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Abstract

A wide variety of processes are thought to show ‘‘long-range persistence’’, specifically an

autocorrelation function with power-law decay. A variety of methods have been proposed to

quantify this power-law decay, and weather and climate systems, among others, have been

claimed to show long-range persistence. In this paper we present a new approach, defining and

illustrating a new maximum likelihood estimator of the persistence exponent H. This method

provides estimates of H at each time scale considered, as well as meaningful uncertainty

estimates. Several independent realisations of processes with a known degree of long-range

persistence are used to test the accuracy of the new estimator in terms of spread and bias. The

persistence exponent of temperature data is estimated and the problems of using observational

data are addressed.
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1. Introduction

Persistence analysis has become a widely studied subject as it is claimed that a wide
variety of physical and biological systems exhibit long-range persistence. Examples
of these include geophysical data such as wind speed [1], temperature measurements
[2,3], river flows [4,5], heart rate and blood pressure [6,7], DNA structure [8,9],
among others. Long-range persistence is characterised by a power law autocorrela-
tion function. This kind of autocorrelation function denotes a slow decay of the
autocorrelations which indicates that observations well separated in time are linearly
correlated. This property is not only called long-range persistence [3], but also
known as long-range memory [10] and long-range dependence [11]. A power law
autocorrelation function, CðlÞ, can be expressed in terms of the time lag l as,

CðlÞ�kl2ðH�1Þ; 0:50pHo1:0 , (1)

where k is a constant and � (read ‘‘scales as’’) reflects the fact that equality in this
relationship holds only in theory. In practice, sample correlation functions, CðlÞ, can
only ‘‘approximate’’ kl2ðH�1Þ. H, referred here as the persistence exponent, measures
the strength of the autocorrelations in the time series and quantifies the decay. To
give a point of reference, compare Eq. (1) to the autocorrelation function of a
process with short memory, such as an autoregressive processes, where the
autocorrelation function decays exponentially to zero, CðlÞ� expð�l=lcÞ (where lc

is a constant).
Direct estimation of the persistence exponent H from its autocorrelation function

has been shown to be inaccurate [7,12,13], thus more ‘‘robust’’ methods have been
adopted. These methods measure the correlations in the data as a function of time
lag in a variety of different ways and have been applied to a wide range of data. For
a review of some of these methods see [7,13,14].

Several of these methods estimate the persistence exponent by using a power law
relation between the time lag l and some statistic, F ðlÞ, that measures the degree of
correlation in the data as a function of the time lag. The detailed form of F ðlÞ is
determined by the method used to quantify the autocorrelation as a function of lag,
but in general this relation has the form:

F ðlÞ ¼ klgðHÞ , (2)

where k is a constant and g is a linear function of H. The persistence exponent H can
be estimated from Eq. (2) by calculating the slope of the best fit line of logðlÞ vs.
logðF ðlÞÞ. We refer to this approach as the log– log approach. While calculating the
slope of the best fit line of logðlÞ vs. logðF ðlÞÞ appears straight-forward, there are
several problems with this approach; a major one being the difficulty of finding a
scaling range. This is, of course, a long standing problem in log–log approaches to
estimating other scaling exponents and dimensions [15,16]. A new method
introduced in this paper overcomes some of these problems by using a maximum
likelihood estimator (MLE) of H.

Section 2 presents this method. Section 3 shows some examples where H is
estimated using this method and synthetic data where the true value of H is known.
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The MLE is also used to estimate H for a temperature record at St. Petersburg and
the issue of estimating H of ‘real-life’ data (hereafter, observational data) is
addressed. A discussion of the advantages and disadvantages of the new method
introduced are discussed in Section 4. Section 5 gives the final conclusions as well as
some possibilities for future work.
2. A maximum likelihood estimator for H

According to random walk theory, for a time series with a power law correlation
function CðlÞ�l2ðH�1Þ, the fluctuations F ðlÞ for a time lag of length l increase as the
power law relation [11,17],

F ðlÞ ¼ clH ; 0:50pHo1:0 , (3)

where c is a constant and H is the persistence exponent. F ðlÞ can be estimated using
a simple method referred as standard fluctuation analysis by Koscienly-Bunde
et al. [3].

Let X i, i ¼ 1; . . . ;N be a time series from a stationary process thought to display
long-range persistence and with running sum Y m ¼

Pm
i¼1 ðX i � X Þ where X is the

sample mean. Firstly, divide the time series into bins of length lag l, fY 1; . . . ;Y lþ1g,
fY lþ2; . . . ;Y 2ðlþ1Þg; . . . and consider the observations at both ends of the non-
overlapping bins, Y t and Y tþl . F 2ðlÞ (in Eq. (3)) is then estimated as the average of
the squared differences of the observations at both ends of the bins,

bF2
ðlÞ ¼

1

nðlÞ
½ðY 1 � Y lþ1Þ

2
þ ðY lþ2 � Y 2ðlþ1ÞÞ

2
þ 
 
 
� , (4)

where nðlÞ is the number of non-overlapping bins of length l and the differences
Y t � Y tþl , t ¼ 1; l þ 2; . . . are essentially the deviation of an l point moving average

of X ðtÞ from the overall mean of X ðtÞ:Y t � Y tþl ¼ lX �
Pl

i¼1 X tþi. H is then usually

estimated as the slope of the best fit line of logðlÞ vs. logðbF ðlÞÞ [3,18]. The method now
presented estimates H using a maximum likelihood approach.

Now consider a method which estimates H using a maximum likelihood approach.
Let X t be a time series from a process presumed to exhibit long-range persistence and
Y t be its running sum as defined above. For a fixed lag l, assume that the increments
Y t � Y tþl , t ¼ 1; l þ 2; 2l þ 3; . . . are independent and identically distributed as a
Gaussian with mean zero and variance s2

l ,

Zi;l ¼ Y t � Y tþl �Nð0;s2
l Þ; i ¼ 1; 2; . . . ; nðlÞ for lag l , (5)

where s2
l is the variance which can be estimated as,

bs2
l ¼

1

nðlÞ

XnðlÞ
i¼1

Z2
i;l ¼

1

nðlÞ
½ðY 1 � Y lþ1Þ

2
þ ðY lþ2 � Y 2ðlþ1ÞÞ

2
þ 
 
 
� (6)

which for processes with long-range persistence (from Eqs. (3) and (4)) is

s2
l ¼ c2l2H . (7)
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Define Jl as the squared sum of the nðlÞ Gaussian independent and identically
distributed random variables (the Z1;l ; . . . ;ZnðlÞ;l in Eq. (5) with expected mean zero)
divided by their variance,

Jl ¼
1

s2
l

XnðlÞ
i¼1

Z2
i;l

s2
l

¼
1

s2
l

XnðlÞ
i¼1

Z2
i;l ¼

1

c2l2H

XnðlÞ
i¼1

Z2
i;l � w2

nðlÞ�2 . (8)

Jl is the sum of nðlÞ w2 (chi-squared) random variables with one degree of freedom
and thus has a w2 distribution with nðlÞ � 2 degrees of freedom. Notice that we
subtract two degrees of freedom as two parameters will be estimated [19].

Using this information it is possible to calculate the MLE of H for a fixed lag l.
The likelihood function, which is the joint probability density function of the sample
z1;l ; . . . ; znðlÞ;l , is the probability density function of a w2 variable Jl and is given by

Pðz1;l ; . . . ; znðlÞ;ljHÞ ¼
j
ððnðlÞ�2Þ=2Þ�1
l e�jl=2

2ðnðlÞ�2Þ=2GðnðlÞ�2
2

Þ
(9)

with jl ¼ 1=c2l2H PnðlÞ
i¼1 z2

i;l as in Eq. (8). For a given l, maximising the probability
given in Eq. (9) yields the MLE of H at that lag l.

In the derivation above it is implicitly assumed that the value of the constant c in
the expression s2

l ¼ c2l2H is known. In fact, it can be easily calculated using the
observations at lag l ¼ 1,

bs1
2
¼

1

nð1Þ

Xnð1Þ
t¼1

ðY t � Y tþ1Þ
2
¼ bc212H ¼ bc2 . (10)

This MLE, bH, for H has some important advantages. Firstly, it provides the estimatebHðlÞ (i.e. bH at lag l) which is the most likely value given the specific sample.
Secondly, it provides an estimator for each time lag, l, which allows for the extent to
which the long-range persistence extends to be evaluated. This avoids the need to
find a scaling range. Finally, its main advantage is that with the probability density
function Eq. (9) it is not only possible to obtain the value of the persistence exponentbHðlÞ that maximises this probability, but also a measure of the uncertainty of the
estimates by providing a distribution of bHðlÞ. This is particularly relevant in this
context as the uncertainty of the estimators strongly depends on the time scale.
3. Results

In order to illustrate the maximum likelihood estimation approach presented in
the previous section, we used synthetic data with a known degree of long-range
persistence, that is, a known value of H. The time series consisted of 65,536 data
points (N ¼ 216) with H ¼ 0:65. The method used to generate this data is a widely
known and used spectral method [14]. After estimating the constant c using Eq. (10),
we obtained the distribution of bHðlÞ for a few time lags l ¼ 10; 300; 3000; 10; 000
using Eq. (9). Note that the sample z1;l ; . . . ; znðlÞ;l (and as a consequence jl) is
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influenced by the time lag l. The probability density function in Eq. (9) is a smooth,
continuous function, thus it can be easily evaluated for 0:5pHo1:0 to find the
maximum and the distribution Probð bHðlÞÞ.

The results are shown in Fig. 1 for a few time lags. The tightest distribution
corresponds to lag l ¼ 10 and the distributions increase in spread as the lag increases.
As expected the uncertainty associated with the estimates varies substantially as a
function of the time scale. This is due to the fact that the size of the sample
z1;l ; . . . ; znðlÞ;l decreases as the time lag increases because the number of points
separated by increasing time lags decreases as the time lag increases. The maximum
likelihood estimates of H (i.e., the values of bH with the greatest likelihood) also vary
with the time lags but they all lie between 0.64 and 0.66. The spread of the estimators
for longer lags (e.g. lag l ¼ 3000 or 10,000) is considerably large and includes values
far from the true value of H ¼ 0:65. This is not discouraging, on the contrary one of
the strong points of this method is that it provides a measure of the uncertainty
associated with the estimator at each time lag: given only 216 data points, the true
value of H is not constrained more accurately than this.

In Fig. 1 the estimates of H for just a few time lags were shown, in Fig. 2 the
estimates for all lags considered are shown. This plot shows the results for the same
time series used in Fig. 1 but in this case, instead of all the distribution, only bHðlÞ

that maximises the likelihood function Eq. (9) (middle line) for all the time lags as
well as their 95% confidence interval (exterior lines) are plotted.

It is clear from this figure that the MLE correctly estimates H as bHðlÞ lies on or
closely around the true value H ¼ 0:65. Note that the 95% confidence intervals are
not symmetrical. This is due to the fact that the likelihood function Eq. (9) is a w2
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Fig. 1. Maximum likelihood function for a time series with H ¼ 0:65. Each distribution corresponds to

the M.L. function for lags l ¼ 10; 300; 3000; 10; 000.
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series with H ¼ 0:65 and N ¼ 216.
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distribution (in general, this distribution is not symmetrical). In both figures the
uncertainty associated with the estimators increases with the size of the time lags; this
is simply because for any fixed value of N, the counting statistics will degrade as l

increases. Thus, statistics of the longer lags have the greatest uncertainty.
Unfortunately, these may in fact be the statistics that we are most interested in;
those of large time lags as they are more relevant when measuring the degree of long-
range persistence in a process as they quantify the degree of correlation between
observations well separated in time. The time scales of most interest contain the least
information. This problem is not exclusive to this method, any estimator which
somehow measures the correlation between points that are increasingly further
apart, will have fewer samples (when the size of the data set is fixed) thus the
statistics will inevitably have greater uncertainty [16].

At the other end, the estimates for smaller lags have smaller uncertainty as the lag
size becomes smaller since their estimation is based upon more observations. These
statistics, however are less relevant in measuring long-range persistence. In some
cases, for example, there exists a clear scaling for smaller length scales but not for
larger time lags casting doubts on whether the departure from the scaling law for
large lags is caused by lack of counting statistics or if there simply is not any long-
range persistence. The MLE presented here provides an estimate of H for each time
lag, thus it makes it possible to easily identify time scales where there is arguably no
power law relation.

In order to test the accuracy of the MLE we use a Monte Carlo approach. We
construct several independent realisations of a process with a known strength
of long-range persistence and compare their ML estimates of H with the true value.
Fig. 3 shows the results for H ¼ 0:5; 0:65; 0:75 and 0:90. For each H, 64 independent
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Fig. 3. Mean and 95% of bHðlÞ over 64 realisations for (A) H ¼ 0:50, (B) H ¼ 0:65, (C) H ¼ 0:75 and

(D) H ¼ 0:90.
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realisations of size 65,536 were used and bHðlÞ was computed for lags
l ¼ 2; . . . ; 10; 000. The inner lines show the mean over 64 estimates as a function
of time lag and the outer lines show the 95% of these estimates. The mean bHðlÞ over
the 64 realisations correctly estimates the true value of H, particularly at small length
scales. For the estimates of H ¼ 0:75 and 0.90 there is a small bias for large lags; the
mean over the 64 estimates underestimates the true value. This also causes the spread
to be asymmetrical around the true value. This bias is in fact an artifact of how bF ðlÞ

is defined in Eq. (4) and not a deficiency of the MLE itself [18]. Despite the small bias
for large values of H, the new method here proposed has many advantages which
make it a valuable tool for characterising long-range persistence.

In previous examples we estimated the persistence exponent of synthetic data with
a known degree of long-range persistence using the MLE proposed in Section 2.
Now we focus our attention on some observational data.

3.1. St. Petersburg’s temperature

The weather is claimed to be a system with long-range persistence and the
persistence exponent has been estimated from temperature records at a variety of
meteorological stations around the globe [2,3]. Here we analyse temperature data
from St. Petersburg and discuss some of the problems encountered when using
observational data. The data consist of daily mean temperatures for the years
1881–1994 (N ¼ 41; 593). We estimate H for the deseasonalised data using the MLE
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and the results are shown in Fig. 4. The middle thick line corresponds to the ML
estimates of H at each lag and the exterior thick lines indicate the 95% confidence
intervals. Note that there is considerable variability in bHðlÞ and there are various
reasons for this. This time series is observational data and thus observational noise is
inevitable (in particular when compared to the synthetic data of previous examples).
Also, the length of the time series is significantly smaller than the ones used in the
previous examples, so greater uncertainty in bHðlÞ is expected. At small time scales the
estimated value of HðlÞ is higher than for larger lags. This indicates the presence of
strong short range correlations [15].

Fig. 4 also shows that the 95% confidence intervals (thick exterior lines) for the
estimates bHðlÞ expand over a wide range of values (i.e., bH 2 ½0:61; 0:85�) which
complicates the task of determining just one persistence exponent for the data. In
order to illustrate this difficulty we also show bHðlÞ for 64 realisations of synthetic
data with long-range persistence and known values H ¼ 0:65 and H ¼ 0:80 (thin
lines). The length of these time series is the same as the temperature data
(N ¼ 41; 593) and we only show the 95% of the estimates for the 64 realisations. It
can be seen that the confidence intervals of the St. Petersburg data expand well inside
the estimates of the synthetic data. This indicates that the observational data are
consistent with a variety of processes with H 2 ½0:65; 0:80� and that the persistence
exponent of the temperature data is around this broad range. Thus, by comparing
the temperature data with several realisations of synthetic data with two distant
values of H (i.e., 0.65 and 0.80), it has been demonstrated the difficulty of estimating
the persistence exponent with observational data. Furthermore, considering the
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Fig. 4. bHðlÞ as a function of time lag (grey thick middle line) with 95% confidence intervals (grey thick

exterior lines) for St. Petersburg data. Thin lines: 95% of bHðlÞ over 64 realisations for H ¼ 0:65 and

H ¼ 0:80.
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width of the confidence intervals and the great variability of bHðlÞ for different lags l,
it is clear that it is meaningless to choose only one value as an estimate of the
persistence of the data and that it is crucial to always provide a measure of the
uncertainty of the estimates.

3.2. Detecting long-range persistence

In previous examples we dealt with the question of how to best estimate the
persistence exponent H. This was done based on the assumption that the processes
analysed indeed present long-range persistence. In practice, it is not always the case
that one knows this to be true. Therefore, it is important that the methods for
estimating the persistence exponent are able to detect whether a time series has long-
range persistence or not. The kind of processes that can present a challenge are those
which have strong short term correlations and the difficulty is to identify whether
these correlations extend to longer time lags. A possible first step at assessing
whether the process has long-range persistence is to examine the autocorrelation plot
of the time series and look for significant correlations at large time lags. With
observational (noisy) data and data with strong short term correlations it is unlikely
that there will be a clear cut-off where short term correlations are present but long-
range correlations are not significant. Nevertheless, this can be used as a first
exploratory tool to identify the presence of long-range persistence.

In order to assess whether the MLE presented in Section 2 is capable of
distinguishing processes with no long-range persistence, we compare the estimatesbHðlÞ of long-range persistence processes with estimates of processes without long-
range persistence but with short term correlations. We use an ensemble of
independent realisations from autoregressive processes X t ¼ bX t�1 þ �t (where �t

is Gaussian with zero mean and unit variance) which have short term correlations
but no long-range persistence and estimate their persistence exponent H [20]. These
estimates are then compared with those of the processes with known long-range
persistence such as those shown in previous sections.

Fig. 5 displays the mean of the estimates bHðlÞ over 64 independent realisations of
autoregressive processes X t ¼ bX t�1 þ �t with b ¼ 0:6 and b ¼ 0:8 (lower and upper
thick lines respectively). This plot also shows the mean bHðlÞ over 64 realisations of
processes with long-range persistence H ¼ 0:65 and H ¼ 0:75 (dashed lines) as in
Fig. 3). And finally it shows the estimates for the St. Petersburg temperature data
previously analysed (thin full line). For all the realisations in this plot, time series
with N ¼ 41; 593 (which is the size of the St. Petersburg data set) were used. When
comparing bHðlÞ of the autoregressive processes with the synthetic long-range
persistence processes it is clear that they are different. The autoregressive processes
have large values of bHðlÞ for short time lags which decrease rapidly as the time lag
increases. This is not the case for the long-range persistence processes. The St.
Petersburg data also shows this pattern, large bHðlÞ for short lags and decreasing
estimates for longer lags. This data registers evidence of long-range persistence as
well as strong short range correlations. Despite this, it is possible to see that the St.
Petersburg estimates are different from the one corresponding to the autoregressive
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processes. The estimates bHðlÞ for the smallest lags considered have approximately
the same values ( bHðlÞ ¼ 0:87) for both the autoregressive processes (with b ¼ 0:8)
and the St. Petersburg data, however the rate at which bHðlÞ decreases as the time lag
increases is different for these two kind of processes. The estimates bHðlÞ decrease
very rapidly for the autoregressive process (as lag increases) which is not the case for
St. Petersburg’s which also decrease but at a much slower rate and most importantly
they stabilise around bH ¼ 0:70 (see also Fig. 4). Thus, by examining the consistency
of bHðlÞ over a range of time lags it is possible to determine the presence (and
absence) of long-range persistence in a given time series.

In addition, by comparing the estimates of H for a variety of processes we have
illustrated that the MLE is able to detect whether a time series presents or not long-
range persistence. This is an important property when there is no previous
knowledge on whether the data in question presents long-range persistence.
4. Discussion

In previous sections we presented a new approach and MLE of the persistence
exponent H. There are some important advantages and disadvantages with this
approach when compared to the most commonly used best fit line log–log approach.
One of the main advantages is that there is no need to choose a scaling range where
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the power law relation is valid, rather one can examine the consistency of a proposed
value of bH over a range of time scales. In addition, having an estimate for each time
lag allows identifying whether long-range persistence is present at large time scales
and not only at small ones (just short term correlations). Using a MLE has also the
essential advantage of generating a probability density function of the estimator,
thus providing a meaningful measure of the uncertainty of the estimates.

It is also important to mention a potential problem with this MLE. When
estimating bHðlÞ with Eq. (9) this is influenced by the value of the constant c

(estimated using Eq. (10)) which reflects the correlations at lag l ¼ 1. In signals
where strong short-range correlations are present in addition to the long-range
persistence, c can be overestimated which will have an effect on the estimates of H.
One possible way to overcome this problem is to filter the short-range correlations
prior to estimating H. However, this should be done with care since removing
short-range correlations can destroy the scaling structure in the data. Another
possibility is to simultaneously estimate c and H in Eq. (9) which can also overcome
this problem.
4.1. Assumptions and necessary conditions

The MLE for H introduced in Section 2 is based on the assumption that the
increments Y t � Y tþl , t ¼ 1; l þ 2; . . . are independent and identically distributed as
a Gaussian. Recall, Y t is defined as the running sum of the original time series X t

with its mean subtracted. The assumption of Gaussianity is met as long as X t is
Gaussian, which is the case for most processes such as fractional Gaussian noises [14]
and fractional autoregressive and moving average (fARIMA) processes [21].

On the other hand, the assumption of independence is clearly not met in this
context. In fact, this is what the long-range persistence measures, the correlation or
linear dependence between observations. Despite the fact that the independence
assumption does not hold, likelihood-based estimators have proved useful in practice
[19]. In addition, using non-overlapping bins as it is done in Eq. (4) diminishes the
effects of violating this assumption. Moreover, a slight modification of the MLE
allows for the assumption of independence not be violated. This can be done by only
considering in Eq. (4) difference terms ðY t � Y tþlÞ that are not correlated. For each
lag l, the time lag or interval (hereafter intv) at which the overlapping differences
ðY t � Y tþlÞ t ¼ 1; . . . ;N � l can be considered linearly independent is determined
and this information is used to calculate Eq. (4) only considering terms that are
linearly independent. These terms have the form ðY 1 � Y 1þlÞ, ðY intv � Y intvþlÞ,
ðY 2intv � Y 2intvþlÞ; . . . (where intv is determined for each lag l).

Unlike the original method of Section 2 with this modification, depending on the
data and the time lag l, the separations between bins will be different. For some l, the
bins will overlap and for other l, there will be gaps between bins. This modification
allows to have more realistic confidence intervals of bHðlÞ than by using non-
overlapping bins which produces overly optimistic (too narrow) confidence intervals
for small lags and overly pessimistic (too wide) for large lags.
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Fig. 6. Mean of bHðlÞ and mean of the upper and lower values of the 95% confidence intervals over 64

realisations with (A) H ¼ 0:65, (B) H ¼ 0:80. Thick grey lines correspond to the estimates using non-

overlapping bins and black thin lines with independent bins.
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In Fig. 6 we compare estimates of H using the original and the modified version of
the MLE. This plot shows the mean estimates from 64 independent realisations of
size 65,536 with known H ¼ 0:65 and 0.80. The thick gray lines correspond to the
estimates using the original MLE (with non-overlapping bins, as in Section 3) and
the thin black lines correspond to the estimates using the modification mentioned
above. In both cases, the middle lines show the mean over the 64 estimates as a
function of time lag, and the bottom and top lines show the mean of the upper and
lower value, respectively, of the 95% confidence intervals of these estimates. Note
how the width of the confidence intervals is different for the 2 versions. The mean ofbHðlÞ is not significantly different for the two versions and unfortunately the bias is
still present at some lags.
5. Conclusions

Claims of long-range persistence in observed time series have received much
attention in recent years. In this paper we presented a novel approach and maximum
likelihood estimator of the persistence exponent H. In order to test the accuracy of
this estimator in terms of spread and bias, we have generated several independent
realisations of signals with a known persistence exponent and compared their
estimates bHðlÞ with the real value of H. It has been found that in general this new
approach correctly estimates H. Nevertheless, for large values of H (H ¼ 0:75; 0:90),
the estimates show a small bias for large lags. This is a small drawback on the
method that in general provides very accurate estimates.

When estimating long-range dependence at different time lags, the uncertainty of
those estimates increases as the time lag increases. Unfortunately, the estimates at
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longer lags are those of most interest since they are more relevant to characterising
long-range persistence. The new MLE presented deals with this problem by
providing meaningful uncertainty estimates for bH at each time lag. In addition, by
providing an estimate of H at each time lag, this new approach provides further
insight on the extent to which long-range persistence is present at all lags considered.
For the one atmospheric data considered, the range of uncertainty in bH is shown to
be rather large; claims of equality in estimated H between many different data sets
might be reexamined in the light of this analysis.
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