − f(xi)) pulled back through the adjoint A(xi), see Judd et al. (2004b).

The effectiveness of a shadowing filter, or any other method for obtaining tra-

jectories from a sequence of analyses, is limited by a number factors. There are

the limitations of the algorithm itself, for example, convergence rates. Model

error also plays a role. The spectrum of singular exponents of the tangent and ad-

joint model are important, because values close to zero will limit, and in practice

halt, convergence (Ridout and Judd 2001; Judd 2007c). There are also patholog-

ical situations where the shadowing filter can give misleading indications. These

pathological circumstances are atypical and in any case can be identified by in-
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dependent tests. Misinterpretation can be avoided by suitable modification of the

basic algorithm. All indications are that the experiments discussed here are in

a typical situation far from pathology. A detailed discussion of these issues is

beyond the scope of this paper. Technical investigations of the limitations and

modification are being prepared (Judd 2007c,b), and some preliminary detail ap-

pears in Ridout and Judd (2001); Judd (2003); Judd et al. (2004a). Some readers

may note an apparent similarity between gradient descent of indeterminism and

weakly constrained 4D variational assimilation. The similarity is superficial and

irrelevant to the current investigation of the nature of model error. A discussion of

the differences of these methods is beyond the scope of the current investigation,

and will appear elsewhere (Judd 2007b). Our purpose here is not to argue the

merits of the shadowing filter, we merely report that this is method we used, and

that it appears to achieve useful projections as desired.

3b. Triangle and bi-triangle diagrams

To assess the effectiveness of a shadowing filter we employ a number of geometri-

cal constructs based on simple geometric figures such as triangles and tetrahedra.

We first describe the construction and meaning of triangle and bi-triangle dia-

grams, then relate their properties to projection and direction errors.
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Triangle diagrams: Suppose one has an analysis A0, a forecast from this

analysis fA0, and the verifying analysis A1. Ideally fA0 should be identical to A1,

but in general the three states A0, fA0, and A1 are the vertices of a triangle in state

space, whose shape is completely defined by the distances between the states, as

shown in figure 4 (upper left). If the goal is to obtain a sequence of analyses that

are as close as possible to being a trajectory, then a measure of success is that the

length of side b in figure 4 (upper left) is small relative to the length of side a for

each pair of consecutive analyses. Comparing triangle diagrams of analyses and

shadow analyses provides a clear visual indication of how close a sequence states

is to being a trajectory.

Bi-triangle diagrams: Suppose S0 is the shadow analysis of A0, fS0 is the

forecast from S0, A1 is the verifying analysis of fA0, and S1 is the shadow anal-

ysis of A1. Another useful comparison of analyses and shadow analyses is the

location of fA0 and A1 relative to fS0 and S1. This relationship can be plotted

as a bi-triangle diagram as shown in figure 6 (upper left). This diagram plots two

triangles, with a common edge, obtained from computing the distances between

the relevant states. This bi-triangle diagram reveals how close the analyses and

shadow analyses are to being trajectories, and how close the shadow analyses are

to the original analyses.
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The properties of triangle and bi-triangle diagrams can be related to projec-

tion and direction errors as follows. If the shadow analyses lie on an attracting

manifold of the model, then the distance between A1 and S1 is a measure of the

projection error, and the distance between S1 and fS0 is a measure of direction er-

ror8. It should be stressed that these distances provide a measure of the projection

error and direction error, but they may not be precise or free of artifacts. Circum-

stances can be contrived where simple application of a shadowing filter could give

misleading indications; details of this will be discussed elsewhere (Judd 2007c,b).

On the other hand, the notion of “closeness” is dependent on the metric used to

measure distance; the shadowing filter as described here does not guarantee that

the shadow analysis is the state on the attracting manifold that is closest to the

analysis or observations, although it may be modified to do so (Judd 2007b). In

typical applications the shadowing filter described here has been found to be effec-

tive; in particular, it appears to be in the case of the NWP application we discuss

later. The only detail worth mentioning here is that the residual mismatch between

8The reason for this is not immediately obvious and requires detailed technical analysis to
show. Theoretically it would appear that the shadowing filter, equation (2), should converge to a
trajectory, in which case S1 and fS0 should be the same. More detailed theoretical analysis shows
that in non-hyperbolic systems the rate of convergence becomes exceeding slow long before a
trajectory is obtained (Ridout and Judd 2001; Judd 2007c). So some of the residual mismatch
from applying the shadowing filter is the result of the algorithm not having fully converged for
slow and nearly neutral modes. On the other hand, further theoretical analysis also shows that
when model error is present the convergence rate is slowed to halt by direction errors.
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S1 and fS0 typically includes genuine direction errors and a component due to the

shadowing filter not having fully converged. The later component will be com-

posed of dynamically neutral modes, that is, perturbations that grow or decay only

slowly.

3c. Attracting manifolds and travelling tetrahedra

A key element of our discussion of shadowing analyses has been the role of attract-

ing manifolds of the model. The behaviour of forecast errors will have many in-

fluences other than that of an attracting manifold, and we wish to test the strength

of the attracting manifold’s role. In high-dimensional NWP models it is difficult

to visualize attracting manifolds. Here we employ a geometrical investigation of

the relationship between forecasts and verifying analyses to infer the influence of

an attracting manifold, without explicitly finding it.

[Figure 3 about here.]

Reconsider the analyses and shadow analyses depicted in figure 1 in a new

way, as depicted in figure 3. At t = 0 there is the original analysis A0 and its

(non-causal) shadow analysis S0. Then at each lead time t = 1, 2, 3, there are

four states of interest: a forecast from the original analysis f tA0, a forecast from
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the shadow analysis f tS0, a verifying analysis At, and the shadow of the verifying

analysis St, as illustrated in figure 3.

The goal is to show two things: (1) that At is not near an attracting manifold,

the forecast f tA0 moves onto an attracting manifold; (2) that St is close to this

attracting manifold, and the forecast f tS0 moves across this attracting manifold.

We have to show this without explicitly finding the attracting manifold. The key to

achieving our goal is to study the motion of f tA0 relative to motions of At, St, and

f tS0. At each lead time these four states form the vertices of a tetrahedron, see

figure 3. The relative motions of the four states can be inferred from the changing

shape of the tetrahedra. (One can think of the tetrahedra as defining a local coor-

dinate system.) The key observation is whether or not f tA0 moves away from At

toward St and f tS0. To be precise, we look for three things. First, St and f tS0

are on, or close to, a (fairly flat) attracting manifold. Secondly, f tA0 moves away

from At towards a hyperplane containing St and f tS0. Thirdly, the line (vector)

between St and At is a (approximate) normal to the hyperplane. The presence

of these three features is sufficient to demonstrate the two-part goal stated in the

previous paragraph.

We use the tetrahedra (figure 3) to define a local (partial) rectilinear coordinate

system as follows. The origin of the local coordinate system at time t will be
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St. The first axis will be the line joining St and At. The second axis will be

perpendicular to first axis and lie in the plane containing the first axis and f tS0.

This has defined a plane at time t that contains the three points At, St and f tS0,

and a rectilinear coordinate system on this plane, as described. We can imagine

this plane (and coordinate system) moving through state space in time. In fact, the

plane is just the extension of one face of the tetrahedron at t. To follow the motion

of f tA0 we project f tA0 perpendicularly onto the our chosen coordinate plane,

see figure 3 right panel. This technique is used to obtain figure 8 for experiments

with an operational weather model discussed in the next section.

4. NOGAPS Experiments

NOGAPS is the Navy Operational Global Atmospheric Prediction System (Baker

et al. 1998), which is used operationally by the United States Navy. Prior to Octo-

ber 2003 the operational system used optimal interpolation data assimilation, after

which NAVDAS, a 3D variational assimilation method, has been used (Daley and

Barker 2001). The experiments we describe have been performed with T47L24

and T79L30 NOGAPS models. Two types of analysis were used: interpolation

to model resolution of one degree analysis fields obtained from the operational
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T239 NOGAPS, and analyses produced from a NAVDAS 3DVAR data assimi-

lation cycle at the model’s resolution. In all computations an analysis refers to a

state in spectral variables in the model’s units (Baker et al. 1998). We note that the

general characteristics of results were very similar regardless of the model reso-

lution used, type of analysis, or analysis period (Judd et al. 2004a); all significant

differences observed are reported. Generally speaking, direct assimilation into a

T79L30 model using NAVDAS provided the analyses that were most consistent

with the model’s dynamics, as defined below.

Unless otherwise stated all displayed results are for calculations using the

T79L30 model using NAVDAS data assimilation for the 7 day window 00:00

UTC, 1 October, 2003 to 00:00 UTC, 8 October, 2003 with 6 hour intervals, that

is, a sequence of 29 states. For the purposes of displaying graphs the prognostic

variables are sometimes scaled by a power of ten, as indicated.

The following calculations are for a particular distance metric. The results are

not critically dependent on the metric used, because the geometric properties of

invariant sets and model error are not metric dependent, although certain metrics

may emphasize particular features. Ideally, one should either use non-dimensional

coordinates, so that all variables are of order one, or a physically and dynami-

cally relevant metric, such as energy. In the following we use the energy norm
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for vorticity, divergence and temperature, plus the difference in specific humidity

suitably scaled. We will refer to errors in this metric as energy weighted errors.

(The vorticity, divergence and potential temperature fields contribute respectively

the rotational kinetic energy, divergent kinetic energy, and potential energy com-

ponents of total energy. A distance in the this metric corresponds to the square

root of the sum of these quantities, that is, the unit of distance is the square root of

energy. Because a suitably scaled component of specific humidity is added, our

energy weighted errors are effectively non-dimensional distances.)

Shadow analyses were obtained from the original analyses by applying the

shadowing filter, equation (3), with a window width of 7 days, and forecast step

of 6 hours, so w = 28. The NOGAPS model has a dry adjoint, which we used to

approximate the full adjoint. We chose 2∆/w = 0.1 and iterated equation (3) for

30 to 100 steps. Most of the results shown in the following are for 30 iterations.

Causal shadow analyses are obtained from the last state (x28) of the window

when the gradient descent algorithm is stopped. Non-causal shadow analyses were

obtained from the middle state (x14) of the window.
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4a. Triangle and bi-triangle diagrams

Triangle diagrams: Figure 4 shows triangle diagrams for a 7 day window of 6

hour forecasts. One triangle is plotted for each consecutive pair of analyses, giving

28 triangles. These triangles show that there is considerable forecast mismatch (b

is not small relative to a) and that the mismatch is of a consistent magnitude.

Figure 5 shows triangle diagrams for the non-causal shadow analyses. Comparing

figures 4 and 5 it is seen that the shadow analyses are much closer to being a

trajectory, having considerably smaller forecast mismatch.

[Figure 4 about here.]

[Figure 5 about here.]

Bi-triangle diagrams: Figure 6 shows bi-triangle diagrams of original analy-

ses and non-causal shadow analyses. The shadow analyses may seem surprisingly

far from the original analyses. The shadowing filter (3) does not constrain the

shadow analysis to remain close to the observations, so the shadow analyses can

wander away from the original analyses. Many may see this as a flaw of the shad-

owing filter, but it is not a flaw, it is a strength, because it allows the shadowing

filter to reveal how far an analysis is from the attracting manifold. The success of

the shadowing filter comes from the shadow analyses being close to an attracting
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manifold, and hence the large distance between the original analyses and shadow

analyses is an indication of the magnitude of the projection error.

[Figure 6 about here.]

4b. Is this just a matter of balance?

An important question is whether the differences between analyses and shadow

analyses are just a matter of balance. Could it be that movement onto an attracting

manifold merely represents geostrophic adjustment? To investigate this possibil-

ity, we examine the impact of nonlinear normal mode initialization as described

by Errico et al. (1988). This procedure is designed to remove spurious gravity

waves that may be present in model states; these gravity waves may have been

introduced by data assimilation or interpolation from higher resolution states. As

a further test we also examine surface pressure tendencies.

We assess the impact of nonlinear normal mode initialization by comparing

the magnitude of the difference between uninitialized and initialized analyses, for

both the original analyses and shadow analyses. The differences are summarized

in table 1. Comparing the first column with columns two and three, it is seen

that shadow analyses are more balanced than the original analyses; the effect of
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nonlinear normal mode initialization of shadow analyses is less than half the effect

on the original analyses. On the other hand, comparing the first three columns with

the last two columns, it is seen that the effect of the shadowing filter is significantly

larger than the effect of nonlinear normal mode initialization. We conclude that

although shadowing analyses are more balanced, balancing can only account for

a small fraction of the difference between analyses and shadow analyses.

To investigate the issue further we examined the global RMS of surface pres-

sure tendencies over 4 day forecasts. Experience shows that global RMS values of

around 0.5 hPa per time step are reasonable, whereas values in excess of 1.0 hPa

per time step indicate significant spurious gravity wave activity. Neither original

analyses, nor shadow analyses showed tendencies in excess of 0.5 hPa per time

step.

[Table 1 about here.]

4c. Forecast errors

Figure 7 shows various forecast errors as discussed in section 2d and should be

compared with figure 2 where the curves are labelled the same. Figure 7 shows

error curves for the vorticity field. The errors for individual model layers, and for
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other prognostic fields (divergence, temperature, specific humidity, surface pres-

sure) are very similar. Curve A shows the approximately exponential increase

of distance between two trajectories close to an attracting manifold, in this case

trajectories from causal and non-causal shadow analysis, which are states likely

to differ only in unstable directions. (Evidence that these states are close to an

attracting manifold comes in the next section.) Curve B shows the original analy-

sis forecasting future analyses, and shows an approximately inverted exponential

decay as expected when the original analyser have significant projection error.

Curve C shows the error of the non-causal shadow analysis forecasting future

non-causal shadow analyses, which shows an initially fairly linear error growth

that is significantly less than curve B; consistent with accumulated direction er-

rors. Curve D shows the error of the original analysis forecasting future non-

causal shadow analyses, which has a decrease then increase of error consistent

with entrainment with an attracting manifold combined with effects of sensitiv-

ity to initial conditions or accumulated direction errors. The initial decrease of

curve D reveals that the non-causal shadow analyses are not arbitrary states, they

are states toward which forecasts from the analyses tend to move.

[Figure 7 about here.]
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Curve E in figure 7 shows the error of the causal shadow analysis forecasting

future non-causal shadow analyses, which is seen to be close to forecast errors of

the non-causal shadow analysis shown in curve C. Note that curve A shows the

divergence of these two forecasts. The fact that the distance between these forecast

trajectories is far greater than the difference between curve C and E, implies that

the accumulation of direction errors is more significant than sensitivity to initial

conditions in this example.

4d. Travelling tetrahedra and attracting manifolds

Finally we demonstrate that At is not near an attracting manifold and the forecast

f tA0 moves onto an attracting manifold, whereas St is close to this attracting

manifold and the forecast f tS0 moves over this attracting manifold. In section 3c

it was described how tetrahedra formed from forecast states and verifying analyses

(At, fAt, St and fSt) provide local rectilinear coordinate system in which to track

the relative motions of fAt and fSt.

[Figure 8 about here.]

Figure 8 shows the motion of St, At, f tS0, and f tA0 in the moving coordinate

system. By construction, in our moving coordinate system, St is always fixed at
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the origin, At moves only along the y-axis, but f tS0 and f tA0 could potentially

move anywhere in the coordinate plane. In order to emphasize the relative motions

of f tS0 and f tA0 we have connected points at consecutive times.

There are a number of things to observe in figure 8. First observe f tS0 moves

more or less parallel to the horizontal axis. This implies that if St and f tS0 lie in

the attracting manifold, then this manifold is (locally) fairly flat and the vertical

axis (defined by St and At) is more or less perpendicular to the attracting manifold.

We might also note that f tS0 moves away from St at a relatively constant rate,

consistent with accumulation of direction errors. Secondly, observe that although

At moves along the vertical axis, the motion its fairly restricted, so that the At

remains at a fairly constant distance from the attracting manifold9.

The most important observation to make about figure 8 is that when f tA0 is

projected on the the coordinate plane it traces a path that moves away from At

and down toward the path traced by f tS0, indeed once f tA0 gets close to the path

traced by f tS0 it moves in similar ways. This is strong evidence that f tA0 moves

9It should be noted that restricted motion of At and the vertical axis being perpendicular to the
attracting manifold is consistent with the differences At − St (projection errors) having random
mean zero errors that are largely independent for each component. This is consistent because these
are the usual properties of such random vectors in high-dimensional spaces. To be more specific
such vectors are always nearly perpendicular to low dimensional subspaces. The length of such
vectors have a chi-squared distribution with many degrees of freedom, which are asymptotically
Gaussian with mean nσ2, where n is the dimension of the space and σ2 the variance of each
component. It is also certainly the case that the projection errors will have some random errors of
this type, arising from observational errors, but we will see also that projection errors also have a
large systematic component.
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toward an attracting manifold that contains St and f tS0. We conclude that the

traditional analysis A0 initializes the model far from the attracting manifold, and

the first part of the forecast f tA0 is dominated by motion toward the attracting

manifold.

Readers may note that the characteristic shape of curve B has been observed

previously in the context of forecast errors and has been attributed to what is

termed nonlinear saturation of errors. It should be clear from the discussion of

section 2 that movement onto an attractor is a distinct process from nonlinear

saturation of errors; this can certainly be seen using the Lorenz equations as a ex-

ample. In high-dimensional systems different processes can act simultaneously on

different scales. Movement onto an attractor could be accompanied by nonlinear

saturation of errors. In our NOGAPS experiments nonlinear saturation of errors

is almost certainly occurring at smaller scales, but we have not tried to confirm

its presence or investigated the magnitude of its effects. Since both movement

onto an attractor and nonlinear saturation of errors have the same characteristic

error growth, the curve B in figure 7 is not sufficient to identify either process, or

determine which has the dominant effect. On the other hand, the authors are un-

able to see how nonlinear saturation of errors could account for the other curves

in figure 7; in particular the non-monotonic curve D. Furthermore, the fact that
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movement onto an attractor is seen so clearly in figure 8 leads us to conclude that

movement onto an attractor is the dominant process leading to the graphs seen in

figure 7. It would be an interesting experiment to attempt to determine the relative

effect of nonlinear saturation of errors.

4e. Projection and direction errors

In the authors’ opinion the results discussed thus far have provided strong evi-

dence for the existence of an attracting manifold in the NOGAPS model, and that

this attracting manifold influences forecast errors as described in section 2. Thus

we interpret the difference between an analysis and its shadow analysis as pro-

jection error, and the mismatch of a one-step shadow analysis forecast and the

following shadow analysis as direction error. We investigate how resolving errors

in this way has potential utility in diagnosing model error. As an illustration, we

compare projection and direction errors of NOGAPS models of different spatial

resolution that use different data assimilation schemes. Specifically, a T47L24

model using optimal interpolation to assimilate data, and a T79L30 model using

NAVDAS 3D variational assimilation.

[Figure 9 about here.]
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[Figure 10 about here.]

Figures 9 and 10 show zonal averages of projection and direction errors for

the specific humidity field of T47L24 and T79L30 models. (Other fields are dis-

cussed in an appendix.) In these plots the errors have been averaged over a 7 day

window. For T47L24 the first week of March 2003, and for T79L30 the first week

of October 2003.

The projection errors (figure 9) of the two situations are quite different. Note

in particular the different sign of the projection errors near the surface. Some of

the difference in variance might be attributed to seasonal differences, but most

of the significant differences can be attributed to the data assimilation methods

projecting observations into model space differently.

The direction errors (figure 10) of the two situations are much smaller than the

corresponding projection errors, and much more similar. Note for example that the

distribution of sign is now very similar, although the direction errors in T79L30

NAVDAS are more negative near the surface. Some of what we call direction error

may be residual mismatch from movement onto the attracting manifold, resulting

from incomplete convergence of the shadow filter, because the mismatches were

still decreasing when the algorithm was terminated. Also, some of the residue

may be due to slow convergence of the shadowing filter for nearly neutral modes.
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This is quite possibly the case for the largest residual mismatches in the vorticity

field around the 200mb height in the extra-tropics (see appendix). Such an inter-

pretation is not obviously related to the residual mismatches of tropical specific

humidity seen in figure 10.

Whatever the interpretation of the direction errors (residual mismatches) shown

in figure 10, it is clear that the sign and magnitude of direction errors are very

similar at all but the lowest levels. That the direction errors are similar in the

two situations is perhaps surprising, and certainly interesting. Firstly, it implies

that the shadowing filter’s determination of direction error is fairly immune to the

much larger projection errors the different data assimilation methods introduce.

Secondly, it implies the direction errors are really a property of the model, which

appears to be present at both model resolutions and in different seasons. This

observation may assist model development.

5. Conclusions

We have presented evidence that operational weather models evolve onto attract-

ing manifolds of lower dimension than the entire state space, and argued the im-

plications this holds for data assimilation and the diagnosis of model error. The

39



shadowing filter has been introduced and shown to locate states (shadow analy-

ses) that are more consistent with the model dynamics than traditional analyses

defined by optimal interpolation and three-dimensional variational assimilation.

Also non-causal shadow analyses provide a new option for verifications that aim

for simultaneous consistency with the dynamics of the model and the observa-

tions both past and future. It is not clear that avoiding the initial collapse onto

the attracting manifold will offer tactical forecast improvement. In ensemble pre-

diction systems, however, advantages could be massively increased, as ensembles

on the attracting manifold would sample a lower dimensional space than those

distributed in the full state space. Inasmuch as shadowing analyses exploit a long

window of observations (long relative to a three or four dimensional variational

assimilation window), they provide information on model mis-behaviours which

cannot be gleaned either from one step tendencies or from free-running model

integrations.

Using novel geometric methods to investigate and visualise the dynamics of

several trajectories in high-dimensional spaces, we have verified dynamics in an

operational weather model which resemble what would be expected in systems

with attracting manifolds. Trajectories starting from states not on the manifold are

seen to approach trajectories started from shadow analyses located on or closer to
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the attracting manifold. This is illustrated in figures 1 and 2, while the changing

shape of triangles and tetrahedra in figures 4, 5 and 6, are consistent with this kind

of dynamics being realised in NOGAPS. Further evidence for this argument is

obtained by examining “error” growth: the divergence of trajectories started from

various initial states shown in figure 7 is consistent with the expectations of our

geometric interpretation.

Acknowledging the difference between having an initial condition not on the

attracting manifold (projection error) and the systematic inability of the model

dynamics to shadow the observations (direction error) allows new insight of value

to model improvement. The projection errors shown in figure 9 reveal systematic

bias in the combination of model and data assimilation. On the other hand, the

similar direction errors in figure 10, despite different model resolution and sea-

sons, could indicate aspects of the model physics that require attention. When

such shortcomings are known, theoretical and numerical resources can be de-

ployed to reduce them.

These results are now being extended to other modelling scenarios, with the

aim of comparing the skill of ensembles of initial conditions on, or near, the at-

tracting manifold with traditional methods of ensemble formation. Further work

requires a careful reconsideration of the preferred method for evaluating forecasts:
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it would seem non-causal shadow analyses provide the most relevant targets for an

assimilation scheme — yet these will differ in each model. The presence of pro-

jection errors and model imperfections appear to pose a fundamental limitation

to verification using model states as targets. Verification against observations in-

troduces additional complications and potential errors in translating probabilistic

model (or ensemble) output back into observational space. Arguably, nonlinear-

ities imply that the entire prediction systems, from assimilation of observations,

to probabilistic prediction of future observations, can only be meaningfully evalu-

ated as a whole. Respecting the geometric constraints due to the model dynamics

may move us closer to more internally consistent and operationally valuable sys-

tems.
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Appendix 1: Technical details

This appendix provides some of the mathematical details under-pinning the ar-

guments of Section 2. For brevity we assume some familiarity with standard

mathematical techniques found in any good text on modern dynamical systems

theory (Guckenheimer and Holmes 1983; Katok and Hasselblatt 1995).

For the purposes of NWP the atmosphere is generally modelled as a partial

differential equation describing multi-phase flow with non-local coupling; for ex-

ample, the Navier-Stokes equations and physical state equations, with radiative

coupling. The state space of these partial differential equations is an infinite di-

mensional Banach space. To make these equations manageable, NWP applies

spatial discretization or basis truncation. This reduces the model to a finite di-

mensional ordinary differential equation:

ẋ = f(x), xt ∈ B ⊆ Rd, (A.1)

where B is a subspace of Euclidean space. Discretization of time reduces this
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model to a finite dimensional nonlinear difference equation:

xt+1 = f(xt), xt ∈ B ⊆ Rd, (A.2)

where the time variable t is typically chosen to count units of the integration time

step (typically around 15 minutes), or the time interval between data assimila-

tion cycles (typically 6 hours). The two models (A.1 and (A.2) are not equiva-

lent (Teixeira et al. 2007). In the following we generally refer to the difference

equation model (A.2). In figure 2 we plot filled circles to represent analyses and

open circles to represent forecasts of the model; the forecasts come from a differ-

ence equation (A.2). On these plots there is also a background of arrow-headed

lines that represent solutions of the ordinary differential equation model (A.1).

Since the work of Poincaré it has been known that many nonlinear dynamical

equations are analytically unsolvable. To deal with this Poincaré introduced quali-

tative analysis, which applies principles and techniques of topology and geometry

to provide qualitative and semi-quantitative descriptions of a system’s behaviour,

rather than a full quantitative solution. The arguments of Section 2 are of this

type. The principle tools used to reveal features of interest are local lineariza-

tion about a trajectory, and various nonlinear changes of coordinates to transform
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chosen trajectories into straight lines.

Partially hyperbolicity: To allow a discussion of invariant structures and

properties of trajectories (like movement onto attracting manifolds) some restric-

tions on the properties of f are required. A restriction of convenience is to assume

f is a diffeomophism (differentiable invertible map whose inverse is differen-

tiable). For such maps the Jacobian derivative df(x) is defined and continuous for

all x ∈ B. Given the Jacobian derivative one can consider linearization about a

trajectory, as in Floucet theory and differential geometry. These techniques can

be applied as in Ridout and Judd (2001), but here the sightly more general formu-

lation of Judd (2007c) is used.

The atmosphere appears to display sensitivity to initial conditions, so we can

restrict attention to models with this property. We will assume the map f is par-

tially hyperbolic as defined below. Partial hyperbolicity allows discussion of con-

cepts like stable and unstable growth of perturbations, and local attracting mani-

folds. The definition is very broad and applies to a wide class of models. NWP

models are likely to fall into this class, with at most minor modification.

We will first give the mathematical definition of partial hyperbolicity, then

describe in general terms what the conditions of the definition mean. It is not nec-

essary to master the definition to understand what follows. A diffeomorphism f
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on B is partially hyperbolic if there exists an interval (λ0, λ1) ⊂ (0, 1], such that

for all λ ∈ (λ0, λ1):

1. For each x ∈ B there is a splitting TxB = E
(−1)
λ (x)⊕ E

(0)
λ (x)⊕ E

(+1)
λ (x);

2. The splitting is continuous with x ∈ B;

3. The splitting is invariant, df(x)(Eκ
λ(x)) = Eκ

λ(f(x)) for κ ∈ {−1, 0, +1};

4. ∀v ∈ Eκ
λ(x), ‖df(x)κv‖ ≤ λ‖v‖ for κ ∈ {−1, +1};

5. Eκ
λ(x) 6= 0 for κ ∈ {−1, +1}.

The definition of partial hyperbolicity can be understood as follows. Let x ∈ B

be a state of the model f , and let x + v be a perturbation of this state. Property 1

says the perturbation v can be decomposed into a sum three components; one

in each of the three subspaces labelled κ = −1, 0, +1. Property 2 says that

this decomposition of components varies continuously as x is varied. Properties

3 and 4 say that the three components of v correspond to growing, decaying,

and neutral modes. That is, if one investigates the “forecast error” at lead time t

‖f t(x+v)−f t(x)‖, then for sufficiently small ‖v‖ and t, (relative to the attractor

diameter and recurrence time),

• if v ∈ E
(−1)
λ (x), then ‖f t(x + v)− f t(x)‖ ≤ λt‖v‖,
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• if v ∈ E
(+1)
λ (x), then ‖f t(x + v)− f t(x)‖ ≥ λ−t‖v‖,

• if v ∈ E
(0)
λ (x), then λt‖v‖ ≤ ‖f t(x + v)− f t(x)‖ ≤ λ−t‖v‖.

Property 5 says that for any state there are perturbations that grow and others

that decay. The neutral modes in E
(0)
λ (x) tend to grow or decay only slowly, or

fluctuate about a fairly constant value.

Curve A: The beauty of partial hyperbolicity is that complex nonlinear sys-

tems are seen to have local properties similar to linear systems, at least for per-

turbations that are not too large. In particular, error growth and decay can be

bounded by an exponential growth or decay, even though the actual behaviour of

errors is nonlinear. This justifies the discussion of section 2 that equates sensitiv-

ity to initial conditions with an exponential growth of errors (curve A). The main

text indicated that in nonlinear systems the growth is not strictly exponential, but

partial hyperbolicity implies it can be initially bounded below by an exponential

growth.

Curve B: An attracting manifold M can be thought of as a set of states such

that if a state x ∈ M is perturbed off of M , then the trajectory of the perturbed

state moves back toward M . If TxM ⊆ TxB represents the tangent space to M at

x, then in a partially hyperbolic system a necessary condition for being an attract-

ing manifold is that for some λ, E
(+1)
λ (x) ⊆ TxM for all x ∈ M , and a sufficient
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condition is E
(+1)
λ (x) ⊕ E

(0)
λ (x) ⊆ TxM . The necessary condition says that no

perturbation off of M grows faster than 1/λt, and the sufficient condition says

no perturbation off of M grows at all; in fact, they decay at least as fast as λt.

If the sufficient condition were to apply for an attracting manifold M , then this

justifies the discussion of section 2 that equates movement toward an attracting

manifold with an exponential decay, which leads to an inverted exponential de-

cay when considering the forecast errors (curve B). The sufficient condition may

be too strong for some nonlinear systems, because there may be slowly growing

modes. Even if just the necessary condition were to apply to an attracting man-

ifold M , then a perturbation off of M would have components that decay and

others that grow only slowly.

Curve C: According to the fundamental theorem of flows (Guckenheimer

and Holmes 1983) in an open simply-connected region of state space contain-

ing no fixed points, there is differentiable change of coordinates so that the vector

field f(x) in (A.1) is mapped to a constant vector field. (As depicted by the back-

ground arrowed lines in the lower left panel of figure 2.) From the fundamental

theorem of flows it follows that on local regions of state space without fixed points

there always exists a nonlinear projection such that the model is locally perfect. Of

course, this “perfect” projection may be unnatural and impossible to determine.
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What is more important, is such “perfect” projections are not generic; that is, arbi-

trarily small changes to the model or projection destroy the perfection. From the

transversality theorem (Guckenheimer and Holmes 1983) it follows that generic

projections result in transverse intersections of model trajectories and the projec-

tion of true trajectories; that is, direction errors. Since direction errors are zeroth

order, their error growth is initially linear in time, until variation in the direction

error and other nonlinearities take effect.

Appendix 2 : NOGAPS experiments

This appendix provides some additional plots of projection and direction errors in

order to better appreciate the nature of these errors. The plots are for the T79L30

model using NAVDAS 3D variational assimilation for a 7 day window being the

first week of October 2003.

Zonal averages of the projection and direction errors, averaged over the 7

day window, for the vorticity, divergence and temperature fields are shown in

figures 11, 12 and 13, respectively. The corresponding specific humidity plots

were shown in figure 9(b) and figure 10(b). Some features of note are the follow-

ing. The vorticity projection and direction errors, shown in figure 11, appear to
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be closely correlated. There are reasons to believe that for the vorticity field the

residual mismatch after applying the shadowing filter may not be largely direction

error, but rather, may reflect more the effects of the shadowing filter having not

fully converged for some of this field. It is known that convergence of the shadow-

ing filter is slowest for nearly neutral modes (Ridout and Judd 2001; Judd 2007c).

The residual mismatch of the vorticity is largest in the jet stream, which is likely

to have strong wave motions that may be nearly neutral. Further investigation is

needed to establish whether the residual mismatch of the vorticity field are asso-

ciated with nearly neutral modes. On the other hand, the projection and direction

error of the divergence field seen in figure 12 also show a close correlation, but

the largest residual mismatch (in the tropics around 200mb) is not associated with

any obvious neutral modes. Furthermore, the residual mismatch of the divergence

field correlates with that of the temperature field in this region, see figure 13(b).

The residual mismatch of temperature in this region is clearly not the result of

incomplete convergence, because it is not associated with a large projection error

in this region, see figure 13(a). We conclude that the residual mismatch of the di-

vergence and temperature fields are, like the specific humidity field, an indication

of direction error, but those of part of the vorticity field may not be.

[Figure 11 about here.]
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[Figure 12 about here.]

[Figure 13 about here.]

Some understanding of the spatial distribution of projection errors can be ob-

tained from averages over a 7 day window for a fixed model level. Here we con-

sider model level 24, which corresponds to the nominal 850mb level. Figure 14

shows the average for the vorticity and divergence fields, while figure 15 shows

the average for the temperature and specific humidity fields.

Figure 14 reveals that the projection error in the vorticity and divergence fields

do not, on a 7 day average, show any large scale features. The plots do show a lot

of small scale features, and these features are closely associated for the two fields.

The projection error appears to be of two forms. One form are large localized er-

rors that appears to result from topographic influence, or intense weather systems

near the tropics. The second form are wide-spread small-amplitude errors, which

overall make a significant contribution to the total projection error. Detailed study

of the evolution of the projection error fields show that the small amplitude pro-

jection errors (especially over oceans) is mainly the result of the shadow analyses

having much greater spatial-temporal consistency than the original analyses. Fig-

ure 15 shows the projection error of the temperature and specific humidity fields,

which, unlike vorticity and divergence, show large scale features on a 7 day aver-
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age. Some of the stronger small scale features are associated with projection error

features of the vorticity and divergence fields. Detailed study of the evolution of

the temperature field shows that the some of the average projection error results

from the shadow analyses having a larger diurnal range.

[Figure 14 about here.]

[Figure 15 about here.]
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(a)

(b)

Figure 1: (a) Schematic representation of an attracting manifold, a sequence of
four analyses, their shadow analyses, forecasts of three shadow analyses, the pro-
jection errors and direction errors. (b) Analyses, shadow analyses, and forecast
trajectories from analysis and shadow analysis at t = 0, showing how a forecast
trajectory of analysis moves down onto the attracting manifold.
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Figure 2: Forecasting errors. Boxed panels represent states and trajectories in
model space with analyses as filled circles and forecast states as open circles.
The graph on the lower right represents error between forecast and verification
(distance between filled and open circle at lead time t) under different circum-
stances. (A) Sensitivity to initial conditions, (B) Entrainment with an attracting
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Figure 3: Travelling tetrahedra: Initially at t = 0 there is an analysis A0 and its
shadow analysis S0. At any time t > 0 there are four points At, f tA0, St, and
f tS0. These points are the vertices of a tetrahedron, which can be used to define a
local coordinate system in which to view the relative motions of f tA0 and f tS0.
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Figure 4: Triangle diagrams that reveal the relationship between analyses, their
forecasts, and the verifying analysis. Triangle diagram for original analyses for
a 7 day window of 6 hour forecasts. One triangle is plotted for each consecutive
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(a)

(b)

Figure 9: Projection error (expressed here as shadow minus analysis) for (a) a
T47L24 model using optimal interpolation to assimilate data, and (b) a T79L30
model using NAVDAS 3D variational assimilation. Plots show zonal average av-
eraged over a 7 day window. Contour lines show mean error and shading shows
standard deviation. 70



(a)

(b)

Figure 10: Direction error for T47L24 and T79L30 models. Contour lines show
mean error and shading shows standard deviation. Details as in figure9

71



(a)

(b)

Figure 11: T79L30 vorticity field: (a) projection error, (b) direction error. Lines
show standard deviation, shading shows mean error in half standard deviation
increments.
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(a)

(b)

Figure 12: T79L30 divergence field: (a) projection error, (b) direction error. Lines
show standard deviation, shading shows mean error in half standard deviation
increments.
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(a)

(b)

Figure 13: T79L30 temperature field: (a) projection error, (b) direction error.
Lines show standard deviation, shading shows mean error in half standard devia-
tion increments.
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(a)

(b)

Figure 14: The temporal average of the projection error (expressed here as shadow
minus analysis) for (a) the vorticity field (×106) and (b) the divergence field
(×106), at level 24, nominal 850mb level.
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(a)

(b)

Figure 15: The temporal average of the projection error (expressed here as shadow
minus analysis) for (a) the temperature field and (b) the specific humidity field
(×108), at level 24, nominal 850mb level.
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iA− A iS − S iN −N A− S A−N
Vorticity 0.000436 0.000187 0.000225 0.00952 0.00938
Divergence 0.00146 0.000261 0.000390 0.00490 0.00591
Pot. Temperature 0.822 0.337 0.423 3.74 3.83
Sp. Humidity 0 0 0 0.00366 0.00367
Surface Pressure 0.271 0.131 0.139 0.465 0.441

Table 1: The impact of nonlinear normal mode initialization on analysis and
shadow analysis states (first three columns) and the impact of shadowing filter
(last two columns). The numbers record the magnitude of the difference of the
specified field for the specified states. Symbols: A, original analysis; S, shadow
analysis; N , non-causal shadow analysis; prefix i indicates state after nonlinear
normal mode initialization.
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