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Abstract

The translation of an ensemble of model runs into a probability dis-
tribution is a common task in model based prediction. Common methods
for such ensemble interpretations proceed as if verification and ensem-
ble were draws from the same underlying distribution, an assumption
not viable for most, if any, real–world ensembles. An alternative is to
consider an ensemble as merely a source of information rather than pos-
sible scenarios of reality. This approach, which looks for maps between
ensembles and probabilistic distributions, is investigated and extended.
Common methods are revisited, and an improvement to standard kernel
dressing, called “affine kernel dressing” (AKD), is introduced. AKD as-
sumes an affine mapping between ensemble and verification; typically not
acting on individual ensemble members but on the entire ensemble as a
whole; the parameters of this mapping are determined in parallel with
the other dressing parameters, including a weight assigned to the un-
conditioned (climatological) distribution. These amendments to standard
kernel dressing, albeit simple, can improve performance significantly and
are shown to be appropriate for both over– and under–dispersive ensem-
bles, unlike standard kernel dressing which exacerbates over–dispersion.
Studies are presented using operational numerical weather predictions for
two locations and data from the Lorenz63 system, demonstrating both ef-
fectiveness given operational constraints and statistical significance given
a large sample.

1 Introduction

Ensemble forecasts consist of several simulations of the future evolution of the
dynamical process under concern (see e.g. Toth et al., 2003). In principle, en-
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semble forecasts allow us to convey additional information on forecast uncer-
tainty (Tennekes, 1988), which is invaluable for informed decision making (Tay-
lor and Buizza, 2003; Richardson, 2003b,a; Roulston et al., 2003). In both
scientific studies as well as practical applications, distribution functions are of-
ten more convenient to manipulate than a set of point values. The question
then arises how to transform an ensemble into such a distribution function, a
task often referred to as statistical postprocessing of ensemble forecasts in Wilks
(2006); Wilks and Hamill (2007); Raftery et al. (2005) or ensemble interpreta-
tion in Jewson (2004a), the latter term being used in this paper. Any particular
method for interpreting ensembles will be referred to as an ensemble interpreta-
tion method (other authors, e.g. Wilks, 2006; Wilks and Hamill, 2007, use the
term ensemble–MOS method).

Ensemble interpretation methods generally differ due to the different fami-
lies of distribution functions employed in building the ensemble interpretation
and the way it is actually built. Both aspects are discussed in this paper. As
to the different families of distribution functions, two particular approaches are
considered here. The first one is referred to as kernel dressing and consists of
replacing individual ensemble members by kernel functions. In the second ap-
proach, the ensemble is replaced by a parametrized distribution function, where
the parameters of the distribution function have to be represented as functions
of the original ensemble. This approach will be referred to as distribution fit
or DF interpretation1,2. Both approaches typically involve parameters, which
have to be determined.

Approaches to build the ensemble interpretation method differ in what the
ensemble is taken to represent. In the simplest case, the ensemble is considered a
collection of equally likely scenarios of reality, drawn from the same distribution
as the verification (a perfect ensemble). This approach suggests that ensemble
interpretation is accomplished by approximating this underlying distribution,
for example by parametric estimation techniques (see e.g. Mood et al., 1974,
Chapter VII) or kernel estimates (Silverman, 1986).

Although ensembles have been used to great effect even when assumed to
be perfect (Wilks, 2002), we argue that a different paradigm is available which
naturally includes the case where ensemble members and verifications do not
share the same distribution. Nor need we assume that any one of the models
in hand is true in any sense. Here we are interested in a distribution of the
verification given the information contained in the ensemble. A formalism for
constructing such distributions could take into account that ensembles and cor-
responding verifications are not draws from the same or at least fairly similar
distributions, but entirely different ones.

This paradigm defines ensemble interpretation in a much broader sense than
just interpolating a distribution function underlying the ensemble. In fact, there
is no need to assume that ensembles are draws from distributions at all. As a
simple example it will be demonstrated that a mere linear transformation of the
ensemble already brings about a significant improvement in predictive perfor-

1In fact, kernel dressing and DF interpretation are not really distinct, as a sum of kernel
functions can be interpreted as a special family of distribution functions, the centres of the
kernel being part of the parameters. But when speaking of DF interpretations, we usually
have somewhat more common families of distributions in mind, like Gaussian, Weibull or
exponential distributions.

2The term distribution fitting is used by e.g. Wilks (2006).
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mance of kernel dressing. Finding this linear transformation will be neither a
preliminary nor a subsequent step to dressing, but integral part of it. Inasmuch
as dressing involves finding unspecified parameters of the dressing method, we
consider dressing a generalisation of statistical learning (Hastie et al., 2001).

The performance of forecast distributions is evaluated using scoring rules (Gneit-
ing and Raftery, 2007; Selten, 1998). Some scores can be applied to the raw
ensemble itself Gneiting and Raftery (e.g. CRPS–score 2007), while others can
be applied to smoother probability assignments only, as provided for example
by ensemble interpretation methods. Thus ensemble interpretations render the
application of those scores to ensemble forecasts feasible. In this paper we fo-
cus attention on the Ignorance score (Roulston and Smith, 2002; Good, 1952).
Strengths and weaknesses of this score are clarified as well.

Techniques for ensemble interpretation are the subject of Section 2, where
state–of–the–art ensemble interpretation methods are revisited and a new affine
kernel dressing (AKD) method is presented. A comparison of these ensemble
interpretation methods in terms of their mathematical properties is subject to
Section 3. Scoring rules are discussed briefly in Section 4, along with details
of how to optimize the performance of ensemble interpretation methods, while
questions of robust estimation and the value of blending in the climatologi-
cal distribution are discussed in Section 5. In Section 6, we apply the ensemble
interpretation techniques to temperature forecasts at London Heathrow and He-
ligoland (German Bight) as well as to the Lorenz63 system. The AKD method
is shown to be capable of dealing with the imperfect ensembles more adequately
than common ensemble interpretation methods in these cases. Furthermore,
the Lorenz63 example demonstrates the insufficiency of Gaussian DF interpre-
tations.

2 Interpreting Ensemble Forecasts

This section introduces a new dressing method referred to as affine kernel dress-
ing (AKD) in the context of three well known methods, namely Gaussian DF
interpretation (GDF), standard kernel dressing methods (SKD), and bayesian
model averaging (BMA) (see e.g. Wilks, 2006; Wang and Bishop, 2004; Raftery
et al., 2005; Roulston and Smith, 2003; Hoeting et al., 1999). We use the fol-
lowing notation throughout the paper. By

x = [x1, . . . , xd] (1)

we denote an ensemble with d ensemble members. Typically, different ensemble
members have different dynamical and statistical properties, depending on the
ensemble generation scheme. In this paper though, we treat all ensemble mem-
bers equally, or in other words, the ensemble interpretation methods considered
in this paper do not depend on the ordering of the ensemble members. If some
of the xi need to be treated differently than others, for example if they come

from different models3, a superscript x
(J)
i should be used. This case is to be

distinguished from an ensemble in a higher dimensional space. Neither multi–
model ensembles nor ensembles in high dimensional spaces are considered in this

3The unperturbed ensemble member (the “control”) could be treated differently, which we
will not do in this paper though.
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paper. In general, the ensemble is a function of time, which we denote by x(t),
while we write y(t) for the verification, that is, the quantity to be forecast. The
number of ensemble members d might even change over time. The ensemble has
a mean and a variance, which are defined as

m(x) =
1

d

∑

i

xi, (2)

v(x) =
1

d

∑

i

(xi − m(x))2, (3)

respectively. Finally, p(y;x, θ) is a probability density function derived from
the ensemble x, where θ denotes further parameters. In other words, p(y;x, θ)
denotes the interpreted ensemble as a probability density function, given the
original ensemble. In fact, a probability density function need not be the goal,
as will be discussed at the end of Section 4.

We first consider Gaussian DF interpretations (GDF), which can be written
as

p(y;x, θ) :=
1√
ν

K(
y − µ√

ν
), (4)

where K is a standard Gaussian density. Depending on the problem, other
distributions can be more appropriate, for example Weybull or Γ–distributions.
The parameters µ and

√
ν are the mean and the standard deviation of the dis-

tribution, respectively. Setting µ and
√

ν equal to the mean and the standard
deviation of the ensemble is a possible choice (Wilks, 2002), but by doing so we
would approximate the distribution of the ensemble, rather than the distribu-
tion of the verification given the ensemble, which is our goal. A conceptually
different approach is to determine

√
ν and µ by functions of the ensemble and

some free parameters θ, so that the DF interpretation shows good forecast per-
formance. A variant of Gaussian DF interpretation following this philosophy
was presented by Jewson (2004a,b), who suggested a mean µ and standard
deviation

√
ν depending on the raw ensemble x as follows:

µ = r1 + r2 · m(x), (5)
√

ν = s1 + s2 ·
√

v(x). (6)

Thus
√

ν and µ are determined by linear functions of the standard devia-
tions and the mean of the ensemble respectively. A very similar interpretation
method was suggested by Gneiting et al. (2004), who replaced Equation (6) by
ν = s1 + s2 · v(x). The parameters θ = [r1, r2, s1, s2] are free parameters, for
which r1 = 0, r2 = 1, s1 = 0, s2 = 1 are reasonable initial choices. The linear
relationships in Equations (5) and (6) might be unable to cope with ensembles
which are grossly different from the verification. The key insight of Jewson
(2004a,b) and Gneiting et al. (2004) is that the parameters r1, r2, s1, s2 have
to be determined according to forecast performance, rather than to represent
the distribution of the ensemble members. Determining the parameters r1, r2,
s1, s2 thus hinges on what counts as “good performance”. Both the issue of
finding the parameters as well as precise definitions of performance will be dis-
cussed in Section 4. This approach is distinctly different from for example Wilks
(2002), where the probability distribution is fitted to the ensemble, without any
reference to the verification.
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An obvious shortcoming of Gaussian DF interpretation is that the shape
of the dressed ensemble is invariably Gaussian. A more versatile method is
provided by kernel dressing. Various versions of kernel dressing have been con-
sidered in the literature (Wilks, 2006; Roulston and Smith, 2003; Wang and
Bishop, 2004; Raftery et al., 2005). A general way to present the kernel dress-
ing approach reads as follows

p(y;x, θ) :=
1

dσ

∑

i

K(
y − axi − ω

σ
). (7)

Hence, a kernel dressed ensemble is a sum of bumps, with one bump replacing
each ensemble member. The shape of the bumps is determined by the kernel
K. Each bump is centered at axi + ω, where xi is the i’th ensemble member.
Thus a scales the ensemble, while ω acts as an offset. The width of each bump
is determined by the bandwidth σ. As with GDF, a, σ and ω are quantities
that might depend on the ensemble and on a parameter vector θ in a way we
have to specify. Note that the bandwidth σ has to be positive. For simplicity,
throughout this paper the kernel K will be a standard Gaussian density

K(ξ) :=
1√
2π

exp(−1

2
ξ2). (8)

Hence kernel dressing results in a sum of d Gaussians, in contrast to GDF,
which gives a single Gaussian. Possible advantages of using different kernels
with finite support like the Epanechnikov kernel (Silverman, 1986) are discussed
in Section 5.

A wide variety of different kernels have been employed in similar or related
circumstances (Roulston and Smith, 2003; Silverman, 1986). All results below
apply to kernels which are normalized and positive and furthermore have mean
zero and unit variance4. We remark that the Gaussian kernel employed here is
furthermore symmetric, but this property is not used in this paper.

From the properties of the kernel immediately follows that the ensemble
interpretation p(y;x, θ) in Equation (7) is a positive and normalized probability
density function. It is illustrative to compute the mean

µ :=

∫

y p(y; . . .)dy (9)

and the variance

ν :=

∫

(y − µ)2 p(y; . . .)dy (10)

of the ensemble interpretation (Equation 7). We will now prove the following
two identities on µ and ν, which we shall need later:

µ = ω + a
1

d

∑

i

xi = ω + am(x), (11)

ν = σ2 + a2 1

d

∑

i

(xi − m(x))2 = σ2 + a2v(x). (12)

4As long as the kernel has a mean m and a variance s at all, we can always obtain mean
zero and unit variance by using the kernel 1√

s
K( ξ−m

√
s

) instead of K. The Cauchy kernel

provides an example of a kernel having neither a mean nor a variance.
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The first Equation (11) states that the mean value of the ensemble interpretation
is equal to the mean value m(x) of the ensemble, scaled by the parameter a
and shifted by the parameter ω. The second Equation (12) states that the
variance of the ensemble interpretation is likewise equal to the variance v(x) of
the ensemble, scaled by the parameter a2 and shifted by the parameter σ2. Note
however that a, σ and ω might depend on the ensemble as well, as mentioned
above. To prove Equation (11), note that by substituting from Equation (7)
into Equation (9) we get

∫

y p(y; . . .) dy

=
1

dσ

∑

i

∫

yK(
y − axi − ω

σ
)dy

=
1

d

∑

i

∫

(z + axi + ω)K(z)dz

= a
1

d

∑

i

xi + ω

= ω + am(x).

where we first substituted z for y−axi−ω
σ , then used that the kernel is normal-

ized and has zero mean and finally employed the definintion Equation 2 of the
ensemble mean. To derive Equation (12), again substituting from Equation (7)
we get along similar lines

∫

y2 p(y; . . .) dy

=
1

dσ

∑

i

∫

y2K(
y − axi − ω

σ
)dy

=
1

d

∑

i

σ2 + (axi + ω)2

= σ2 +
1

d

∑

i

(axi + ω)2. (13)

Furthermore, we expand

1

d

∑

i

(axi − am(x))2

=
1

d

∑

i

(axi + ω − am(x) − ω)2

=
1

d

∑

i

(axi + ω)2 − (ω + am(x))2. (14)

Now employing Equations (13), (11) and then (14) we get

ν =

∫

y2p(y; . . .) dy − µ2

= σ2 +
1

d

∑

i

(axi + ω)2 − (ω + am(x))2
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= σ2 + a2 1

d

∑

i

(xi − m(x))2,

which establishes Equation (12). For constant a, σ, ω, these equations follow
from Equations (4) and (7) in Raftery et al. (2005). All these identities are
special instances of the well known fact that the overall variance of a model
which is itself an average is given by the average of the individual variances plus
the dispersion of the models.

The kernel dressing methods discussed in this paper (and in fact most other
kernel dressing methods we know of) differ only in how the parameters σ, ω,
and a are determined as functions of x and θ. For affine kernel dressing (AKD),
σ and ω are set to

ω = r1 + r2 · m(x), (15)

σ2 = h2
S · (s1 + s2 · a2v(x)). (16)

Here hS is Silverman’s factor (see Silverman, 1986)

hS = 0.5 · (4/(3d))1/5,

the meaning of which will be explained below. Substituting Equation (15) for
ω in (11) and Equation (16) for σ in (12) we get the relations

µ = r1 + (a + r2) · m(x), (17)

ν = h2
Ss1 + a2(h2

Ss2 + 1) · v(x). (18)

The dressing approach as presented in Equations (15,16) leaves the free param-
eter vector θ := [r1, r2, s1, s2, a] to be determined. There is a different way to
write Equations (15) and (16) which reveals more about the structure of AKD
and the role of Silverman’s factor. Combining Equations (15) and (16), it is
easy to see that the dressed ensemble Equation (7) reads as

p(y;x, θ) :=
1

dσ

∑

i

K(
y − zi

σ
), (19)

where

zi = axi + r2m(x) + r1 (20)

σ2 = h2
S · (s1 + s2 · v(z)). (21)

The relations (19), (20), and (21) allow for the interpretation of AKD as dress-
ing the ensemble z, which is obtained from the original ensemble x through
the transformation in Equation (20). This transformation will henceforth be
referred to as an affine ensemble transform. Hence also the name affine kernel
dressing5. Further possible generalisations of dressing could be obtained by re-
placing the affine ensemble transform (i.e. Equ. 20) by more general ensemble
transforms, which are discussed in Appendix B. Note that the affine ensemble
transform acts on the ensemble as a whole and cannot be represented as a func-
tion acting on each ensemble member individually. We stress that the ensemble
transformation (Equation (20)) as well as the dressing (Equation (19)) are both

5which should in fact be “affine ensemble transform kernel dressing”
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integral parts of the entire method and should not be considered as separate
steps. In other words, the parameters in Equations (19) and (20) will generally
depend on each other.

From the theory of kernel density estimates (Silverman, 1986) we take the
ansatz Equation (21) for the bandwith σ. In the highly idealized situation that
the transformed ensemble z is gaussian and perfect, σ2 = h2

S
· v(z) is a close to

optimal choice for the bandwidth. Although we do not assume z to be either
gaussian or perfect, using Silverman’s factor conveniently scales s1 and s2 to
ranges around one.

In Section 6, affine kernel dressing will be compared to Gaussian dressing
as well as a more standard version of kernel dressing, henceforth referred to
as standard kernel dressing (SKD), which obtains by setting a = 1 , r2 = 0,
and s1 = 0. That is, standard kernel dressing allows for a fixed offset r1 to all
ensemble members as well as a bandwidth correction factor s2.

Another special case emerges by setting r2 = 0, s2 = 0. This ensemble
interpretation method was studied by Wilks (2006), who introduced it as a
special case of bayesian model averaging (BMA, Raftery et al., 2005). As was
pointed out in Wilks (2006), the general BMA technique might be justified if the
ensemble members are expected to have significantly different error statistics,
as for example in ensembles of different numerical weather models. For the
initial condition ensembles considered below however, the ensemble members
are expected to have quite similar statistics, whence a general BMA approach
would be overly complex.

3 Properties of AKD, SKD, and GDF

In this section a brief look is taken upon the advantages and shortcomings to be
expected of the four dressing methods presented. It is plausible that any kernel
dressing is better than Gaussian dressing if (but not only if) the ensemble x(t)
and the verification y(t) are independent draws from the same underlying dis-
tribution (perfect ensemble) and the ensemble is sufficiently large. The reason
is that with increasing ensemble size (and suitable choice of the bandwidth σ),
the kernel dressed ensemble will approach the underlying density. Although we
did not venture to find a proof, analogy to density estimation problems (Silver-
man, 1986) suggests that a neccessary criterion would seem to be σ(d) → 0 if
the ensemble size d goes to infinity, but slow enough so that still d · σ(d) → ∞,
that is, σ(d) shrinks slower than d. This is expected, for example, in best mem-
ber dressing (Roulston and Smith, 2003). Hence we would expect that, if the
ensemble is perfect, yet not gaussian but, for example, bimodal (Smith, 1997,
2002), kernel dressing will eventually outperform Gaussian dressing. Even if the
perfect ensemble is actually a draw from a gaussian, it is not clear that Gaussian
dressing is better than kernel dressing, since the parameters ω and σ in Equa-
tions (5) and (6) still need to be estimated from the ensemble. It can be shown6

that maximum likelihood estimates of these parameters are suboptimal, and a
t–distribution should be used rather than a Gaussian (Johnson and Wichern,
1992). This effect is essentially due to the small ensemble size.

Gaussian dressing, on the other hand, is expected to beat standard kernel
dressing when the ensemble x(t) is reasonably Gaussian but overdispersive, or

6Penzer, J., 2006. Personal communication.
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in other words, the ensemble members are further away from each other than
from the verification. Since σ2 is positive, Equation (12) reflects the basic result
(see e.g. Wilks, 2006) that the variance of the standard kernel dressed ensem-
ble (i.e. if a = 1) is always larger than the variance of the raw ensemble, no
matter how σ is determined. Affine kernel dressing, in contrast, allows for the
variance of the dressed ensemble to be a linear function of the variance of the
raw ensemble, a feature it shares with Gaussian dressing and BMA. In opera-
tional numerical weather prediction, the ensemble spread is typically too small
on average, leading to convex Talagrand diagrams (Wilks, 1995; Hamill, 2001).
Nevertheless, Equation (12) is a relation for each individual ensemble. Inde-
pendent of whether the ensemble variance is too large or too small on average,
affine kernel dressing allows for a more flexible relationship between the vari-
ance of the ensemble and the variance of the dressed ensemble than standard
dressing in either case. A distinct advantage of AKD over BMA emerges from
the relations (17, 18). For AKD, these two relations are independent. This
would in principle permit to debiase the ensemble mean and simultaneously op-
timize the spread–skill relationship. The relations (5, 6) show that the same is
true for GDF. For BMA though, r2 = 0 and s2 = 0, in which case the linear
part in both the relations (17, 18) is determined by a. In other words, hav-
ing debiased the ensemble, there remains little which can be done for a better
spread–skill–relationship. As demonstrated in Section 6, AKD offers significant
benefits when applied to numerical weather predictions for which the square
error of the ensemble mean is not well represented by the ensemble variance. To
the extent that it is Bayesian, BMA provides a principled framework for con-
structing probability forecasts. This comes with the cost of assuming that one
of the models is true (Hoeting et al., 1999) or alternatively that the available
model class admits a perfect model.

While all variants of kernel dressing borrow from and bear some resem-
blance to Kernel Estimation, a technique employed to estimate probability den-
sity functions (Silverman, 1986), we stress that kernel dressing (and in fact
ensemble interpretation in general) rests on different assumptions than kernel
estimation. The latter attempts to fit a probability density function to a single
and unchanging archive of points. These points are simultaneously forecasts
and verifications. Future points, although not expected to be equal to any point
in the archive, are nevertheless assumed to be drawn from the same source.
Thereby, in KE, the ensemble and the verification are draws from the desired
distribution. For kernel dressing of ensemble forecast, there is but one veri-
fication for every ensemble, and typically, the verification is not drawn from
the ensemble, that is, the ensemble is demonstrably not perfect. The improved
dressing method as presented in Equations (19), (20), and (21) looks superfi-
cialy similar to a kernel estimator applied to the transformed ensemble z. It
should be kept in mind though that eventually all parameters of kernel dressing
are determined simultaneously and depend on each other, thus the ensemble
transform (Equ. 20), the choice of the bandwidth (Equ. 21) and the dressing
(Equ. 19) cannot be separated.
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4 Scoring and Training

The ensemble interpretation methods presented in the Section 2 depend on the
as yet unspecified parameters θ. We consider the problem of determining the
parameters of ensemble interpretations to be similar to the learning problem of
statistics (Vapnik, 1998; Hastie et al., 2001). In the latter problem, the objec-
tive is to fit a functional relationship between certain inputs and verifications,
based on a training set of input–verification pairs. The functional relationship
is picked from a range of functions or model class according to performance. An
algorithmic procedure that tunes the parameters according to performance over
a training set will be referred to as a training algorithm. At the core of most
training algorithms lies an iterative procedure which optimizes the expected
performance as a function of the parameters. A more classical term for train-
ing algorithm is “estimation technique”. The difference is only a linguistic one,
but estimation might imply the existence of a true parameter (like a physical
quantity) that is to be estimated. The parameters of ensemble interpretation
methods though need not have any physical interpretation, whence the term
training algorithm seems more appropriate here.

When interpreting ensembles, the objective is to find a probabilistic rela-
tionship between the inputs and verifications, where the model class consists of
sums of kernel functions, and the training set consists of ensemble–verification
pairs (hence the training set is often referred to as forecast archive). The un-
specified parameters should be determined solely by forecast performance, not
by any a priori assumtions, like, for example, that the ensemble and the verifi-
cation are draws form one and the same underlying distribution. This obviously
involves finding appropriate performance measures or scoring rules for proba-
bilistic forecasts, which we will turn to now.

A scoring rule is a function S(p(y), Y ), where p(y) is a probability density and
Y is the verification. In this paper, scoring rules are defined like cost functions:
small scores indicate better forecast skill. For example, the Ignorance Score is
defined by the scoring rule

S(p(y), Y ) = − log(p(Y ))

The Ignorance score is related to the log–likelihood (Mood et al., 1974; Bröcker
and Smith, 2007) and plays an importand role in gambling theory. Another
interesting scoring rule (although not used in this paper) is the Proper Linear
Score. It is defined as

S(p(y), Y ) =

∫

p2(z)dz − 2p(Y ). (22)

It should be noted that the Ignorance depends only on the single number p(Y ),
while the Proper Linear Score depends on the entire functional form of p(y).
This particular property of the Ignorance is called locality. Local scores are
typically cheaper to evaluate than nonlocal scores. Computing functionals of
the probability density (such as the integral in Equation 22) are often very
costly. As noted by Gneiting et al. (2004), similar reasons have hampered the
use of the CRPS–score.

It turns out that not all conceivable candidates for scoring rules yield useful
scores. An indispensable property of scores is propriety. Roughly speaking, a
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score is proper if p(y) achieves an optimal (i.e. minimal) expected score whenever
the verification is drawn from p(y). A scoring rule is strictly proper if that
happens only if the verification is drawn from p(y). Propriety is a property only
of the scoring rule itself. The Ignorance and the Proper Linear Score are proper
(for a proof of this fact as well as a discussion of the notion of propriety see
Bröcker and Smith, 2007). A general result due to Bernardo (1979) states that
all smooth, proper and local scores are affine functions of the Ignorance. Proper
scores in general have been characterized by Gneiting and Raftery (2007).

In evaluating forecast systems, one is not only concerned with a single prob-
ability density function p(y) but rather with a sequence pn(x) of probability
density functions and corresponding verifications Yn which can be employed to
estimate the performance of the forecast system, in other words, the expected
score (with respect to a proper scoring rule S). To this end, define the empirical
score

SN :=
1

N

N
∑

n=1

S(pn(x), Yn). (23)

The empirical score values the average performance of the forecast system over
all samples in the archive. In the case of dressed ensembles, the probability
density functions are time depend through the ensemble x(n), that is pn(y) =
p(y;x(n), θ), where θ denotes the ensemble interpretation parameters. In the
case of affine kernel dressing for example, θ = [a, r1, r2, s1, s2]. Replacing the
expression for pn(y) in Equation (23) and using the Ignorance score we obtain

SN (θ) =
1

N

N
∑

n=1

− log (p(Yn,x(n), θ)) (24)

In Equation (24) the empirical score of the ensemble (which essentially reflects
the performance of the forecast system) can be regarded as a function of the free
ensemble interpretation parameters θ. Minimizing the score (and thereby opti-
mizing the performance of the dressed ensemble) with respect to the parameters
θ provides a means to choose these parameters, i.e. a means of training, rem-
iniscent of statistical learning. In statistical learning, a functional relationship
is picked from a range of functions according to its performance, which is often
(but not always) the quadratic error. In ensemble interpretation, a relationship
between ensembles and probability density functions is picked from a range of
functions according to performance, which in this paper is measured by the Ig-
norance score. The approach to minimize performance measures (such as the
Ignorance score) to determine parameters of forecast interpretation methods for
continuous events was, to our knowledge, first considered by Jewson (2004a,b)
and (apparently independently) by Gneiting et al. (2004). In so far as minimiz-
ing the Ignorance can be considered as maximum likelihood, it is of course a
very old concept.

A thorough theoretical investigation of the minimum–score training strategy
and the properties of the obtained parameters would be invaluable, but is not
subject to this paper. We used an optimisation algorithm that solves a sequence
of constrained quadratic optimisation problems (Gill et al., 1982). Other options
are the EM–algorithm, employed by Raftery et al. (2005). Both algorithms are
only guaranteed to find local rather than global minima. We are ignorant as to
whether the EM–algorithm could be applied to other scores, while preliminary
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studies indicate that sequential quadratic optimisation works equally well with
the proper linear score. The Ignorance of kernel dressing can display multiple
minima with rather poor performance. Robust solutions with good performance
however are obtained in practice by a regularisation strategy, discussed in Sec-
tion 5, along with a careful initialisation of the minimisation algorithm. The
results reported in this paper were obtained using the following methodology
for finding the initial conditions. The mean of the dressed ensemble (as de-
scribed by Equ. (5) in case of Gaussian DF interpretation resp. Equ. (11) in
case of kernel dressing) is fitted to the verification in a mean square error sense.
Then the variance of the dressed ensemble (as described by Equ. (6) in case of
Gaussian DF interpretation resp. Equ. (12) in case of kernel dressing) should
roughly correspond to the squared residuals of the fitted mean. Thus fitting the
variance of the dressed ensemble to the squared residuals gives a further con-
dition to find initialisation parameters. As it turns out, this allows for finding
complete initial conditions for Gaussian DF interpretation and standard kernel
dressing. For affine kernel dressing, this strategy leaves s2 unspecified, which
is set to 1. The structure of the problem as presented in Equations (20), (21),
and (19) and the use of Silverman’s factor guarantee that setting s2 = 1 is a
reasonable choice unless the transformed ensemble (Equ. 20) is extremely poor.

5 Robustness Issues

Obtaining robust estimates for the parameters of ensemble interpretation meth-
ods can be difficult, especially if forecast busts are numerous or when the ensem-
ble is small. This problem is often traced back to the empirical score showing
a large variance. Recently, several authors (Gneiting and Raftery, 2007; Selten,
1998) criticized the Ignorance for being particularly prone to large variation.
The Ignorance is a quite unforgiving score in that it extremely severly penal-
izes low probability assignment to verifications that actually obtain. Indeed,
assigning vanishing probability to a verification yields an Ignorance of infinity.
Even if the assigned probabilities are never exactly zero, a few “bad forecasts”
can render the variance of the empirical Ignorance undesirably large, resulting
in parameters obviously useless (this may be a positive attribute in decision
support). It should be noted that the Ignorance has a clear interpretation in
terms of gambling returns (Roulston and Smith, 2002; Good, 1952; Kelly, 1956).
Under a certain betting scenario (“Kelly Betting”, Kelly, 1956) the Ignorance
describes the rate at which the forecaster’s fortune increases with time. The
properties of the Ignorance hence can be defended as representing properties
of a game. Furthermore, large variations in the empirical score are always to
be expected if the forecasts are poor and should adequately be dealt with, es-
pecially as the score might not even be a matter of choice. So how can large
variations in the empirical score be avoided?

It was suggested by Gneiting and Raftery (2007) that the summands in
Equation (24) could be censored, that is, a certain percentage of the data could
be rejected as outliers. Another option could be to use a truncated logarithm,
which would be reminiscent of ǫ–insensitive loss functions in regression (Vap-
nik, 1998). This seems inadvisible in cases where such “outliers” have a firm
physical interpretation and are expected to become more relevant in the future
dynamics, for example in seasonal forecasting. These and other means to com-
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bat the influence of outliers on the score and subsequently the parameters are
often refered to as regularisation. It has to be kept in mind though that the
Ignorance (or whichever score is employed) is used both to train the ensemble
interpretation parameters and also to evaluate the interpreted forecast. Dur-
ing training, any kind of regularisation is permissible and even recommended.
For evaluation however, censoring or truncating of the score would require it to
be re–interpreted. Important properties and interpretations of the score might
not hold for the regularized score. For example, common interpretations of the
Ignorance in terms of gambling return rates cease to apply if the sum in Equa-
tion (24) is censored, which essentially would be tantamount to canceling the
highest winnings and to default on the worst bankruptcies. In practice, certain
scoring procedures (e.g. sailing, ski jumping or ice skating) actually allow to
retrospectively discount the worst results (sometimes requiring the best results
to be cancelled too), but this is certainly not the case in “games” as for exam-
ple casinos, energy markets or air traffic control. Hence in general it seems to
depend on the particular problem whether a censored (or truncated) score is an
appropriate measure of forecast performance.

In situations where a regularisation of the problem is neccesary during train-
ing, but where the problem statement does not allow for any censoring or oth-
erwise altering of the score, it seems inevitable to apply a slightly different
(i.e. regularized resp. not regularized) scoring methodology during the training
(resp. evaluation) period. In this paper, the logarithm was effectively trun-
cated by replacing all pn which were equal to zero (up to numerical precision)
by the smallest nonzero pn. For evaluation though, the Ignorance was neither
censored or truncated. Such discrepancies (which are inherent to all regularisa-
tion approaches) might seem disturbing at first sight. Currently we lack a full
theoretical justification of this approach, but as an ad hoc scheme we found it
to give superior results, presumably because of smaller variance in the dressing
parameters.

To account for forecast failures during evaluation, the dressed ensemble was
blended with an estimate of the climatology of the verification, thereby cir-
cumventing the problem of large variances in the empirical score. For a finite
ensemble size, this is justifiable even in the case of a perfect ensemble. More
specifically, let pn(y) be the interpreted ensemble and q(y) be an estimate of
the climatology of the verification. We use a mixture of both, like

rn(y) := αpn(y) + (1 − α)q(y), 0 ≤ α ≤ 1. (25)

as the forecast distribution. The weight α is determined so as to minimize
the Ignorance (i.e. to optimize the performance) of the combination, and hence
must be involved in the optimisation. The resulting probability assigned to a
verification Y is never smaller than (1 − α)q(Y ). The effect therefore is that
a small, yet nonvanishing probability is assigned to the verification, as long
as the latter does not fall outside the range of the data record employed to
estimate the climatology. Forecast performance is often stated in relation to the
performance of climatology as a reference. This means that the (mean of the)
difference in performance between pn(y) and the climatology q(y) is reported.
Thus the climatology acts as a reference forecast, itself yielding a score of zero.

13



In case of the Ignorance, this can be written as

SN [p] − SN [q] :=
1

N

∑

− log

(

rn(Yn)

q(Yn)

)

. (26)

Replacing rn(y) from Equation 25 we get for every summand

rn(Yn)

q(Yn)
=

αpn(Yn) + (1 − α)q(Yn)

q(Yn)

= α
pn(Yn)

q(Yn)
+ (1 − α)

≥ (1 − α),

from which we can conclude

− log (rn(Yn)) ≤ − log (q(Yn)) − log(1 − α).

Hence the empirical Ignorance of a forecast combined with climatology relative
to climatology is never larger (i.e. worse) than − log(1−α). Blending in clima-
tology thus acts as a hedge against forecast busts. Another way to interpret a
blend with climatology is to play cancelling bets. The Ignorance of a forecast
relative to climatology describes the rate at which the forecasters fortune in-
creases in a betting scenario where the odds are set according to climatology.7

Mixing in a proportion 1 − α of climatology hence is equivalent to staking a
proportion α of the fortune according to the forecast and a proportion 1 − α
according to the odds given, which guarantees a certain return of at least a
proportion 1− α of the stake. The forecaster thus avoids being infinitely worse
off than the house.

Only few forecast busts are sufficient to render a good climatology worth be-
ing blended with the forecast proper. As an example, Figure 1 shows − log(rn(Yn)),
combined with climatology, versus − log(q(Yn)), that is the climatology itself.
The ensemble forecast was from ECMWF’s medium range 10 day 51 member
ensemble predicion system. The lead time was ten days. The weight assigned to
the climatology is 1− α = 0.051. It is obvious from the plot that − log(rn(Yn))
is never larger than − log(q(Yn)) − log(1 − α) = − log(q(Yn)) + 2.97 at every
verification (not just in the mean). Figure 2 shows the weight assigned to the cli-
matology over lead time. The uncertainty bars display variations of the weight
estimate obtained through cross–validation (see Appendix A).

It might prove difficult to determine α robustly, as the optimal combination
of α and kernel bandwith (i.e. σ in Equation 21) for the training set might
be a local (and very poor) minimum by suggesting a very wide bandwith to
compensate for forecast busts, instead of employing the climatology for that
purpose. This could be adressed by using a kernel function with a limited
domain (like the quadratic Epanechnikov kernel, see e.g. Silverman, 1986), which
yields infinite Ignorance for all points outside its domain. Alternatively, large
kernel bandwidths σ could be penalized. Taking into account the finite ensemble
size and probably a known rate of forecast busts, it should even be possible to
derive an upper bound on α (i.e. a lower bound on the weight assigned to

7Or alternatively, relative Ignorance between two forecasts A and B describes the rate at
which the fortune of forecaster A exceeds that of forecaster B.
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climatology). The suggested precautions where however not neccessary for the
data sets considered in this paper (see Section 6).

Another interesting interpretation of the weight 1 − α assigned to the cli-
matology could be to quantify of belief in or uncertainty of our forecast. The
question arises if and how uncertainty of probabilistic forecasts could be quan-
tified more generally, for example if the climatology is unknown or is known to
be changing. If the predictive distribution is interpreted as a probability, we
are now speaking about assigning an uncertainty to what is already a probabil-
ity, thus introducing the idea of second order probabilities, that is quantifying
statements like “the probability that it rains tomorrow at London Heathrow is
evenly distributed between 10% and 20%”. Second order probabilities lead to
odds forecasts8, that is forecasts with a total mass larger than one, the excess
representing uncertainty in the forecast (Smith, 2007). Although it is not yet
clear how uncertainty in probabilistic forecasts in general or odds in particular
could be assigned or used, such a framework requires ensemble interpretation
methods that focus on information content in the ensembles to hand, while
the assumption that the resulting predictive distributions can be interpreted or
acted on as if they are (decision relevant) probability distributions has to be
dropped.

6 Comparative Studies

This section analyzes the performance of standard kernel dressing (SKD), affine
kernel dressing (AKD), Gaussian DF interpretation (GDF). Shortcomings of
SKD and GDF, which originally motivated the developement of AKD, are il-
lustrated. AKD was compared to BMA too, albeit less comprehensively. All
ensemble interpretation methods were blended with climatology, with the ex-
ception of Gaussian DF interpretation (GDF). AKD is shown to be superior to
all other methods for the problems considered. As far as we are aware, previous
implementations of BMA do not blend in climatology, leading to significantly
larger variations in performance and often inferior skill.

Results are presented for three different data sets. The first and second data
sets constist of forecasts of the two metre temperature at London Heathrow
Airport (WMO station Nr.03772) and Heligoland, German Bight (WMO sta-
tion Nr.10015), respectively. The forecasts consist of ECMWF’s 51 member
ensemble (as for Figures 1 and 2). The verifications consist of station data,
kindly provided by ECMWF as well. Forecasts were available for the years
2001–2005, featuring lead times from one to ten days. Verifications were avail-
able as far back as 1981. The years 1981–2000 were used to build a climatology.
For any given day, the climatology is calculated only from data falling into the
same annual period, defined by a window of ±20 days. Hence the climatology
depends as well on the season. All data verified at noon. The results for the
weather data are shown in Figures 3 and 4 and are discussed below.

The third data set was generated using the Lorenz63 system (Lorenz, 1963).
The ensemble, comprising 50 members, was generated from observations of the
full state of the system, corrupted with 15dB noise9. The sampling interval was

8Judd, K., 2006. Personal communication
9The dB scala measures the ratio between the variances of two signals. A signal to noise

ratio of d dB indicates that d = 10 · log10( vs

vn
), where vs (resp. vn) is the variance of the clean
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0.05. For data assimilation, a variant of the indistinguishable states importance
sampler (Judd and Smith, 2001) was employed. Data assimilation is necessary
here, since we have but noisy measurements of the true underlying state of
the system. Although ensembles could also be generated by perturbing the true
initial condition, this option would of course not be available in real applications.
Hence, using a data assimilation scheme corresponds much more to realistic
circumstances. Forecasts were considered at ten lead times [0.1, 0.2, . . . , 1]. The
same model was used to generate both forecasts and the verifications. Moreover,
the verifications formed a single trajectory. In general, the AKD significantly
outperforms SKD and GDF, especially for the Lorenz63 system. The AKD
method also appears to be the most robust method among the three, in the
sense that the performance of AKD showed the least variability. The results for
the Lorenz63 system are shown in Figure 5, and are discussed below.

Figure 3.a shows the performance in terms of Ignorance of AKD relative to
climatology for the London Heathrow data set. The x–axis shows the lead time.
The uncertainty bars (in fat line style) mark the 10% − 90%–range obtained
from a tenfold cross validation. The thin line shows the Ignorance of the out–
of–train output. The corresponding thin confidence bars show the ±2σ–range
(see Appendix A). Cross validation is known to have a large variance (Hastie
et al., 2001), while the variance of the out–of–train output (see Appendix A)
on the other hand tends to be too small. In any case, AKD gives a significantly
higher skill than the climatology under both validation methods. In order to
compare the performance of AKD, SKD, and GDF interpretation, we plot the
difference of the Ignorance (Equ. 37) directly, rather than leave it to the reader to
compare performances across multiple graphs, allowing confidence bars of the
relative performance, as the uncertainty in the relative performance does not
follow from the uncertainties of the absolute performances (see Appendix A).
The axis scaling has been set so as to allow for easy comparison across different
graphs.

Figure 3.b shows the performance of GDF versus AKD. The out–of–train
confidence bars overlap the zero line slightly for lead time 24, 48 and 72 hours,
but sees AKD significantly ahead of GDF beyond lead time 72h. The cross–
validation assessment indicates essentially the same, the bars being wider though.

Figure 3.c shows the performance of SKD versus AKD for London Heathrow.
Up to lead time 120 hours, the AKD method outperforms SKD substantially,
at least according to out–of–train calculation. For higher lead times, AKD still
appears to be better for a large fraction of cross validation runs.

Figure 3.d shows the performance of SKD versus GDF. From lead time
96 hours onwards, the two are essentially similar. The potential advantage of
SKD when dealing with strongly nongaussian ensembles seems to play little role
for temperature at lead times up to 100 hours.

The comparison between BMA and AKD (Fig. 3.f) remains somewhat in-
conclusive, although AKD is certainly better than BMA for medium and larger
lead times. In terms of out–of–train performance, AKD is significantly better
than BMA. Note that our implementation of BMA includes blending with the
climatology. This blending is not a common part of BMA, and some Bayesians
might object to it on principle, but it allows for a better comparison between
BMA and AKD. Without climatology, BMA shows considerably larger variation

signal (resp. the noise)
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in performance (not shown).
The findings for Heligoland (Fig. 4) are very similar to the results obtained

for London Heathrow, a notable exception being that AKD wins over GDF by
an even wider margin. Furthermore, the superior performance of AKD over
BMA occurs for higher lead times when compared to London Heathrow (cf.
Fig. 3.f with Fig. 3.f).

It is interesting to look at the nongaussianity of the ensemble for these two
datasets, especially in connection to the performance of AKD versus GDF (Fig-
ures 3.b and 4.b), as we expect AKD to outperform GDF if the ensembles deviate
from gaussianity. As a measure of nongaussianity, we employ the kurtosis of the
ensemble, that is the centered moment of fourth order,

k(x) =
1

d

∑

(xi − m(x))4,

where m(x) is, as before, the ensemble mean. For Gaussian distributions, the
fourth centered moment is expected to be three times the variance, hence we
expect for Gaussian ensembles

κ(x) :=
k(x)

3v(x)
− 1 ≈ 0.

The distribution of this statistic κ for Gaussian ensembles can be simulated
through bootstrapping and subsequently compared with the distribution of κ
for the actual ensembles. In Figures 6 and 7, the 10% − 90%–range of the
actual κ’s is indicated by a black bar, for London Heathrow and Heligoland,
respectively. The y–axis is calibrated in terms of quantiles of κ for gaussian
ensembles. If the actual ensembles were gaussian, all bars should extend from 0.1
to 0.910. It emerges that at both locations the ensembles tend to be particularly
nongaussian at lead times around 96 hours. Interestingly, for larger lead times
at London Heathrow, the κ statistic indicates again a more Gaussian ensemble.
For Heligoland, the ensembles are also particularly nongaussian at lead times
around 96 hours, but contrary to London Heathrow, the ensembles stay fairly
nongaussian out to lead time 240 hours. This provides a possible explanation
for the better performance of AKD in relation to GDF at Heligoland. It is worth
noting that the better performance of AKD versus GDF furthermore indicates
that the nongaussian ensembles carry information beyond the second moment.
The AKD interpretation outperforms GDF not only because the ensembles are
nongaussian, but because this nongaussianity actually carries information.

As to the reasons why AKD outperforms the other discussed methods, fur-
ther investigation is necessary. There is some evidence though that the mecha-
nisms discussed in Section 3 are in fact responsible. We investigated the param-
eters for both BMA and AKD for London Heathrow at lead time 120h. Note
that AKD is particularly strong here, and that the ensembles are particularly
non–gaussian. The parameters were substituted into Equations (17) and (18).
For AKD, these relations read

µ = 0.0 + 0.99 m(x), (27)

ν = 1.93 + 0.53 v(x). (28)

10The scale of the y–axis is not linear in p but in log
(

p

1−p

)

. For small (resp. large p), this

renders the plot effectively logarithmic in p (resp. 1 − p).
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For BMA, these relations read

µ = 0.003 + 1.0 m(x), (29)

ν = 0.17 + 1.0 v(x). (30)

The cross–validation approach (see Appendix A) yields an uncertainty of less
than 10−3 for all these coefficients. Since Equations (27) and (29) agree to a high
degree, AKD and BMA always have very similar means. The Equations (28)
and (30) though differ. As was mentioned already in Section 3, for BMA the
slope of the variance relation (Equ. 30) is always the square of the slope of
the mean relation (Equ. 29), whence it is impossible for BMA to have mean
and variance relations like Equations (27) and (28). It appears though that
the variance relation of AKD (Equ. 28) gives the better performance. It is
interesting to note that the two variance relations intersect at v(x) = 3.74,
as this is almost exactly the temporal average of v(x), which is 3.76. This
means that on average over time, BMA and AKD feature the same variance
(3.93), which is in fact the ensemble variance, slightly inflated. For individual
ensembles though, their variances generally differ. In particular, the variations
of the variance (i.e. the variance of ν) is larger for BMA than for AKD. The
lead times 48h and 216h (for Heathrow and Heligoland) were investigated along
the same lines, with similar findings. Finally, we would like to mention that for
AKD, BMA and SKD, the weight assigned to climatology behaves roughly as
in Figure 2.

The experiments carried out using the Lorenz63 data confirm the general
picture already obtained from the weather data experiments, thereby confirming
that any positive results are not only due to limited counting statistics. AKD is
the best performing and most robust method. The performance of AKD versus
climatology is shown in Figure 5.a. AKD and SKD perform roughly equal
(Fig. 5.b). We suspect that this is due to the high quality of the ensemble.
If the ensembles were either over or underdispersive, we would expect AKD
to perform better than SKD. Talagrand diagrams (not shown) however indicate
that the ensembles are very reliable (i.e. neither over nor underdispersive), which
explains the similar performance of both AKD and SKD. Inspection of the AKD
models (not shown) indicate that the parameter a (see Equs. 20 and 21) is close
to one, in particular for small lead times, rendering AKD and SKD essentially
equal. Kernel dressing (i.e. AKD and SKD) significantly outperform GDF for
higher lead times (Figs. 5.c and d). A main reason for this is certainly the
increasingly nongaussian ensembles for higher lead times, as is obvious from
a plot of the κ–statistic (Fig. 8). Again, by comparing the variance of the
performance across different graphs, it can be concluded that AKD features not
only the best, but also the most robust performance.

7 Conclusion

There is valuable information in ensemble weather forecasts; extracting this
information requires interpreting the ensemble. Comparing different methods
for interpreting ensembles shows that the affine kernel dressing technique intro-
duced in this paper yields promising results for operational temperature fore-
casts using the ECMWF ensemble; its strengths are also illustrated in the con-
text of perfect model and large forecast–verification archive with the Lorenz 63
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system. In terms of the ignorance score, affine kernel dressing outperforms the
other methods in all cases considered; both cross validation and out–of–train
evaluation confirm the results. The importance of blending climatology into the
probability distribution function is shown.

Our approach aims at extracting information from an ensemble without
making assumptions regarding the perfection of the model or the ensemble.
There is no assumption that the verification represents ”just another draw” from
the distribution that generated the ensemble, nor any assumption that the model
class available admits a ”true” model. There is abundant evidence that such
assumptions are not justified in operational forecast systems. We furthermore
touch on the question of whether or not probability distributions functions are
indeed the best representation of the valuable information contained in these
systems.

To the extent that operational forecasts are made to be used, the ensemble
interpretation is a critical component contributing to the value of an ensemble
prediction system. By aiming merely to extract information from the model
simulations and other available distributions (for example climatology), affine
kernel dressing has been shown to improve this critical component, and may
contribute to enhancing the value of ensemble–based prediction, particularly in
applications like weather forecasting at all lead times.
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A On Out–Of–Train Evaluation and Cross Val-

idation

Performance evaluation of forecast systems aims to provide a sound estimate of
the future or out of sample performance, or more specifically on data the forecast
system will encounter while in operation. Estimating the the performance on
data which was already used to build or select the forecast system or any parts of
it, including the ensemble interpretation methods, is likely to give overoptimistic
results. Ideally, the ensemble interpretation methods are trained on one part
of the available data, while the other part is left aside as test data. To get
reliable estimates of the out of sample performance, the test data set has to be
sufficiently large. But typically, as the total amount of data available is already
limited, we cannot afford to sacrifice large proportions of the data for out of
sample performance assessment, as a small training set is expected to provide
inferior parameter values. We apparently face the problem of having either
unrealistic parameters or unreliable estimates of performance.

A way around this apparent circulus vitiosus is cross validation (see e.g.
Hastie et al., 2001). The price to be paid though is having to train the ensemble
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interpretation method a number of times rather than only once. More specifi-
cally, cross validation works as follows. The training set T = {(x(n), Yn), n =
1 . . .N} is partitioned into J partitions Tj of equal lenght N/J . Let θ(j) be
the parameter vector obtained by training the ensemble interpretation method
on T \ Tj, that is the training set without partition j. The score Sj for this
particular θ(j) is evaluated only on Tj (i.e. the data that had been left out for
finding θ(j)) and is given by

Sj :=
J

N

∑

n∈Tj

− log
(

p(Yn;x(n), θ(j))
)

. (31)

The mean of all Sj is called the cross validation estimate of the score

SCV :=
1

J

∑

j

Sj . (32)

The standard error of SCV can be estimated thus

∆SCV :=

√

1

J(J − 1)

∑

j

S2
j − S2

CV. (33)

In similar fasion, quantiles of the Sj can be computed to give confidence intervals
for the score. In the figures of Section 6, we plotted the median score along
with the 10%− 90%–range as confidence bars. In Hastie et al. (2001), using the
standard error is recommended, but this gives obscure results if the distribution
of the Sj is rather non–gaussian.

Another way to estimate the likely variations of the score, referred to as
the out–of–train estimate, works as follows. Using the parameters θ(j) obtained
through cross validation, we can compute the out–of–train output by

πn := p(Yn;x(n), θ(jn)), (34)

where jn denotes the index of the partition containing (Yn,x(n)). Recall that the
sample (Yn,x(n)) was not used during the training of the particular parameter
θ(jn). Using the out–of–train output, the expected score

SOOT :=
1

N

∑

n

− log(πn), (35)

and its standard error

∆SOOT :=

√

1

N(N − 1)

∑

n

log(πn)2 − S2
OOT (36)

can be computed. An easy calculation (comparing Equations (34,35) with (31,32))
reveals that SOOT is actually equal to SCV. The standard errors however gen-
erally differ. Since it does not make sense to compute quantiles for the out–of–
train method, we used ±2 ·∆SOOT confidence intervals. It is hard to say which
of the two methods is to be preferred, whence we used both for performance
assessment. The CV–method explicitely takes into account model variations,
but as the individual CV–partitions are shorter than the training set, the model
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variations are likely to be over–estimated. The OOT–technique uses the entire
data set to estimate the variations, but both model variations as well as perfor-
mance variations are compounded. Furthermore, the individual outputs πn are
assumed to be independent, an idealisation that leads to underestimation of the
variations.

It is often neccessary to consider the improvement of the Ignorance obtained
by pn(y) over q(y). This improvement is naturally measured by the increase in
Ignorance (also often referred to as the relative Ignorance of pn(y) with respect
to q(y))

Sp − Sq =
1

N

N
∑

n=1

− log (pn(Yn)) + log (q(Yn)) . (37)

This quantity, as the estimate of the Ignorance proper, carries an uncertainty.
It is important to realize that there is no simple relationship between the uncer-
tainty in Sp − Sq and the individual uncertainties in Sp and Sq, since both are
highly dependent. In other words, the standard error of Sp − Sq is not in any
simple way related to the individual standard errors of Sp and Sq. To estimate
the standard error of relative ignorances through either cross–validation or out–
of–train technique, the Equation (33) (respectively (36)) has to be applied to
the differences in the performance Sj between the forecasts on each partition
(respectively the differences of − log(πn)).

All performance plots (Figures 3 to 5) show relative Ignorance (either with
respect to another forecast or with respect to climatology). The cross validation
estimates are plotted in fat line style, while the out–of–train estimates are in
thin line style. As noted above, cross validation and out–of–train differ only in
their estimates of the standard error.

B On Ensemble Transforms

In this paper we considered the interpretation of ensembles as the problem of
finding a map from a series of ensembles onto a series of distribution functions
for a corresponding series of verifications. The method of affine kernel dressing
provides a special class of such mappings by combining a simple kernel estimator
(Equation 19) with what we termed an affine ensemble transform (Equation 20).
This idea could be generalized by using different ensemble transforms, probably
involving nonlinear elements. A particular linear ensemble transform was used in
this paper, and there is the possibility that the concept is of wider applicability
in postprocessing ensemble forecasts. To this end, ensemble transforms need to
be properly understood and classified first. At this point, we are not even sure
if the ensemble transform used in this paper is the most general linear ensemble
transform. In this appendix, some neccessary conditions will be formulated that
we deem general ensemble transforms should obey and are hopefully sufficient
for a conclusive analysis of the aforementioned question.

The key property of an ensemble, which distinguishes it from a vector, is that
it is still considered the same ensemble if some members are interchanged either
across parts of or the entire ensemble. For example, although the 50 perturbed
members of the ECMWF ensemble are distinguishable by the initial perturba-
tions used to compute them, they can be considered indistinguishable for the
purpose of many applications. For the numerical studies in Section 6, even

21



the unperturbed (“control”) forecast was considered indistinguishable from the
perturbed ensemble members. Such an ensemble of mutually interchangeable
members will be called a pure ensemble. Ensembles consisting of a collection of
pure ensembles (say, if we combine pure ensembles produced by different mod-
els) might be called compound ensembles. All ensemble interpretation methods
studied in this paper tread the ensembles as pure, as they are invariant to any
permutation of the ensemble members.

An ensemble transform f is defined simply as a mapping between ensembles
(not neccessarily having the same number of members). They key property
of a (pure) ensemble, namely that the ordering of the ensemble members is
irrelevant, imposes certain restrictions on f , which we are going to formulate.
Let (as before) x = [x1 . . . xd] be the original ensemble (consisting of d members)
and

z = f(x)

be the transformed ensemble (of d′ members). If we now permute the elements
in x, then z must remain the same ensemble, which means, as we have seen, that
at most some permutation of the elements of z should take place. In other words,
if π denotes a permutation of d elements and πx denotes the permuted original
ensemble, there must be a permutation κ of the members of the transformed
ensemble z so that

κz = f(πx) (38)

holds.
The permutation κ so obtained obviously depends on π, or in other words,

the relation (38) defines a mapping κ(π) between permutations. If ι is the
identity, that is the permutation of d elements that actually keeps all elements
the same, then likewise κ(ι) is the identity permutation (of d′ elements). This
relation can (with a slight abuse of notation) be written as

κ(ι) = ι. (39)

Furthermore, if π1, π2 are two permutations, a third permutation π1 ◦ π2

arises through composition of π1, π2. It follows immediately from Equation (38)
that

κ(π1 ◦ π2) = κ(π1) ◦ κ(π2). (40)

Properties (39) and (40) state that any ensemble transform gives rise to a rep-
resentation κ of the group of permutations of d symbols in the group of permu-
tations of d′ symbols.

The transformed ensemble z in Equation (38) is not neccessarily a pure
ensemble though, but it might be possible to split the members of z into two
sub–ensembles, z = [z1, z2], so that for any permutation π, the corresponding
permutation κ(π) permutes in fact only the members of z1 and z2 among each
other, but does not interchange members of z1 with members of z2. If this is
the case, we have created a compound ensemble consisting of (at least) two pure
ensembles. In order to exclude this behaviour we have to require that for any
two indices i, j in the set [1 . . . d′], there is at least one permutation π so that
κ(π) permutes i into j. Groups of permutations with this property are called
transitive. Hence the conclusion of this appendix can be summarized thus:

22



Via Equation (38), an ensemble transform induces a transitive rep-
resentation of the group of permutations of d symbols in the group
of permutations of d′ symbols.

Transitive representations of the permutation groups have been widely studied
and classified. Hence by means of group theory (Weyl, 1946) it should be possi-
ble to address questions like whether the affine ensemble transform as presented
in Equation (20) is the most general class of ensemble transforms which can be
obtained by linear operations.
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Figure 1: The Ignorance − log(rn(Yn)) (ECMWF ensemble and climatology) vs
− log(q(Yn)) (only climatology) for temperature at Heligoland, German Bight
(WMO 10015), lead time ten days. The dressing method here is AKD. Obvi-
ously, − log(rn(Yn)) is never larger than − log(q(Yn)) − log(1 − α). The weight
assigned to the climatology is 1 − α = 0.051, whence − log(1 − α) ≈ 3.
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Figure 2: The weight assigned to the climatology over lead time. The rest is
as in Figure 1. The uncertainty bars display variations of the weight estimate
obtained through cross–validation (see Appendix A).
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Figure 3: The relative Ignorance of the investigated ensemble interpretation
methods and climatology for London Heathrow over lead time. The fat un-
certainty bars are from tenfold cross validation (10% − 90%–range). The thin
uncertainty bars correspond to the out–of–train performance (±2σ–range).
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Figure 4: As in Figure 3, but for Heligoland.
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Figure 5: The relative Ignorance of the investigated ensemble interpretation
methods for the Lorenz63 data set over lead time. Uncertainty bars are as in
Figure 3.
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Figure 6: The 10%−90%–range of the κ–statistic for London Heathrow. The y–
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Figure 7: The 10% − 90%–range of the κ–statistic for Heligoland. The y–axis
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