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Abstract: Ensemble prediction systems aim to account for uncertainties of initial conditions and model error.
Ensemble forecasting is sometimes viewed as a method of obtaining (objective) probabilistic forecasts. How is one
to judge the quality of an ensemble at forecasting a system? The probability that the bounding box of an ensemble
captures some target (such as “truth” in a perfect model scenario) provides new statistics for quantifying the
quality of an ensemble prediction system; information that can provide insight all the way from ensemble system
design and to user decision support. These simple measures clarify basic questions, like, what the minimal size
of an ensemble should be. To illustrate their utility, bounding boxes are used in the imperfect model context to
quantify the differences between ensemble forecasting with a stochastic-model ensemble prediction system and a
deterministic-model prediction system. Examining forecasts via their bounding boxes statistics provides illustration
of how adding stochastic terms to an imperfect model may improve forecasts even when the underlying system is
deterministitc. Copyright c© 0000 Royal Meteorological Society
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1 Introduction

There are many uncertainties associated with oper-
ational forecasting. In numerical weather prediction
(NWP), for example: observations of the atmosphere
and oceans are incomplete and sometimes inaccurate;
there are uncertainties introduced when data is assim-
ilated into forecast models; the models themselves
are only an approximate representation of the phys-
ical processes of weather; there are dynamical insta-
bilities that amplify errors of the model and state,
which further degrade forecasts. Some action must be
taken to account for the uncertainties of NWP and
ensemble forecasting appears to be the best available
option, because an ensemble reflects known sources
of uncertainty of a forecast. Presently operational
NWP uses ensembles that are constructed by perturb-
ing a best guess analysis in the direction of singular
vectors (Buizza, 1995; Molteni et al., 1996; Mureau
et al., 1993) or bred vectors (Toth and Kalnay, 1997)
or model variations (Houtekamer et al., 1996); other
proposed techniques for ensemble forecasting include
random perturbations (Errico and Baumhefner, 1987;
Tribbia and Baumhefner, 2003), ensemble Kalman
filters (Evensen, 1994; Anderson, 1999; Houtekamer
et al., 2005; Bishop et al., 2001; Hamil and Synder,
2000), and sets of indistinguishable states (Judd and
Smith, 2004). All these methods are trying to account
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for uncertainties in a forecast. There is also growing
interest in using ensemble forecasts to provide prob-
abilistic forecasts (Petterssen, 1958; Anderson, 1996;
Talagrand et al., 1997), which would be more valuable
than best guess forecasts for many, if not all, forecast
users.

Providing probabilistic forecasts presents extreme
technical and practical difficulties. The most obvious
difficulty for NWP is that of describing a joint proba-
bility distribution in millions of variables. In principle,
any probability density can be represented with arbi-
trary accuracy by an ensemble that is a sufficiently
large random sample of that density. The probability
of any event can then be approximated by counting
the frequency of the event in the ensemble, and the
approximation will typically improve as the sample size
is increased. To achieve an approximation of a joint dis-
tribution with a given accuracy, however, the size of the
sample must increase exponentially with the number of
variables. Although techniques like kernel density esti-
mation (Silverman, 1988), ensemble dressing (Roulston
and Smith, 2003; Gneiting et al., 2004) and weighted
ensembles (Judd and Smith, 2001) can dramatically
reduce the required size of an ensemble, the “curse of
dimensionality” persists†. It has to be expected that
ensemble/probabilistic forecasting can never provide

†Silverman estimates that for kernel density estimation the size
of the ensemble needs to increase as the fifth power of the number
of variables (Silverman, 1988).
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2 K. JUDD ET AL

unbiased marginal distributions of more than a few
uncorrelated variables, and perhaps a few more cor-
related variables. Even when restricted to marginal
densities, the fact that our models are imperfect places
serious and severe limitations on aspirations for prob-
abilistic forecasting. An imperfect model does not pro-
vide a probabilistic forecast that is a description of the
system (the weather), it is a description of the model’s
behaviour, and as such any probability forecast formu-
lated for a real event can be quite different from the
“probability of an event” itself.

The provision of probability forecasts is a complex
issue, especially when imperfect models are consid-
ered (Smith, 2000). Ideally one would like to achieve
accountable probability forecasts (Smith, 1995, 1997,
2000), but we are far from this goal. We therefore divide
the problem into simpler questions. Some amount of
quality control in ensemble forecasting can be ensured
by requiring that ensembles have certain significant
properties, and one minimal property we should require
is that the ensemble captures the target with a high
probability. We are yet to define exactly what captur-
ing the target might mean, but one can imagine that
if an ensemble somehow captures the target with high
probability, then the marginal distribution computed
from the ensemble will not be entirely misleading, in
that it will not assign a very low, or zero, probability
to what actually happens. On the other hand, one could
presumably capture any target routinely by ensuring a
widely dispersed ensemble, but such an ensemble would
provide little useful probabilistic information.

In the perfect model scenario there is a true state,
so capturing the target could mean that truth lies
within the cloud of ensemble states. In the imperfect
model scenario there is no true state, however, we can
aim to capture some target. What target might mean
is defined more carefully in section 3, for the present
a target can be thought of as a collection of future
observations, or a future analysis.

As we discuss below, insights and statistics derived
via the bounding boxes provide information indepen-
dent of and complementary to those from other com-
monly used tests, such as, 1-dimensional rank his-
tograms (Anderson, 1996; Hamill, 2001; Talagrand
et al., 1997), multi-dimensional rank histograms from
minimum spanning trees (Smith, 2000; Smith and
Hansen, 2004; Wilks, 2004), and other common skill
scores (Wilks, 1995). We also demonstrate this test is
useful. Independent of their value in evaluating forecast
quality and ensemble design, bounding box statistics
are of immediate use to decision makers in evaluating
an ensemble prediction system’s likely value

We will now assume there is some unique and
well defined target state that we require the ensemble
captures with high probability. One way an ensemble
might capture the target is by having the target lie
within the convex hull of the ensemble (figure 1a), that
is, given an ensemble E (a finite set of states) and the
target state x?, there exists 0 ≤ λx ≤ 1 for each x ∈ E

such that ∑
x∈E

λx = 1 and x? =
∑
x∈E

λxx. (1)

In a d-dimensional space a convex hull requires at least
d + 1 states for it to contain any volume. This puts a
lower bound on the size of an ensemble that for weather
forecasting is impossible to achieve. An alternative
capture criterion requires that the target lie within
the bounding box of the ensemble (figure 1b), that is,
each component x?

i of the target vector lie between the
minimum and maximum values of the corresponding
components of the ensemble vectors

min
x∈E

xi ≤ x?
i ≤ max

x∈E
xi for all i. (2)

A bounding box is trivial to compute and is defined
for any size ensemble, because two or more states is
sufficient to define a bounding box‡.

(a) (b)

Figure 1. Schematic comparison of (a) the convex hull of
an ensemble, and, (b) its bounding box. Capturing a target
requires the target lie within the convex hull or bounding

box.

The bounding box of a forecast ensemble can be
thought of as providing simultaneous prediction inter-
vals (Chatfield, 2001) for all variables, where a predic-
tion interval is a forecasted range in which the target
is expected to fall with a given probability. Bounding
boxes are complementary to rank histograms (Ander-
son, 1996; Hamill, 2001; Talagrand et al., 1997). Tradi-
tional rank histograms (“Talagrand Diagrams”) evalu-
ate uni-variate forecasts (that is, one-dimension), while
computations with the minimum spanning tree of an
ensemble provides a rank order generalization to mul-
tivariate data (Smith, 2000; Smith and Hansen, 2004).
Beyond dimension one, the bounding box statistics are
quite different than those of rank histograms, which are
primarily diagnostic, being more informative about the
details of ensemble distributions whereas the bounding
box considers volumes in state space directly and has
design, diagnostic, and interpretive uses.

Despite the simplicity of the idea of bounding
boxes capturing a target, it allows us to make a state-
ment about the simultaneous properties of a large num-
ber of variables, and hence provide useful information

‡One should appreciate that figure 1 is a misleading representa-
tion of the actual situation for high dimensional state spaces with
small ensembles; it would be more accurate to have only shown
two points. Bounding boxes are not invariant under all change of
coordinates, for example, rotation of axes. Bounding spheres are
invariant under rotation, but not scaling. Bounding spheres are
also significantly harder to compute. Non-invariance of bound-
ing boxes is not necessarily a disadvantage, because many useful
statistics are not invariant under change of coordinates.
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HOW GOOD IS AN ENSEMBLE? 3

that cannot be obtained from available marginal dis-
tributions, which can only make statements about for
a few variables at a time, or rank histograms, which
focus on the entire distribution. Other ideas and meth-
ods similar to bounding boxes have preceded us (Atger,
1999).

Our claim is not that examining bounding boxes
provides a superior forecast evaluation to other tech-
niques (rank histograms, probability skill scores, the
relative operating characteristic and so forth). We
demonstrate, rather, that the statistics extracted from
bounding boxes provide different information. Statis-
tics derived from bounding boxes take advantage of
the finite-sample nature of ensemble prediction sys-
tems, and do not require the assumption of any explicit
probability density. This information has application in
three distinct areas: (1) the design of proposed ensem-
ble prediction systems, (2) the evaluation of operational
ensemble systems, and (3) decision-support for users of
operational ensemble products. As an example of (1),
we examine what the expected properties of bound-
ing boxes can tell us about ensembles and probabilistic
forecasts. In particular, we ask how large an ensemble
needs to be to capture the target under various assump-
tions regarding the quality of the ensemble prediction
system. We consider briefly the relationship between
rank histograms and bounding boxes in section 5; a
collection of useful numerical results are provided in
section 6. As an instance of (2) we illustrate a number
of ideas using data from the DEMETER experiment
data (see Weisheimer et al. (2005)). We also include
an application of bounding boxes to verify some recent
theoretical assertions about how to make ensemble fore-
casts with imperfect models. We return to (3) briefly in
the conclusions, and note the utility of bounding box
statistics of operational ensemble systems.

2 Constructing ensembles

A number of different techniques are currently in use
for constructing ensembles for forecast applications.
For example, scalar multiples of the most significant
singular and bred vectors are used in operational
NWP (Molteni et al., 1996; Toth and Kalnay, 1997),
however, this method of constructing an ensemble is
not exactly what we have in mind here. Ensembles
of singular and bred vectors are not necessarily try-
ing to represent a probabilistic forecast; they may be
viewed as trying to bound, or quantify, the maximum
error growth. This is reasonable and compatible with
the idea of trying to capture truth (or a target state)
in the senses discussed. In fact, the technique used by
ECMWF operational medium-range weather forecast-
ing of taking positive and negative multiples of the sin-
gular vectors would capture the truth when the initial
state is well placed and error growth was well behaved.
These methods of constructing ensembles may not be
consistent with the analysis that follows.

In the following analysis we will assume that the
ensemble is constructed by selecting members ran-
domly according to some probability density§, which
implies that the ensemble can be made arbitrarily large.
Ideally, the probability density would represent exactly
the probability distribution of the target state at a
particular forecast time, given all the uncertainties of
observations and model error. In practice, one would
use an approximation to this, for example, one might
make random perturbations (Errico and Baumhefner,
1987; Tribbia and Baumhefner, 2003) of an analysis, or
other initial state, and then evolve this ensemble for-
ward to the required forecast time, which is equivalent
to selecting the ensemble members according to some
probability density at the forecast time. A suitable pro-
cess for constructing an ensemble from a collection of
singular or bred vectors, would be to take random lin-
ear combinations of them, with the random coefficients
generated according to some density, and then evolv-
ing these perturbations of the initial state forward to
the required forecast time. It is not clear whether the
following results on the size of an ensemble apply to
ensembles as currently constructed from singular and
bred vectors. The kind of ensembles the authors are
most interested in are ensembles drawn from sets of
indistinguishable states (Judd and Smith, 2001, 2004).
These are compatible with ensembles obtained using
Bayesian methods, such as a particle filter (Del Moral,
1995), only they are obtained more efficiently and can
be obtained from imperfect models.

More formally, when we speak of constructing an
ensemble, we are thinking of a process like the fol-
lowing. When dealing with a deterministic model, one
might start from an initial ensemble, then evolve this
forward to the forecast time, that is, if E0 is the initial
ensemble, then at the forecast time t the ensemble is
Et = {φt(x0) : x0 ∈ E0}, where φt is the evolution oper-
ator over the time interval t. In a discrete time model
one can define recursively Et = {f(xt−1) : xt−1 ∈ Et−1},
where f is the model. It should be noted, however,
that these methods are fully justified only when the
model is perfect. If the model is imperfect, then fore-
casts can often be improved by taking model error into
account explicitly (and are degraded by treating the
model as perfect, see Judd and Smith (2004)). One way
to account for model error is to assume the unknown
model errors are random with some appropriate distri-
bution η, then evolve the initial ensemble according to
a stochastic evolution operator, even though the model
is deterministic (Judd and Smith, 2004). For example,
for the discrete time model Et = {f(xt−1) + ε : xt−1 ∈
Et−1, ε ∼ η}. In section 6 we investigate the perfor-
mance of these ensembles for perfect and imperfect
models.

§That is, we are assuming the probability measure is absolutely
continuous.
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4 K. JUDD ET AL

3 The probability of capturing a target

There is considerable flexibility in what a target might
be. The target might be a collection of future observa-
tions, for example, specific station temperatures, pre-
cipitation over a specified region and period, the 500mb
height, an aerosol concentration, and so on. Note that
observed quantities will have measurement errors, so
the target is a random variable with some distribution,
and this error distribution is typically well known; it
being a property of the measurement instrument. The
target may also be a future analysis, that is, a model
state derived from observations using a data assimila-
tion technique, which is essentially a projection of a
history of observations into model space. Such a tar-
get is also a random variable, because the observations
have measurement errors, but there is the additional
complication that the state is under determined, so
that the distribution of the target state variables is
not simply related to measurement errors¶. Mathemat-
ically there is no distinction between a target being a
set of observations or a verifying analysis.

In the following the word target almost always
refers to the realization of a random variable (as
determined by the observations) except in situations
where we refer to the “distribution of the target” or
the “expected value of the target”, where the random
variable associated with the target is meant.

In the following let E ⊂ Rd be a finite ensem-
ble of states, randomly drawn from some probability
density ξ. Ideally ξ represents the probability distribu-
tion of the target x? ∈ Rd, but usually it is only an
approximation of this, and possibly a poor approxi-
mation‖. Typically, the ensemble is constructed from
states selected at t = 0, then evolved to the forecast
lead time t = T . The distribution ξ and the ensemble E
should be understood to be defined at t = T and our
discussion refers to their properties at this lead time. At
some subsequent time t ≥ T the actual target is deter-
mined. It should be noted that one cannot necessarily
know all the detailed properties of ξ and E , because
the properties of ξ depend on how the ensemble is con-
structed and the evolution from t = 0 to t = T .

We introduce the notation x ∈ bb(E) to indicate
that x is contained in the bounding box of E , and |E|
to denote the number of members of the ensemble. It
is too much to ask that the target state always lies
within the bounding box of the ensemble, however,
it is reasonable to ask for the probability of the
target lying in the bounding box, because the ensemble
is constructed randomly. One major convenience of
considering the bounding boxes is that each coordinate

¶The distribution of a target in this case is not necessarily what
is often called analysis error, because the target analysis may use
observations much further into the future than the verification
time Judd and Smith (2001); Ridout and Judd (2001).
‖It is sufficient for our purposes to require that ξ is chosen so that
a sufficiently large random sample E should capture the target
state x?. That is, the probability density evaluated at the target
is not zero.

can be considered separately. Hence, consider initially
when the dimension of the state space d = 1. Let

p = Pr(y < x? : y ∼ ξ), (3)

that is, p is the probability a y, randomly selected
according to ξ, is to the left of (less than) x?. For the
ensemble to capture the target, then some ensemble
members must be to the left of (less than) the target,
and some must be to the right of (greater than) the
target. The only ways a randomly ξ-generated ensemble
of size n can fail to capture the target are either all
ensemble members are to the left of the target, which
happens with probability pn, or all ensemble members
are to the right of the target, which happens with
probability (1− p)n. Hence, the probability that the
bounding box of an ensemble of size n captures the
target is,

Pr(x? ∈ bb(E) : d = 1, |E| = n)
= 1− pn − (1− p)n, (4)

that is, the ensemble must be neither entirely to the
left of the target nor entirely to the right of the target.

When d > 1, let pi = Pr(yi < x?
i : y ∼ ξ), where i

refers to the coordinate. If the distributions of each
coordinate are independent, then similar to (4) one
obtains,

Pr(x? ∈ bb(E) : independent coordinates, |E| = n)

=
d∏

i=1

(1− pn
i − (1− pi)n). (5)

We will say that the distribution of the ensemble is
unbiased when pi = 1/2 for all i (regardless of whether
or not components are independent), that is, the target
lies at the median of the ensemble’s distribution ξ in
each component∗∗. In this case, one can derive from (5)
that,

Pr(x? ∈ bb(E) : unbiased, |E| = n)

=
(

1− 1
2n−1

)d

. (6)

If the ensemble is drawn from independent Gaus-
sian distributions for each coordinate N(x?

i + βi, σi),
i = 1, . . . , d, for any d, then pi = Φ(−zi), where zi =

∗∗Amongst statisticians unbiased is usually taken to mean the
expected mean of the ensemble is the target, where as, our
definition requires the expected median to be the target. When
the distribution ξ is symmetric the expected mean and median
coincide, thus for the Gaussian distributions considered below
there is no difference from the most common statistical meaning
of unbiased. It should also be noted that one can not necessarily
known at where the medians will lie or what states at t = 0 will
evolve to have components corresponding to the median of ξ at
t = T .
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HOW GOOD IS AN ENSEMBLE? 5

|βi|/σi and Φ is the cumulative probability of the stan-
dard normal density. It follows that,

Pr(x? ∈ bb(E) : Gaussian, |E| = n)

=
d∏

i=1

(1− Φ(−zi)n − Φ(zi)n) . (7)

Throughout this paper, we use the term bias to
indicate a statistical property of the distribution of
ensemble members. Specifically, bias indicates that
the median (or mean) of the ensemble is consistently
different from that of the expected target location††.
This bias may reflect state-dependent systematic model
error (Smith, 2000; Orrell et al., 2001), even if such
errors “average to zero” in some global sense. Bias
has sources other than model error, for instance it can
result from errors in ensemble formation, for example,
by centering the ensemble distribution on a best guess
analysis that happens to be sub-optimal or in error.

4 Minimum ensembles sizes

Knowing Pr(x? ∈ bb(E) : |E| = n) allows one to esti-
mate a suitable size for an ensemble, because if one
wants to capture the target with probability α, then
one should adjust‡‡ n until Pr(x? ∈ bb(E) : |E| = n) >
α. The probabilities derived in the previous section
may sometimes serve as lower bounds on Pr(x? ∈
bb(E) : |E| = n), as indicated in the following sections.
These bounds are useful; although using a lower bound
to compute the ensemble size will over estimate the
required ensemble size, it guarantees an ensemble of
the computed size will capture the target with at least
the probability α. Also note that assuming coordinates
are independent when they are not, will also over esti-
mate the size of the ensemble, because dependence
means bounding one coordinate tends also to bound the
dependent coordinates, and hence the effective dimen-
sion is less than d.
Unbiased ensembles: If the ensemble was drawn
from a density that is unbiased, then one obtains
from (6),

n > 1−
log

(
1− α1/d

)
log(2)

, (8)

that is, an ensemble of size n or larger can be expected
to capture the target with a probability of at least α.
Table I shows the lower bound on n for α = 0.95 and
various d, assuming coordinates are independent. When

††The term bias is used variously in the meteorological literature,
most frequently in the very specific sense of a fixed, global,
state independent error. Statisticians apply the term to any
distribution, not just global time invariant ones.
‡‡The choice α = 0.95 is common; although one might not
necessarily be able to make an ensemble with given capture
probability α, but one can estimate α for a given ensemble
prediction system. This is in itself a useful characterization of
an ensemble for both users and in model development.

d is large one can use a series approximation in the
inequality (8) giving,

n > 1 +
1

log(2)

(
log(d)− log(− log(α))− log(α)

2d

− 1
24

(
log(α)

d

)2

−O(1/d)4
)

, (9)

and hence n grows only as fast as log(d).

Table I. Minimum ensemble sizes in various dimensions for
unbiased ensembles with a confidence level α = 0.95.

d = 1 10 102 103 104 105 106 107 108

n ≥ 6 9 12 16 19 22 26 29 32

It might at first be surprising that a modestly sized
ensemble will capture the target in a state space with
millions of independent dimensions , but on second
thoughts it is not surprising. When the ensemble is
drawn from an unbiased density, one expects nearly
equal numbers of ensembles members either side of
the target and it therefore should not be surprising
that the ensemble need not be large, because it is
highly unlikely that all the randomly selected ensemble
members should be to one side of the target. For
comparison ECMWF currently employs a 51 member
ensemble for its operational medium-range weather
forecasts where d ≈ 107. An ensemble of this size would
be more than ample to capture a target analysis if the
forecasts were unbiased.

The modest size of the ensemble required to cap-
ture the target as D increases does not contradict the
exponential growth in ensemble size required to esti-
mate the forecast probability density. The capture of a
target is a much weaker requirement, and consequently
can be achieved with much smaller ensembles.
Biased ensembles: A forecast ensemble can be biased
for many reasons, for example: as a result of the
initial state that is perturbed to obtain the ensemble
having inevitable errors due to limited and inaccurate
observations; or as a result of the model dynamics being
imperfect and moving all ensemble members away from
the evolving target.

When the ensemble is biased, the bound on the
size of the ensemble are less encouraging. Bias means
that for some coordinates the ensemble members are
more likely to be on one particular side of the target,
and so there is an increased chance the bounding box
will fail to capture the target. Consider the simplest
situation where coordinates are independent and all
have the same bias, that is, in (5) pi = p 6= 1/2 for
all i. Table II illustrates how the ensembles size varies
with dimension d and p. Note that minimum ensemble
sizes in situations where some coordinates are biased
and some are not, or where different coordinates have
different bias, can all be obtained by numerical solution
of (5). On the other hand, a worst case estimate of
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6 K. JUDD ET AL

the ensemble size can be obtained from table II by
taking p = mini pi. Observe from table II how the size
of the ensemble increases rapidly once bias p exceeds
about 2−4 = 0.0625. For a Gaussian distribution this
corresponds to a shift of the mean away from the target
by more than 1.53 standard deviations.

Table II. Minimum ensemble sizes in various dimensions
given the probability p that truth lies to the left of every
coordinate of every ensemble member. The confidence level

is α = 0.95.

p = 2−1 2−2 2−4 2−6 2−8

d=1 n ≥ 6 11 47 191 766
d=10 n ≥ 9 19 82 335 1348
d=102 n ≥ 12 27 118 482 1936
d=103 n ≥ 16 35 154 628 2524
d=104 n ≥ 19 43 189 774 3113
d=105 n ≥ 22 51 225 920 3701
d=106 n ≥ 26 59 261 1066 4289
d=107 n ≥ 29 67 296 1213 4878
d=108 n ≥ 32 75 332 1359 5466

Gaussian ensembles: Expressing bias in terms of a
probability is a little inconvenient, and one can obtain
slightly more useful intuition by expressing bias as a
shift of the median relative to the spread of the ensem-
ble, which is easily done if the ensemble is drawn from
a symmetric density, like a Gaussian. Suppose for the
coordinate i that the ensemble coordinates have a dis-
tribution N(x?

i + βi, σi), that is, βi is the bias and σi

is the spread of the ensemble in this coordinate. It is
convenient to work in terms of the normalized bias
zi = |βi|/σi. Table III lists numerically computed mini-
mum ensemble size n when α = 0.95 for a fixed number
of independent coordinates and various amounts of nor-
malized bias where all coordinates have identical nor-
malized bias zi = z, or alternatively, the worst case esti-
mate where z = maxi zi. It is clear from table III that
once the bias exceeds more than one standard deviation
the minimum ensemble size grows rapidly. For exam-
ple, assuming the ECMWF operational medium-range
weather forecasting 50 member ensembles are Gaus-
sian, then they ought to be able to cope with bias on all
107 variables of up to 0.5 of a standard deviation, but
not one standard deviation. If only one specific variable
is required to be captured, then the ensemble can cope
with a bias of more than 1.5 standard deviations. As
another example, consider that it is common practice
to optimize the initial ensemble spread so that at fore-
cast time the ensemble spread matches the spread of
the best-guess forecast error (Reynolds and Rosmond,
2003). If this is the case, then one should expect ran-
dom ensemble bias, which 95% of the time will be less
than about 1.5 standard deviations. This implies for an
operational model of 106 variables, that ensembles of
around 250 members ought to be able to ensure capture
of all 106 variables of the target 95% of the time.

Figure 2 shows the probability of capturing the
target for Gaussian ensembles with various numbers
of independent coordinates and normalized bias z. It
is clear from these figures that there is a very rapid
transition from capturing the target to not capturing
the target, as the bias or dimension is increased for a
given size of ensemble. The sharpness of this transition
is useful, because it could be used to measure a bias.
For example, figure 2 shows that the bias threshold for
consistent capture increases with ensemble size, so the
ensemble size that just succeeds to consistently capture
can provide an indication of the bias.
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Figure 2. The probability contours for Gaussian ensembles
of size n capturing the target in d independent coordinates
(dimension) and various amounts of normalized bias z =
|β|/σ. Small ensembles may not achieve capture at high
probabilities. For large ensembles the transition from almost
certain capture, to almost certain non-capture is very

narrow.

5 The effect of analysis error

We now come to the results with potentially the most
interest and significance to NWP. Up until now we
have treated ensemble bias as being fixed, but suppose
the ensemble is centred on some primary forecast, for
example, the forecast from the current best guess state,

Copyright c© 0000 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–16 (0000)
DOI: 10.1002/qj



HOW GOOD IS AN ENSEMBLE? 7

Table III. Minimum ensemble sizes in various dimensions for Gaussian ensembles with a confidence level α = 0.95. The
size of the ensemble is strongly dependent on the normalized bias of the ensemble z = |β|/σ. Here we assume the worst

case where all coordinates have the same normalized bias.

z = 0 0.2 0.5 1 1.5 2 2.5 3
d = 1 n ≥ 6 6 9 18 44 131 481 2218
d = 10 n ≥ 9 10 15 31 77 230 847 3906

d = 102 n ≥ 12 14 21 44 110 330 1217 5609

d = 103 n ≥ 16 19 27 58 143 430 1586 7313

d = 104 n ≥ 19 23 34 71 177 530 1956 9018

d = 105 n ≥ 22 27 40 84 210 630 2326 10722

d = 106 n ≥ 26 31 46 98 243 730 2695 12427

d = 107 n ≥ 29 35 52 111 277 830 3065 14131

d = 108 n ≥ 32 40 58 124 310 930 3435 15836

or analysis. In reality this primary forecast will not
exactly forecast the target, it will have some random
error, even if the primary forecast is an unbiased
estimate of the target. If the primary forecast has
an error β relative to the target, then this means
the ensemble centred on it has a bias β. Hence, the
probability of capturing the target with an ensemble
centred on the primary forecast is

Pr(x? ∈ bb(E)| centred on primary forecast )

=
∫

Pr(x? ∈ bb(E)|β)ρ(β)dβ, (10)

where ρ(β) is the probability density of the primary
forecast error β, which is a joint distribution of a d-
dimensional bias vector. In general the properties of
ρ(β) are unknown, so we must again consider plausible
models of this density to obtain bounds on possible
outcomes.

One extreme model for ρ(β) is to assume each
component is independently distributed as ρi(βi). The
probability of capturing the target by an ensemble of
size n is the product of the probabilities

qi =
∫

(1− pi(ζ)n − (1− pi(ζ))n) ρi(ζ)dζ, (11)

where pi(ζ) is the probability the i-th component of an
ensemble member is to the left of the target when the
ensemble is centred on a primary forecast with bias ζ
in its i-th component. Suppose a component of the
primary forecast’s error has a Gaussian distribution
N(β′, σ′

2), where β′ is the expected error in the
primary forecast, and σ′ the expected spread of the
this error. Also suppose the ensemble is drawn from
a distribution N(β, σ2). Table IV shows the computed
minimum ensemble sizes for 95% capture probability
for various d and various values for the key ratios
β′/σ (the ratio of systematic primary forecast error
to ensemble spread) and σ′/σ (the ratio of primary
forecast error spread to the ensemble spread). If β =
β′ and σ′/σ = 1, then the ensemble has the same
distribution as the primary forecast.

The minimum ensemble sizes shown in table IV are
too large to be feasible, and a moment’s thought should

reveal why. When each component is independent,
then in a 106 dimensional space some components will
have a bias far out in the tails of ρi. Consequently, a
random sample from the ensemble distribution must be
enormous to guarantee capture of this extreme. Either
we must assume the bias of each component are not
independent, or we must accept something less severe
than capture of all components, for example, capture of
95% of components 95% of the time. We will consider
both of these cases.
Dependent bias: Now consider the case where com-
ponents of the bias β are dependent. In this case,
capture of the component with the worst bias implies
capture of all components, and, hence, we need only
consider the situation where all components have the
same bias. Suppose a Gaussian ensemble centred on the
primary forecast is constructed so that the ensemble is
drawn from the distribution N(β, σ2), where β is dis-
tributed as N(β′, σ′

2) for all variables. From equations
(7) and (10) we have under these assumptions the fol-
lowing probability of capture of an ensemble of size n
for d independent coordinates

Pr(x? ∈ bb(E)|β′, σ′, σ, d, |E| = n)

=
∫

(1− Φ(β/σ)n − Φ(−β/σ)n)d

× 1√
2πσ′

e−
1
2 (β−β′)2/σ′2dβ

=
∫

(1− Φ(z)n − Φ(−z)n)d

× 1√
2π(σ′/σ)

e−
1
2 (z−(β′/σ))2/(σ′/σ)2dz

(12)

Table V shows minimum ensemble sizes to achieve
95% probability of capture for various d and various
values for the key ratios β′/σ (the ratio of systematic
primary forecast error to ensemble spread) and σ′/σ
(the ratio of primary forecast error spread to the
ensemble spread). These ensemble sizes are feasible.
The most important thing to notice is that random
bias of the primary forecast significantly increases the
minimum size of the ensemble, even when the primary
forecast is unbiased (β′ = 0).
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8 K. JUDD ET AL

Table IV. Independent bias: Minimum ensemble sizes for 95% capture assuming each variable has an independent random

bias. Here each ensemble component is Gaussian N(β, σ2), where each bias β has a Gaussian distribution N(β′, σ′
2
).

σ′/σ = 0.8 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 20 31 93 368
d = 10 n ≥ 95 208 903 5074
d = 102 n ≥ 444 1274 7326 54229
d = 104 n ≥ 9216 41029 367483 4222135
d = 106 n ≥ 186033 1185158 15183623 249405438

σ′/σ = 1.0 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 39 64 210 979
d = 10 n ≥ 390 909 4943 35887
d = 102 n ≥ 3900 12527 98427 1011764
d = 104 n ≥ 389915 2138232 29595390 528514685
d = 106 n ≥ 38991457 332930114 7242331687 202493201376

σ′/σ = 1.2 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 95 154 548 2958
d = 10 n ≥ 2252 5464 36230 338440
d = 102 n ≥ 57222 199324 2093488 29808737
d = 104 n ≥ 39116396 252891781 5342388040 148066679273
d = 106 n ≥ 27617643176 301086929520 11045606005357 533114080047573

Table V. Dependent bias: Minimum ensemble sizes for
95% capture assuming the maximum bias of all variables
has Gaussian distribution. Here the ensemble is Gaussian
N(β, σ2), where the bias β has a Gaussian distribution

N(β′, σ′
2
).

σ′/σ = 0.8 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 27 43 134 575
d = 10 n ≥ 74 126 426 1916
d = 102 n ≥ 129 223 764 3461
d = 104 n ≥ 242 420 1448 6576
d = 106 n ≥ 355 618 2132 9684
d = 108 n ≥ 468 815 2815 12790

σ′/σ = 1.0 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 39 64 210 979
d = 10 n ≥ 116 197 698 3396
d = 102 n ≥ 205 352 1260 6164
d = 104 n ≥ 387 666 2393 11734
d = 106 n ≥ 569 980 3524 17288
d = 108 n ≥ 751 1294 4654 22836

σ′/σ = 1.2 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 59 95 327 1634
d = 10 n ≥ 181 306 1122 5845
d = 102 n ≥ 323 550 2033 10648
d = 104 n ≥ 611 1044 3868 20296
d = 106 n ≥ 898 1536 5698 29911
d = 108 n ≥ 1186 2028 7526 39514

Observe from table V the effect of the ratio of pri-
mary forecast error spread to ensemble spread (σ′/σ).
In techniques like Ensemble Kalman filtering (Evensen,

1994; Anderson, 1999; Bishop et al., 2001; Hamil and
Synder, 2000), the ensemble spread is tuned so that
σ′/σ = 1. If current operational NWP were perfect and
ensemble formation introduced no systematic proce-
dural bias, so that β′ = 0, then capture of the target
with 95% probability would require 500–700 member
ensembles. Furthermore, if the models, or procedures,
were imperfect and had even small bias (β′/σ = 0.5),
then the ensemble size almost doubles. Note also that
smaller ensemble sizes can be used, if one is prepared to
give the ensemble a larger spread than the actual pri-
mary forecast error (σ′/σ < 1), that is, the likelihood of
capturing the target is increased by intentionally mak-
ing the initial ensemble too wide. On the other hand, if
the primary forecast error is under-estimated (under-
dispersive), so that the ensemble spread is just 20% less
than the primary forecast error spread (σ′/σ = 1.2),
then minimum ensemble size almost doubles. Note
on the other hand, that if one aims only to capture
one specific variable, then a 50 member ensemble is
good even when an unbiased ensemble is too narrow
(σ′/σ = 1.2).

We conclude with a simple analysis to show that
the increase in necessary ensemble size is primarily
the result of the occasional large error of the primary
forecast, that is, the larger ensemble is needed as a safe
guard. First note that the effect of primary forecast
error could have been roughly deduced from the tables
of fixed bias, for example, table III, by the following
argument. If the ensemble has the same spread as the
primary forecast error, then 95% of primary forecast
errors are less than 1.64 standard deviations, therefore,
to capture this amount of random bias of the primary
forecast requires an ensemble size somewhere between
the z = 1.5 and z = 2.0 columns of table III, and

Copyright c© 0000 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–16 (0000)
DOI: 10.1002/qj



HOW GOOD IS AN ENSEMBLE? 9

a linear interpolation gives approximately the same
values as the β′/σ = 0 column of the σ′/σ = 1.0 sub-
table of table V. The implication is that the much larger
ensemble size is required to capture the occasional
large primary forecast error, where as from table III
one can deduce that if primary forecast errors are
unbiased and not under estimated, then ensembles of
300 members should capture 95% of the time. Hence,
one can conclude most the cost of ensemble forecasting
is in capturing extreme errors, that is, statistically rare
situations where large initial perturbations are required
to cope with large primary forecast errors.
Limited capture: As we have seen, complete capture
of all components results in larger ensemble sizes
principally to capture extreme errors, as defined at
the end of the previous paragraph. An alternative to
complete capture is to require capture a fraction α′

of components a fraction α of the time. Such limited
bounding boxes have interesting properties.

Again assuming the worst case where all bias
components are independent, we can compute the
minimum ensemble size as follows. Let P be the power
set of the integers 1 to d. Then K ∈ P is a subset of
these integers. Let |K| denote the size of this set. Given
qi the probability in the component i, see equation (11),
then to capture a fraction α′ of components a fraction
α of the time requires that∑

K∈P
|K|>α′d

∏
i∈K

qi ×
∏
j 6∈K

(1− qj) > α. (13)

If we deem all components as equally important,
then all components should have the same capture
probability, that is qi = q for all i. In which case
condition (13) becomes

∑
k>α′d

(
d

k

)
qk(1− q)d−k > α. (14)

Table VI shows minimum ensemble sizes to cap-
ture 95% of components 95% of the time. A curi-
ous property here is the ensemble size increases as d
increases, peaks, then decreases asymptotically to the
d = 1 values. This phenomenon occurs because the bias
components are assumed independent, and hence the
distribution of a large number of components is equiv-
alent to large sample from the one-dimensional distri-
bution. The initial increase in ensemble size accounts
for variance of the sampling, that is, there is a greater
chance of failing capture a component when d = 2, than
for d = 1, but for d very large one expects to fail to
capture almost exactly 95% of components with little
variance.

One should be clear about the assumptions used to
construct table VI, in particular one cannot conclude
from table VI that small ensembles are sufficient. The
main problem is that when only 95% of components are
captured, there is no guarantee that the most impor-
tant components are captured. In practice one should

Table VI. Limited capture: Minimum ensemble sizes for
capture of 95% of variables 95% of the time assuming all
variables have independent random bias. Here the ensemble
is Gaussian N(β, σ2), where the bias β has a Gaussian

distribution N(β′, σ′
2
).

σ′/σ = 0.8 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 20 31 93 368
d = 10 n ≥ 95 208 903 5074
d = 102 n ≥ 37 68 241 1116
d = 104 n ≥ 21 33 100 404
d = 106 n ≥ 20 31 93 372

σ′/σ = 1.0 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 39 64 210 979
d = 10 n ≥ 390 909 4943 35887
d = 102 n ≥ 100 188 779 4415
d = 104 n ≥ 43 69 234 1107
d = 106 n ≥ 40 64 213 991

σ′/σ = 1.2 β′/σ = 0 0.5 1.0 1.5
d = 1 n ≥ 95 154 548 2958
d = 10 n ≥ 2252 5464 36230 338440
d = 102 n ≥ 338 650 3065 21146
d = 104 n ≥ 105 172 630 3472
d = 106 n ≥ 95 155 556 3005

expect that bias components are not independent, and
so it could happen the 5% of components not captured
may be the most important 5% of components. Con-
sequently, in practice one should anticipate that the
efficient ensemble size will be somewhere between the
minimum sizes implied by tables V and VI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

fr
ac

tio
n 

ou
ts

id
e

β’/σ

σ’/σ = 3
σ’/σ = 2.5
σ’/σ = 2
σ’/σ = 1.5
σ’/σ = 1.2
σ’/σ = 1
σ’/σ = 0.8
σ’/σ = 0.4
σ’/σ = 0.2

Figure 3. Expected number of components of a 50 member
ensemble not captured assuming a independent random
bias on each component. Various relative bias and ensemble

spreads are shown.

Figure 3 shows an alternative view of limited
capture, where we compute the expected maximum
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10 K. JUDD ET AL

fraction of components not captured of a 50 mem-
ber ensemble. The fraction of components not captured
does not provide definitive information about the prop-
erties of the ensemble. Figure 3 shows that if the spread
is too narrow (σ′/σ > 1) then the fraction captured
increasing rapidly for even small bias.
Rank histograms: It is useful to observe that d =
1 lines of tables IV, V and VI can be interpreted
as statements about rank histograms, because when
d = 1 capturing the target in the bounding box of an
ensemble is equivalent to saying that the target does
not lie in the extreme bins of a rank histogram of
target and ensemble. For example, when d = 1, σ′/σ =
1.0, and β′/σ = 0, the target should be statistically
indistinguishable from the ensemble members, and so
the target is outside the bounding box, or equivalently,
in the extreme bins of the rank histogram, with
probability 2/(|E|+ 1), implying that capturing truth
with at least probability α requires |E| ≥ (2/α)− 1,
which is well-known. Similarly, varying β′/σ shows
the effect of forecast bias on the rank histogram,
where as σ′/σ < 1 shows the effect of over-dispersion
of the ensemble and σ′/σ > 1 shows the effect of
under-dispersion. All these effects are consistent with
known properties of 1-dimensional rank histograms (see
Hamill (2001)).

6 Applications

Bounding boxes can be used as a simple means to ver-
ify ensemble forecasting schemes, by testing whether an
ensemble captures the target or not. This section has
three subsections. In the first subsection we illustrate
some of the predictions of the calculations and exam-
ine experimentally some related issues using a simple
quasi-geostrophic climate model in a perfect model sce-
nario. In the second subsection we use bounding boxes
to verify experimentally a claim made elsewhere (Judd
and Smith, 2004) about appropriate ensemble forecast-
ing schemes for imperfect models. In the third subsec-
tion we make some qualitative observations of bound-
ing boxes for the DEMETER multi-model ensemble
experiments (Palmer et al., 2004)

6.1 Perfect model scenario

In this subsection we examine bounding boxes in a geo-
physical modelling situation where the model is perfect.
In particular we verify that initial Gaussian ensem-
bles capture truth as expected for various amounts and
forms of bias, and also investigate how the number
of coordinates that fail to be captured changes with
increasing bias.

The system used in the tests is a spec-
tral three-layer quasi-geostropic (QG) atmospheric
model (Weisheimer et al., 2003), which has been con-
structed primarily to study ultra-low-frequency cli-
mate variability in a minimum-complexity model of
the extra-tropical circulation. The model solves the

QG potential vorticity equation for three layers of
equal mass and uses simplified parameterizations of
orographic, frictional and diabatic processes. The effect
of diabatic heating is simulated using a relaxation
toward a radiative-equilibrium state with a correspond-
ing equator-to-pole temperature difference of 60K in
the middle troposphere and 30K in the upper tro-
posphere/lower stratosphere. Two non-axisymmetric
major mountain ridges with a maximum height of
1200m simulate the orographic forcing. Sensitivity
studies with different parameter sets revealed that
the quantitative model behaviour is sensitive to the
amplitudes of the thermal and orographic forcing. The
atmospheric flow becomes quasi-stationary for weak
forcing; whereas a more realistic intensity of the oro-
graphic and thermal forcing leads to a more irregu-
lar chaotic flow (Dethloff et al., 1998). In contrast,
the impact of dissipation variations is not that cru-
cial. An Ekman dissipation e-folding time of 16 days
and a Newtonian cooling time scale of 27 days follow-
ing Weisheimer et al. (2003) have been used in this
study. The QG equations are solved with a horizontal
resolution of T20, corresponding to 32× 64 grid points
or a 5.2× 5.2 degree resolution. The Runge-Kutta inte-
gration time step was 1 hour, with the output every 24
hours. On the 32× 64 grid there are 6144 coordinates
in total, but these are not independent, if for no other
reason than the T20 resolution model has only 1386
spectral coordinates. All the calculations and results
use non-dimensionalized stream function coordinates.
There is, of course, a mapping φ from spectral coor-
dinates to stream function cordinates, which will be
employed subsequently. The spectral coordinates of the
T20 model have a roughly power-law distribution with
wave-number. The maximum standard deviation of any
spectral component is around 4× 10−4, which provides
a useful scale for comparison to the earth’s atmosphere
and a useful scale for the size of perturbations we apply
in generating ensembles. In the following we describe
results for a single 50 day truth trajectory as calcu-
lated from an initial condition x?

0, which is the final
day of a 1000 day spin-up from a random state where
all components were close to zero.

The T20 model has 1386 coordinates, so for this
model table III implies that a 50 member Gaussian
ensemble should be able to handle a normalized bias
of more than 0.5 but not more than 1.0. This verified
for the initial ensemble. What we are interested in is,
given an initial Gaussian ensemble that captures truth,
whether capture of truth continues as the ensemble
is evolved forward to longer lead times, because the
ensemble is unlikely to remain Gaussian (Gilmour
et al., 2001; Reynolds and Rosmond, 2003), and may
become biased, because, for example, the mean of the
ensemble is not necessarily the mean of the distribution
it samples.

There are a number of potential methods for gen-
eration of an initial ensemble from perturbations of
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HOW GOOD IS AN ENSEMBLE? 11

one initial state. The perturbations could be indepen-
dent perturbations of stream function coordinates or
the spectral coordinates. The perturbations could be
uniform across all coordinates or scaled, for example,
by the square root of the variance or covariances of the
observed coordinates or an appropriate error field, like
analysis errors. Since our objective here is to illustrate
the use of bounding boxes we consider just two simple
perturbation schemes: (iS-type) Gaussian perturbation
of stream function coordinates that are independent
and identically distributed for each coordinate; (iZ-
type) independent Gaussian perturbation of spectral
coordinates scaled by the square root of the coordi-
nate’s long-term variance.

An iS-type ensemble is generated about a state x0

by perturbing each of the 6144 stream function coor-
dinates by an independent random sample from the
distribution N(0, σ2). In our experiments the perturba-
tions are on the order of σ = 2× 10−5, which is approx-
imately 5% of the maximum variation. To make an
ensemble with normalized bias z, relative to x0, the per-
turbations were drawn from a distribution N(±zσ, σ2),
where the sign is chosen with equal likelihood and inde-
pendently for each component.

An iZ-type ensemble about a state x0 is con-
structed using the mapping φ from spectral coordinates
to stream function coordinates. To compute an ensem-
ble with specified bias the members are of the form
x0 + zφ(v) + φ(w), where v and w are random samples
from N(0,Σ2), with v fixed for all ensembles members
and w different for each. The covariance matrix Σ was
chosen to be diagonal and proportional to the observed
spectral coordinate variances. The matrix Σ can be
scaled so that the stream function coordinates have a
specified standard deviation σ. In the following com-
parison of the spread of iS-type and iZ-type ensembles
is always in terms of this σ of the stream function coor-
dinates.

Figure 4 shows the fraction of the 6144 true stream
function coordinates that are outside the bounding box
of a 50 member iS-type ensemble with σ = 2× 10−5

and normalized bias z for various values between 0.0
and 2.0. For z ≤ 0.4 the ensemble is capturing truth
as table III predicts. At around z = 0.6, the forecast
ensembles begin to fail to capture truth at most time
steps, although the number of coordinates that are not
captured is rather small, no more than 20 of 6144 out
to day 47. Once z > 0.6, the fraction of coordinates not
captured increases roughly linearly with z at any fixed
time, although the actual fraction varies with the time.

Figure 5 shows the fraction of the 6144 true stream
function coordinates that are outside the bounding box
of a 50 member iZ-type ensemble. Once again we see
that for z > 0.6 the fraction of coordinates not captured
increase roughly linearly with z at any fixed time,
although the actual fraction varies with the time. It
is curious that the iS-type ensemble captures better
than the iZ-type ensemble from day 10 to day 40. This
behaviour does not appear to be significantly effected

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50

fra
ct

io
n

day

z=0.4
z=0.6
z=0.8
z=1.0

z=1.2
z=1.4
z=1.6
z=1.8
z=2.0
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Figure 5. Effect of bias on a 50 member iZ-type ensembles

with an initial σ = 2× 10−5. The graphs show the fraction
of stream function coordinates not captured with forecast

lead time given the specified bias.

by the actual bias vector used. We have not investigated
this phenomenon further, for example, to to see how the
ensembles compare for different initial states x0.

6.2 Imperfect model scenario

We now consider ensemble forecasting with imperfect
models. It has been argued (Judd and Smith, 2004)
that if a model is imperfect, then forecast ensembles
might be better generated by a stochastic model, even
though the system is deterministic. In this section we
demonstrate the validity of this assertion in the QG
model.

The experiments use the same QG model as the
previous subsection. Here the T21 QG equations are
used as the system and the T20 QG equations as
the model, with the aim being to construct ensemble
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12 K. JUDD ET AL

forecasts of the T21 state using only an imperfect
T20 model. Throughout, the quasi-geostrophic stream
function on the grid points is used as the state, because
then both the T21 system and the T20 model will have
the same state space.

We will assume that initially we have been fortu-
nate enough to have obtained the exact state of the
stream function at every grid point. This is some-
what artificial, but suppressing observational error
more clearly reveals the effect of model error. Later
we will see that the effect of model error is so sig-
nificant that ignoring model error will result in poor
ensemble forecasts even when moderate observational
error is present. Given the exact state, a T21 model
would give a perfect forecast, but a forecast with the
imperfect T20 model will diverge from the target T21
behaviour. When given the exact state x0, then an
iS-type or iZ-type with z = 0 will be unbiased, so a
relatively small ensemble ought to capture the target
at initialization time and for short-term forecasts, how-
ever, for longer term forecasts model error introduces
a systematic divergence that degrades the ensemble’s
ability to capture the target T21 trajectory. We could
attempt to accommodate for this bias (due by accumu-
lated model error) by increasing the initial ensemble
spread σ, but we will see that using a stochastic model
to evolve the ensemble forecasts does better.

Our experiments begin by computing a 50 day T21
target trajectory x?

t , t = 0, . . . , 50, that is, a trajectory
of targets at one day intervals. The initial condition x?

0,
was the final state of a 1000 day spin-up trajectory from
a random near-zero state. For later comparison we also
compute from x?

0 a 50 day T20 control trajectory.
We first investigated how well iS-type and iZ-

type forecast ensembles capture the control and target
trajectories. These 50 member ensembles were created
as described in the previous sub-section with x0 = x?

0

and z = 0. In the experiments we consider ensembles
with a range of σ around 2× 10−5. We evolve the
ensembles forward by computing the trajectory of each
ensemble member using the T20 model.

All the iS-type and iZ-type ensembles, at all
spreads examined, capture the T20 control trajectory
out to around day 25. Ensembles with larger spread
begin to fail, but still capture 99.8% of coordinates
out to day 50. The failure for larger spreads could be
occurring because these have a larger initial random
bias (that is, the mean of the ensemble is not x0), which
is amplified as the ensemble evolves, or it could be a
result of the larger spread being more strongly affected
by nonlinear effects, which result in greater distortion
of any finite ensemble’s bounding box.

Figures 6 and 7 show how iS-type and iZ-type
ensembles perform at capturing the T21 target trajec-
tory for various σ. As might be expected, the ensembles
with larger initial spread σ are doing better, but even
the widest initial spreads we considered only captured
the target for around 15 days. Comparing figures 6
and 7 we note that for a given fraction of coordinates
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captured the σ for the iS-type ensemble were around
twice as large as those of the iZ-type ensemble. (This is
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a curious fact that we will return to in the next para-
graph and then again later when discussing a stochastic
model for ensemble forecasts.)

The success of the ensembles with wider initial
spreads at capturing the target come at significant
cost. Figure 8 shows the evolution of a typical middle-
latitude stream-function coordinate of the target, con-
trol and bounding box of the iS-type ensemble, for
two initial spreads of σ = 2× 10−5 and σ = 8× 10−5.
Note that the larger initial spread captures the target
at the expense of losing specificity on the bounds on
the target. The results for the iZ-type ensemble are
almost identical, except that iZ-type ensembles require
approximately half the initial spread σ to that of the
iS-type ensembles to attain a similar capture faction
and spread at a given lead time.

Judd and Smith argue (Judd and Smith, 2004)
that when using an imperfect model it is essential to
take model error into account when estimating states
and making forecasts, because failure to do so can
markedly degrade both. When making forecasts, one
of the simplest methods to account for model error
is to make forecasts using a stochastic model, even

though the system is believed to be deterministic and a
simulation model would otherwise have been determin-
istic. For example, when evolving a forecast ensemble
forward, rather than use the deterministic dynamics
xt+1 = f(xt), where xt is an ensemble member state at
time t and f is the model, one instead uses stochas-
tic dynamics xt+1 = f(xt) + ωt, where ωt is a random
variate that simulates the effects of the unknown model
error (imperfection error). This is not the only means
of accounting for model error, and certainly not the
best, but it is simple, and we will see that is is quite
effective.

As in the last sub-section there are a variety
of possible perturbations ωt that can be used in
stochastic model forecasts. Ideally one would attempt
to mimic the distribution of model errors as best as one
could. Here we consider two simple stochastic model
ensembles: (sS-type) the ωt are perturbations like those
used as the initial perturbations of iS-type ensembles;
(sZ-type) the ωt like those used in iZ-type ensembles.
That is, instead of making one initial perturbation, we
make a perturbation at the beginning of each day’s
integration. Once again we can discuss the size of these
perturbations in terms of their standard deviation σ.

We now investigate how sS-type and sZ-type
stochastic model ensembles improve the capture of the
T21 target using the imperfect T20 model. Since we
have access to the T21 system and the T20 model we
can compute (for the purposes of comparison, which
cannot be done operationally) an empirical distribu-
tion of the model errors. We found from a 50 day
run that in stream function coordinates the model
error had a mean −1.2451× 10−7 and standard devia-
tion 1.2928× 10−5. One might assume that stochastic
perturbations ωt for sS-type and sZ-type should be
scaled to achieve stream function perturbations of sim-
ilar magnitudes, but we will see this is not necesarily
the best choice. Also, one may wish to (or need to)
take into account spatio-temporal correlation of model
errors, because model errors are not independent ran-
dom variates. We chose to use perturbations in the
sS-type ensemble with z = 0 and σ = 2× 10−5; where
σ > 1.2928× 10−5 as an ad hoc means of dealing with
model error dependence and correlation. (This is a com-
mon practice in time series modelling, for example.) For
sZ-type ensembles we find that when σ = 1.3× 10−5

there is too much dispersion of the ensemble. Smaller
perturbations giving σ ≈ 8× 10−6 are required to give
a similar dispersion and capture characteristic of the
sS-type ensemble with σ = 2× 10−5, see figure 9. This
need to reduce σ is similar to that seen for iS-type
and iZ-type ensembles, and the size of the reduction is
about the same.

Figure 9 shows the fraction of coordinates of the
T21 target outside the bounding box of T20 stochastic
model ensemble forecasts. Comparing with figures 6
and 7 we see that the stochastic model ensemble
forecasts have capture as good as iS-type and iZ-
type ensembles with three to four times larger initial
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perturbations. Comparing figure 10 to figure 8 shows
that the stochastic model ensemble forecasts achieve
this without excessive dispersion of the ensemble.

Our analysis of sS-type and sZ-type ensembles
using bounding boxes reveals an interesting fact. We
observed that in attaining similar capture of the T21
target the sZ-type ensembles did so with smaller per-
turbations of the stream function, however, we observe
that the sS-type ensemble perturbations are closer in
magnitude to actual computed stream function model
errors. This would imply that sS-type perturbations are
more similar to the actual model errors. This may seem
surprising, because the sS-type perturbations, com-
pared to the sZ-type perturbations, are large, spatially
uncorrelated and have significantly larger projections
on to stable modes. Our more detailed analysis sug-
gests the following. Firstly, the large stable component
of sS-type perturbations is of little consequence because
most of it decays rapidly. Secondly, the model error
when forecasting a T21 system with a T20 model has
its most significant effect by exciting small-scale unsta-
ble features, which may later grow to larger scale fea-
tures. Thirdly, we find that the unstable component of
sS-type perturbations preferentially excite small-scale
unstable features, because the perturbations tend to
average out over larger scale features. On the other
hand, the unstable component of sZ-type perturba-
tions preferentially excite large-scale unstable features,
because most of the energy is in the large wave num-
bers. Hence, sZ-type perturbations cause much faster
large-scale dispersion of the ensemble. In practice, these
results imply that inappropriate perturbations can be
effective at capturing a target, but may be misleading
about the actual size and nature of the model errors.

In our experiments we made the assumption of
perfect observation, so the T20 model could be initial-
ized directly from the observed T21 state, x0 = x?

0, but
note that since the T20 model is imperfect, there is
no “true” state (Judd and Smith, 2004). Even though
the model error in this case is quite small, its effect is
very significant. When there is observational errors, one
still has to take into account model error. This example
illustrates that in order to capture the target observa-
tions with a deterministic forecast at a lead time of say
30 or so days, one could have estimated that the ini-
tial ensemble spread had to be up to four times larger
than necessary and resulted in forecast ensembles hav-
ing bounding boxes two to four times broader. That is,
one could easily over-estimate “initialization error” to
compensate for model error, and consequently degrade
ensemble forecast accuracy, needlessly.

6.3 DEMETER experiments

In order to show how bounding box statistics can be
useful in the development and evaluation of an ensem-
ble prediction system we take a very brief look at some
preliminary investigations of the DEMETER multi-
model experiments (Palmer et al., 2004). These exper-
iments employ seven different state-of-the-art coupled

ocean-atmosphere models to re-forecast the earth’s cli-
mate for the years 1951–2001. Multi-model ensemble
forecasts are obtained is initializing each of the 7 mod-
els with the re-analyses and 9 different ocean states
obtained by perturbation of the wind stress and sur-
face temperture. Ensembles are initialized four times
each year and forecasts run for 6 months with cer-
tain key fields recorded daily. The 7 different models
and 9 initial ocean states, give a 63 member multi-
model ensemble. The authors are currently studying
how well the multi-model ensemble captures the ERA-
40 re-analysis as target over various forecast lead times.
Here we present, as an illustration of bounding boxes,
a very simple qualitative analysis of some preliminary
results. For a detailed analysis see Weisheimer et al.
(2005).

Figure 11 shows the fraction of days during a
month that the target 2 metre temperature re-analysis
was outside the bounding box of the multi-model
ensemble at each grid-point for various initialization
days and forecast months. The comments made here
are based on a number of plots like this one. One
immediately observes that the multi-model ensemble
does not capture the target sufficiently often, and
that the worst failures to capture are localized on
ocean regions. This immediately suggests that the
ensemble needs more variability, in a way that increases
ensemble spread over oceans regions. Comparing panels
(A) and (B) shows that the ensemble initialized 3
months before the forecast month generally captures
the target better than the ensemble initialized on the
first day of the month. This seems to indicate that
the ensemble has too narrow spread in the first month
after initialization. The localized areas where ensembles
(A) and (B) do very poorly have a good deal of
correlation, except the 3 month lead time ensemble
also does poorly in two regions in the Pacific and
west of Africa. This suggests the 3–4 month forecast
ensemble has considerable skill, tends to fail in localized
ocean regions, and often fails in regions where the 0–
1 month forecast ensemble also fails. Comparison of
panels (A) and (B) with panel (C) shows that there is
also significant correlation of capture for forecasts of
the previous month. This suggests that capture in a
region for given month is a good predictor of capture
in the following month. Further analysis should reveal
how persistent failure to capture is and whether this
indicates a persistent model error.

7 Conclusions

We have investigated the use of bounding boxes as
a means to assess how good an ensemble prediction
system is. We have seen that if the ensemble is not
biased, that is, the target lies at the median of the
ensemble’s distribution, then the size of ensemble
required to capture the target increases with the
logarithm of the dimension of the state space. If the
ensembles are biased, then the probability of capturing
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the target falls rapidly with increasing bias; a bias of up
to one standard deviation can be accommodated with
modestly sized ensembles. On the other hand, if the
bias is due to centring on a primary forecast that has
error, and the ensemble spread has been tuned to match
primary forecast’s error spread, then ensembles need to
be about 5 times larger than what are currently used
in operational centres. The increase in size is required
to capture occasional large primary forecast errors.

We have illustrated the use of bounding boxes with
qualitative investigation of the DEMETER experiment
data, and by quantitative investigation of the capture
of a target analysis using perfect and imperfect QG
models. We have verified for imperfect models that
a simple stochastic model ensemble forecast performs
better than a simple deterministic model ensemble fore-
cast that ignores model error. The stochastic forecast
ensembles were demonstrated to capture the target
more reliably and with greater specificity. We also
demonstrated that even when the stochastic pertur-
bations do not accurately represent the model errors,
they still enable the stochastic model ensemble forecast
to capture the target, and do better than just inflating
initial perturbations.

It might seem that a criticism of bounding boxes is
that there is no penalty for achieving capture by simply
increasing the spread of the ensemble. But the spread
of an ensemble is either predetermined by the method
used to generate an ensemble, or free parameter. If the
spread is chosen by other means, then bounding boxes
provide a test of whether the ensemble is effective as
designed. If the spread is a parameter, then bounding
boxes can be used to choose the spread by taking
the smallest spread that attains the desired rate of
target capture, assuming, of course, that the model is
sufficiently skillful to allow this capture rate.

The empirical bounding box statistics of opera-
tional ensemble systems are of direct utility to decision
makers. Evaluating capture rates and typical ranges
(relative to climatology) of a skillful operational system
can immediately convey the utility of a raw ensemble
in a user relevant context. The utility of the bound-
ing box is distinct from that of any full probabilistic
forecasts extracted (somehow) from the ensemble, and
may prove of higher or lesser value for a given decision
maker.

We conclude that bounding box statistics provide
insights complementary to more common measures of
ensemble performance. Specifically, casting ensemble
prediction systems into the bounding box framework
yields intuitive and useful information regarding the
design of ensembles, the evaluation of ensemble per-
formance against those design expectations and the
application of operational ensemble products. We hope
that these bounding box statistics, used in conjunc-
tion with existing evaluation tools, will prove useful in
the difficult and important tasks of evaluating ensemble
prediction systems.
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Figure 11. Each panel shows the fraction of days during the forecast month that the target ERA-40 2 metre temperature
is outside the DEMETER multi-model ensemble bounding box at that grid-point. (A) The forecast month is May 1994,
the ensemble initialized on 1st May 1994. (B) The forecast month is May 1994, the ensemble initialized on 1st February
1994. (C) The forecast month is April 1994, the ensemble initialized on 1st February 1994. White areas indicate capture

of the target. Plots like these vary with the forecast month.
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