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ABSTRACT
Insight into the likely weather several months in advance would be of great economic and societal value. The DEMETER
project has made coordinated multi-model, multi-initial-condition simulations of the global weather as observed over
the last 40 years; transforming these model simulations into forecasts is non-trivial. One approach is to extract merely
a single forecast (e.g. best-first-guess) designed to minimize some measure of forecast error. A second approach would
be to construct a full probability forecast. This paper explores a third option, namely to see how often this collection
of simulations can be said to capture the target value, in the sense that the target lies within the bounding box of the
forecasts. The DEMETER forecast system is shown to often capture the 2-m temperature target in this sense over
continental areas at lead times up to six months. The target is captured over 95% of the time at over a third of the grid
points and maintains a bounding box range less than that of the local climatology. Such information is of immediate
value from a user’s perspective. Implications for the minimum ensemble size as well as open foundational issues in
translating a set of multi-model multi-initial-condition simulations into a forecast are discussed; in particular, those
involving ‘bias correction’ are considered.

1. Introduction

Predictions of weather and climate using sophisticated physical
models of the atmosphere and ocean are intrinsically uncertain.
The underlying fluid dynamics is fundamentally non-linear and
the models are likely to be chaotic. For any given model, un-
certainty in initial conditions severely limits the forecast skill
in terms of a single best-first-guess forecast. For every collec-
tion of models, model inadequacy due to imperfections in each
model formulation restricts the ability to forecast the evolution
of a probability distribution. Ensemble forecasting using differ-
ent model formulations, together with different consistent initial
conditions, provides a pragmatic approach to sampling, if imper-
fectly, these uncertainties. This may provide a clearly superior
alternative to the traditional single best-first-guess forecast un-
der a more complex model of greater, but remotely comparable,
skill (Palmer, 2000).

This study demonstrates a new approach to assess the skill
of ensemble simulations. Verifying probabilistic forecasts made
with imperfect models is a highly ambitious and complex task;
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we address somewhat simpler questions. Are the distributions
obtained from ensemble forecasts likely to capture the target?
What properties define a good/useful ensemble? The bounding
boxes (BBs) of an ensemble will be used to define a region of
model-state space within which the future is likely to fall; the
probability of capture can be determined empirically. What are
reliable spatial and temporal scales at which the ensemble is able
to capture the target with a high probability?

How does examining the BB of an ensemble compare to us-
ing one of the plethora of other skill measures (e.g. Jolliffe and
Stephenson, 2003) already employed in the evaluation of ensem-
ble forecasts? Traditional measures tend to fall into two broad
types. The first type (such as the root mean square error, mean
absolute error, anomaly correlations and so on) evaluates a point
measure from the forecast such as the ensemble mean, while the
second (such as rank histograms, probabilistic Brier scores, ig-
norance, and so on) interprets the ensemble as a probability fore-
cast. The BB approaches take an intermediate view, which differs
importantly from each of these extremes. The first type of score
ignores all of the distributional information in the ensemble,
whereas the BB retains some information from the distribution
while being insensitive to any mean value taken over the distri-
bution. The second type of score aims to evaluate whether or not
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the verification is another drawn from the same distribution as the
ensembles members, and thus will penalize an ensemble forecast
that includes exceptionally good member forecasts depending on
the relative frequency of other members of the ensemble. The
BB asks for less than an accurate probability forecast. As will
become clear below, the BB approaches are likely to have power
in situations where the forecast skill may appear low as judged
by both types of traditional measures, yet the forecast still has
useful information in terms of decision-making.

There is currently no coherent interpretation of the multi-
model multi-initial-condition ensemble as some reasonable sam-
ple of a relevant unknown probability density distribution. Rather
than consider ensemble members as random draws from this hy-
pothetical perfect ensemble distribution and then interpret the
forecasts as drawn from the future distribution from which the
target is also drawn, we will consider the target as merely a target.
We can then ask the question whether or not we can expect the BB
to capture the target within the ensemble, given certain statistical
aspects of our ensemble forecast. Given an operational ensemble
system, we can determine the frequency of capture empirically
and provide this information to the users of the forecast. Alterna-
tively, we can compute the expected rates of capture analytically
under various assumptions regarding model error. Contrasting
these calculations with the empirical observations then provides
information for both modellers and forecasters. It is important,
of course, to distinguish clearly between discussions of observed
capture frequency of actual observations and those of the cap-
ture probability when properties both of the model and of the true
distribution are assumed known. Furthermore, the BB approach
gives new insight into the controversial questions of how large
an ensemble need be and how model simulations might best be
‘post-processed’ into forecasts. Whenever one attempts to inter-
pret model simulations as forecasts, issues of ‘post-processing’
arise. Given a very large number of single-model single-initial-
condition forecasts, issues such as ‘bias correction’ for each grid
point are straightforward; in the ensemble scenario, this is no
longer the case.

A multi-model ensemble-based system for seasonal-to-
interannual prediction with a broad range of applications across
disciplines has been developed within the joint European project
DEMETER (Development of a European Multi-model Ensem-
ble Prediction System for Seasonal to Interannual Predictions).
The DEMETER system (see Palmer et al., 2004, and refer-
ences therein) provides an ideal framework (i) for testing the
BB methodology with state-of-the-art coupled forecast models,
and (ii) for assessing the BB skill of the ensemble forecasts in the
above-mentioned sense. In this paper we discuss some of the re-
sults of this application. The BB idea is introduced in Section 2,
and the DEMETER seasonal multi-model ensemble forecasts
are examined in this light in Section 3. In Section 4 we discuss
the broader implications of these results with an eye towards fu-
ture forecast systems, while we briefly summarize our results in
Section 5.

2. Bounding boxes and the constraint for a
meaningful ensemble

We consider the BB (Smith, 2000) of an ensemble as a predic-
tion interval (Chatfield, 2001), i.e. a forecast range in which the
verifying observation (or some given target value) is expected to
fall with some probability. Observing that the ensemble captures
the target with a high probability quantifies a new distinct quality
in the ensemble forecast system. We suggest that a BB which
includes the target state with a high probability and a range1

smaller than climatology is an indication for a reasonably good
ensemble.

The BB of an ensemble is given by the minimum and maxi-
mum values of each ensemble component. Thus, an interval is
defined for each variable for each lead time at each model grid
point. The criterion for an ensemble to capture the target state is
simply that the target value lies between the minimum and max-
imum values of the corresponding ensemble component. This
straightforward concept has the advantage that the BB is easy to
compute and define for any ensemble size and dimension: a two-
member ensemble will almost certainly define a non-trivial BB in
a 107-dimensional space. Alternative measures of volume, such
as a convex hull, require prohibitively large ensembles, while
the ensemble sizes needed for estimates of joint probabilities are
truly astronomical.

Ensemble forecasts are often interpreted in terms of probabil-
ity distributions (e.g. Leith, 1974; Anderson, 1996; Ehrendorfer,
1997; Robert and Casella, 1999; Palmer, 2000; Judd and Smith,
2001) and within the perfect model scenario this makes perfect
sense. In this case, one would ideally draw ensemble members
from what is effectively the same distribution that the target is
drawn from. Given only a collection of imperfect models, it is
not clear how to conceive of such a target probability distribution
(Smith, 2000; Judd and Smith, 2004). In this paper, we take a dif-
ferent approach. The target is truly a target; we make no mention
of a distribution from which it is drawn. Rather, we consider the
probability that forecasts fall above or below this target value.

Let E be the ensemble and assume that the ensemble members
are independent and drawn from some distribution. We take the
target x∗ to be a point in the same space as the ensemble members,
but make no assumptions about the relationship (e.g. dependence
or correlation) between target and ensemble members. We denote
the probability that the component y ∈ E is smaller than x∗ as

p = Pr(y < x∗ | y ∈ E). (1)

Then, the probability that the component y is greater or equal x∗

is, of course, 1 − p.
What is the probability that the one-dimensional BB of an

ensemble E includes the target state x∗? The only manner by
which the BB might not include the target is if the ensemble

1In this context, ‘range’ denotes a measure of the volume of the BB. We
return to this point in Section 3.4.
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distribution was entirely left or right of x∗. Given an ensemble of n
members, the probability that all ensemble members are smaller
than x∗ is pn. Similarly, the probability for all ensemble members
being larger or equal x∗ is (1 − p)n . The total probability that a
one-dimensional ensemble does capture the target, P BB, is then
simply

PBB(n, d = 1) = 1 − pn − (1 − p)n . (2)

This argument is easily generalized to a higher-dimensional
system, where each of the d coordinates is independent. Let pi

be p for the ith coordinate. If

pi = P(yi < x∗
i | y ∈ E), (3)

then the probability that a d-dimensional BB includes the target
is

PBB =
d∏

i=1

[
1 − pn

i − (1 − pi )
n
]
. (4)

When the coordinates are not independent from each other,
P BB for a given value of n becomes even higher, because the
case of independent dimensions represents a lower limit for the
general conditions of dependency.

Hence, P BB is a function of several variables: the one-sided
probability pi, the dimension d and the ensemble size n. Before
looking in detail at the BBs from the DEMETER ensemble fore-
casts in Section 3, we first discuss and interpret implications of
eq. (4). After considering the interpretation of a single ensem-
ble forecast, we discuss as examples the following three types
of ensemble distributions: (i) the general case of an arbitrary
skewed ensemble; (ii) the idealized case of a Gaussian forecast
distribution; (iii) the special case where the target is exactly at
the median of the distribution.

2.1. Case of a single ensemble forecast

To clarify the problem, first consider a single day and specific
lead time in the one-dimensional case (d = 1). An ensemble
prediction system and target will correspond to a single value of
pi. If pi were known, then plugging pi into eq. (4) for a variety
of values of n would provide the capture probability P BB as a
function of n. Thus, a value of n could be found to meet any
desired threshold of P BB (assuming pi is not equal to zero or to
one).

In practice, of course, pi will vary from day to day, and it
is the capture rate of the ensemble system that is of interest.
Inferring the capture rate as a function of n requires knowledge
of the distribution of pi. In the next three subsections we consider
various simple illustrative examples in order to provide some
insight into the sort of ensemble sizes that might be required.
They are found to be operationally accessible.

2.2. Arbitrary distribution

A schematic plot of the probability density distribution (pdf) in
terms of the histogram of an arbitrary one-dimensional ensemble
is given in Fig. 1a. We consider a 63-member ensemble, as this
is the size of the DEMETER ensemble system discussed later.
The area under the histogram curve left to the target quantifies
the one-sided probability pi. Figure 1b shows the corresponding
cumulative density distribution (cdf).

Ideally, an ensemble system can be deployed with the mini-
mum size needed to ensure the likely capture of the targets of
interest. The framework above enables some insight into how
the resources might be distributed. Assuming a known distribu-
tion for pi exists that is a generic characteristic of the underly-
ing ensemble distribution, eq. (4) can be used to extrapolate the
minimum ensemble size required for any specified probability of
capture. Such information on the minimal size of the ensemble
would be useful in planning resource distribution within future
ensemble forecast systems, as discussed in Section 4.1.

Suppose we aim to capture a target with a given probability
P BB using n ensemble members, eq. (4) provides an estimate
of the corresponding pi-value range. For P BB ≥ 0.95 and n =
63, d = 1, this results in 0.0465 < pi < 0.9535. The non-linear
relationship between ensemble size, the one-sided probability
and the probability to capture is displayed graphically for the
one-dimensional case in Fig. 1c. For instance, in order to capture
the target given a one-sided probability pi = 0.01, an ensemble
of ∼300 members would be needed to capture with a probability
of 95%.

In practice, however, pi will vary from day to day. Assuming
realistic values of n and d (specifically 63 and 107), and requiring
a capture rate of 0.95, eq. (4) implies that any value of pi in
the range 0.262–0.738 would have the desired capture rate. This
implies that any combination of day-to-day variations of pi in this
range would also have a capture rate at least this large. Decreasing
the n to 30 would narrow down this range of pi to 0.472–0.528.

2.3. Gaussian distribution

Consider a Gaussian distribution N (x∗
i − µi , σ i ), as shown

schematically in Figs. 2a and b, again for 63 ensemble members.
Here, µi and σ i denote the mean and the standard deviation of
the distribution for the ith dimension. Then the normalized offset
zi is defined by zi = (x∗

i − µi )/σ i . In this case, the one-sided
probability pi can be replaced by the corresponding cdf(zi), the
standard normal distribution �(zi) (see Fig. 2b). Equation (4)
reads

PBB(Gaussian) =
d∏

i=1

[
1 − �(zi )

n − �(−zi )
n
]
. (5)

The range of values of pi such that P BB is at least 0.95 (again
based on 63 ensemble members) thus transforms to |zi| < 1.68.
This means that, provided the forecast distribution is Gaussian,
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Fig 1. Schematic diagrams of the BB
concept for the general case of an arbitrary
distribution. (a) Histogram as an estimation
of the pdf of a 63-member ensemble. The
dashed line indicates the position of the
target x∗. The black area under the histogram
curve left of the target is an estimate of the
one-sided probability pi. (b) The cdf for the
distribution in Fig. 1a. Here pi corresponds
directly to the value of the cdf for the target
x∗. (c) Probability P BB that the
one-dimensional BB defined by pi and n
ensemble members captures the target. The
thick dash-dotted line denotes the 95%
probability. Note that the graph is symmetric
with respect to pi = 0.5.
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0.9 Fig 2. Schematic diagrams of the BB
concept for the case of a Gaussian
distribution. (a) Histogram as an estimation
of the pdf of a 63-member ensemble. (b) The
cdf for the distribution in Fig. 2a, indicating
pi = �(zi). (c) Probability P BB that the
one-dimensional BB defined by zi and n
ensemble members captures the target. The
thick dash-dotted line denotes the 95%
probability. Note the logarithmic scale of the
vertical axis. The graph for zi < 0 would be
symmetric.

any 63-member ensemble will theoretically be able to capture
the target with at least 95% probability if the absolute offset (that
is, xi) is not larger than 1.68 standard deviations.

The probability P BB as a function of z and n is shown in
Fig. 2c for one-dimensional Gaussian ensembles. It demonstrates
the enormous effect an offset has on the minimum number of
ensemble members needed to capture the target. For instance,

a normalized offset of 2.5 standard deviations (z = 2.5) in one
dimension increases the number of n, for which P BB is larger
than 95%, by almost a factor of 100 compared with the zero
offset situation. This suggests that issues of ‘bias correction’ in
translating model simulations to forecasts may play a significant
role in the probability of bounding. As with any skill statistic,
it is critical to distinguish between (i) evaluating an ensemble
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forecast with BB statistics and (ii) optimizing the BB statistics
of an ensemble forecast.

2.4. Centred distribution

Let us now assume that the distribution is centred on the target,
specifically that the target x∗

i divides the (not necessarily sym-
metric) distribution into two equal parts with respect to pi, that
is pi = 1 − pi = 0.5. This is equivalent to x∗

i being the median
of the ensemble distribution in the ith dimension and pi = 0.5
(see Fig. 3). In this case, eq. (4) reads as

PBB =
d∏

i=1


1 −

(
1

2

)n

−
(

1

2

)n

 (6)

=
d∏

i=1

(
1 − 2

2n

)
(7)

=
(

1 − 1

2n−1

)d

. (8)

Again, the relation between P BB and n can be used to explicitly
estimate the minimum ensemble size needed to ensure a certain
capturing probability. Suppose we claim to include the target in
a one-dimensional centred BB with a probability of 0.95. This
immediately leads to n = log240 = 5.3. Thus, one would need
at least six ensemble members to capture the target with a 95%
probability.

The probability P BB of centred distributions is shown in
Fig. 3c for different dimensions and ensemble sizes. Even for
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Fig 3. Schematic diagrams of the BB
concept for the case where the target is the
median of the distribution (i.e. pi = 0.5). (a)
Histogram as an estimation of the pdf of a
63-member ensemble. (b) The cdf for the
distribution in Fig. 3a. (c) Probability P BB

that the d-dimensional BB defined by n
ensemble members captures the target. The
thick dash-dotted line denotes the 95%
probability.

very high-dimensional systems, such as GCMs, only a couple of
dozen ensemble members are required to capture the target with
a very high probability. For instance, in 107 dimensions, as few
as 30 ensemble members are sufficient to almost always bound
the target (compare with the general case in Section 2.2). This
is not surprising because when the ensemble is drawn from a
centred distribution, then one expects nearly equal numbers of
ensemble members either side of the target, and therefore it is
unlikely that all ensemble members will be to the same side of
the target. Note (i) the narrow transition zone between very high
and very low probabilities in Fig. 3c and (ii) that P BB does not
depend on the variance of the ensemble distribution.

3. Application to a dynamical seasonal
multi-model ensemble forecast system

3.1. DEMETER project

The DEMETER project (see also other contributions in this vol-
ume) was designed to create a multi-model ensemble system
for studying seasonal forecasts. A special focus is put on appli-
cations across disciplines ranging from downscaling crop-yield
modelling to malaria predictions. As a result of the project, an
extensive data base of hindcasts from 1958 to 2001 with common
archiving and common diagnostic software has been made avail-
able to the public (see http://www.ecmwf.int/research/demeter/
data).

The system comprises seven state-of-the-art global coupled
ocean–atmosphere circulation models whose atmosphere and
ocean components have been developed quasi-independently at
different European research institutes. For all but one model,
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Fig 4. Fraction of all six-hourly T2m
forecast data from 1989–1998 for which the
ERA-40 is outside the DEMETER
multi-model ensemble BB. Isolines at 0.05,
0.1, 0.2 and 0.3.

the atmospheric and land-surface initial conditions were taken
from the ECMWF 40-yr Reanalysis (ERA-40) data set, while
the oceanic initial conditions were obtained from ocean model
runs forced by ERA-40 fluxes. One of the models used a coupled
initialization method instead. Each single-model ensemble was
generated by running an ensemble of nine different ocean initial
conditions, which have been obtained by perturbing the imposed
wind stress and SSTs. The experiments involve using a seven ×
nine member multi-model ensemble (seven models, nine initial
conditions) to produce global seasonal hindcasts. Ensembles are
started four times per year (1 February, 1 May, 1 August and 1
November) and run for six months. Details of the models and
configurations used are given in Palmer et al. (2004) and Hage-
dorn et al. (2005).

The DEMETER system will be used to illustrate the above-
introduced BB ideas in the context of realistic ensemble forecasts
made with state-of-the-art atmosphere–ocean circulation mod-
els. The following analysis is based on six-hourly hindcasts of
2-m temperature (T2m) of the 63-member multi-model ensem-
ble from 1989 to 1998 on a 2.5◦ × 2.5◦ grid and uses the ERA-40
(see http://www.ecmwf.int/research/era) as the target (or verifi-
cation) set.

3.2. Capturing the reanalysis

A central question addressed within this study focuses on the
relative frequency with which the DEMETER ensemble cap-
tures the ERA-40 target, and hence its potential forecast value
in the BB context. The forecast value will, of course, depend
not only on the application but also upon how the model simu-
lations are translated into forecasts; we return to this point be-
low. As a starting point, consider the raw model simulations as
forecasts; no accounting is made for any potential systematic
model error. Figure 4 shows how often the ensemble fails to
capture the verifying analysis for all available T2m six-hourly
forecast data from 1989 to 1998. The evaluation is based on

the one-dimensional BB for each grid point. This allows us to
estimate reliable spatial forecast scales in the above-mentioned
sense.

The ensemble is almost always able to bound ERA-40 in conti-
nental as well as in some tropical ocean areas. Regions where the
target is very often (30% and more) outside the ensemble’s BB
include the extratropical oceans, the western tropical Atlantic,
some coastal areas of South America, the ocean west of Namibia
and north of Madagascar, and in the Indonesian Archipelago. The
areas west of Africa and South America are characterized by up-
welling of cold deep water. The resulting cold surface currents
present well-known, non-trivial difficulties for ocean circulation
models and near-surface atmospheric temperatures.

Similar statistics for different lead times are shown in Fig. 5.
In the first month of the forecasts, ERA-40 falls outside the BB in
most areas of the globe in approximately 5–10% of all cases. As
the forecast continues, regions of consistent failure concentrate
mainly on the areas noted above (that is, near eastern bound-
ary cold ocean surface currents, the Caribbean and Indonesia
and some oceanic areas in the mid-latitudes). It is observed
that, beside the initial spin-up period of the integrations, the
geographical regions where the target is outside the ensemble’s
BB are not particularly sensitive to the forecast lead time. The
ability of the DEMETER ensemble to bound ERA-40 is in gen-
eral better for boreal summer (JJA) than for boreal winter (DJF).
The ensemble often fails to include the DJF reanalysis, especially
over the Southern Ocean.

3.3. Systematic model error

On seasonal time-scales, systematic errors in dynamical model
simulations of the mean state are often at least as large as the
anomalies which one is trying to predict. While removing a sys-
tematic bias based on a very large number of single-model single-
initial-condition forecasts is relatively straightforward, this is
not the case in the ensemble scenario. Because BBs are based
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Fig 5. Fraction of six-hourly T2m forecasts
from 1989–1998 when ERA-40 is outside
the DEMETER multi-model ensemble BB
for lead times of one month to six months.
Isolines at 0.05, 0.1, 0.2 and 0.3.

upon the ensemble distribution(s), the relevant ‘post-processing’
approach is more closely related to those used for probability
forecasts, rather than those for point forecasts. This subsection
includes a discussion of bias correction methods for forecast
distributions and their relevance to the BB approach (for a dis-
cussion of MOS techniques, see Eckel, 2003, and references
therein).

Inasmuch as each model is imperfect, the question how to
turn model simulations into forecasts (Wilks, 1995; Smith, 2000,
2003) arises. Technically, this translation corresponds to a pro-
jection operator that maps a point in the model state space into
the observable physical quantity we are interested in. While often
noted (Smith, 1997, 2000; Judd and Smith, 2004) this operator
is more often either taken to be the identity (that is, ignored) or
dealt with by ad hoc adjustment of the first moments of the fore-
cast distribution. Given only model simulations and observed
targets, it is not clear how to separate the role of this opera-
tor from complications due to model inadequacy (Kennedy and
O’Hagan, 2001).

If we resort to merely a best-first-guess point forecast, specifi-
cally a forecast state with small expected root mean square error,
then linear regression on the simulations (see Krishnamurti et al.,
1999, and references therein) will yield such a state; this state will
almost certainly be ‘unphysical’. For ensemble forecasts, just as
in best-first-guess forecasts, systematic differences between a
model’s simulation and a given target, once quantified, will not

contribute to forecast error.2 Jewson (2004), among others, has
argued one step beyond computing a mean state, suggesting that
operational ensemble forecasts provide little if any information3

beyond mean and variance.
If we interpret the ensemble members as scenarios, then ker-

nel dressing of each ensemble member allows the construction
of a non-Gaussian forecast probability function (Raftery et al.,
2003; Roulston and Smith, 2003), which has proven useful in
practice (Roulston et al., 2003). In the multi-model ensemble,
arguably none of these interpretations is internally coherent; one
should condition the forecast on the joint distribution of all the
simulations at hand. Operational procedures to do just this are
under development.

The relevance to the BB approach is obvious; if the raw ensem-
ble distribution is systematically displaced (or even malformed),
then any identified systematic component should be removed
before the BB is computed. Similarly, the internal consistency
of the ‘post-processing’ methods in the previous two paragraphs
can be evaluated by examining their effect on the BB capture
rates on real data. An alternative to evaluating other methods

2As noted by a referee, this identification must, of course, be made out-
of-sample.
3Jewson (2004) provides some empirical results from a specific case to
support his conclusion; we suggest that more complicated procedures be
tested against this benchmark.
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Fig 6. Fraction of all six-hourly T2m
forecast data from 1989–1998 for which the
ERA-40 is outside the DEMETER
multi-model ensemble BB where the
forecasts have been filtered with an
‘ensemble-mean-bias removal’ filter.
Isolines at 0.05, 0.1, 0.2 and 0.3.

of post-processing would be to adjust the simulation values of
each model with the explicit aim of improving the BB (just as
traditional bias removal aims to improve root mean square error
skill scores). For example, the minimal shift required to maxi-
mize the fraction of the target values within the BB could ac-
count for some forms of systematic error without introducing
the biases implied by using the ensemble mean. Or rather than
merely matching the first moment or two of the target distri-
bution, one could alternatively map the cumulative distribution
function of forecasts into that of the target variables. We consider
only the identity operator and the ensemble-mean-bias operator
below.

In practice, the standard approach to the (currently) inevitable
climate drift of coupled models followed in DEMETER acts
on an essentially linear assumption. The mean drift across an
ensemble of forecasts is estimated4 and subtracted as an a pos-
teriori correction to give the bias-corrected forecast anomalies
(Stockdale, 1997). While this may correct the first moment of
the ensemble mean as a best-first-guess forecast distribution in-
sample, its general effect on probability forecasts is unclear. In
fact, the coherence of ‘correcting’ each model variable inde-
pendently is unclear, given the space–time interdependence of
these variables. Ignoring the physical implications, one could, of
course, also manipulate other moments of the ensemble distri-
bution to match moments of the error distribution of the ensem-
ble means. If these manipulations are claimed as model-space to
target-space adjustments, then presumably they (or their inverse)
should also be considered in the data assimilation step. If they
are accounting for anything other than the simplest scalar ‘model

4As will become clear in the paragraphs that follow, there are a number
of unresolved difficulties with this approach. Two issues not discussed
further here are (i) accounting for the estimation error in the ‘bias cor-
rection’ that is to be applied and (ii) the fact that in this case the target
is itself a model state not an observation, and hence may also be biased,
especially in regions with few observations which vary in number. Both
methods are included here to allow a comparison of the results.

drift’, then their impact on the probability distribution must be
carefully argued.

We note again that although the BB methods do consider the
distribution that arises from the ensemble, they do not require that
the ensemble distributions be interpreted as probability forecasts.
They can merely supply useful forecast information bounding the
likely range of values and accompanied by an empirical measure
of how often they in fact bound.

For the remainder of this section, we consider two projec-
tion operators: the identity (taking the model values as fore-
casts without alteration, as done in the results above) and the
standard ‘ensemble-mean-bias removal’ applied to each indi-
vidual forecast model. It is not obvious a priori that the en-
semble sample mean should have zero bias, even in a perfect
probability forecast, given that the forecast distribution changes
from day to day and that the properties of each day’s target
are unknown prior to verification (assuming it has properties
other than the realized value). In order to examine the properties
of each method in practice, the results for both are contrasted
below.

The ensemble-mean-bias removal method estimates each
single-model bias relative to its mean seasonal cycle. This is
done by computing the average of all the hindcasts available
for all six-hourly data of the simulation and by considering this
as the ‘climate’ or mean seasonal cycle of the model, follow-
ing Palmer et al. (2004). After applying a 5-d low-pass fil-
ter, hindcast anomalies are obtained by subtracting the mean
model seasonal cycle to each grid point, each initial month and
each lead time for each ensemble member. A similar algorithm
is used for ERA-40 to produce the verification anomalies. All
anomalies have been computed in cross-validation mode (Wilks,
1995), which means that only data at other times different from
the target date have been used to calculate the mean seasonal
cycle.

How does the ensemble-mean-bias correction alter the results
of the BB analysis discussed above? Figure 6 shows the relative
frequency of the ERA-40 data being outside the multi-model
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ensemble’s BB for all bias-corrected T2m data from 1989–1998.
Obviously, the correction appropriately removes the distinct er-
rors over the cold oceans west of North America, South Amer-
ica and Africa, which leads to a much improved capture rate
in these regions (compare Fig. 4). For large parts of the world,
especially over the tropical oceans and northern Asia, however,
the ensemble-mean-bias correction results in a slightly higher
outside-BB frequency. Worse still, the ensemble fails to bound
the target significantly more often in the Caribbean and Indone-
sian warm pool areas after this bias correction than it did before
the ‘correction’ was introduced; this emphasizes the limits of
any first moment error treatment.

3.4. On the utility of the BB criterion

For a substantial fraction of model grid points, especially over
land, the DEMETER ensemble captures ERA-40 almost per-
fectly. It is conceivable, however, that the ability to bound is
simply the result of an unrealistically large ensemble spread.
Forecast ensembles might bound simply by providing wide dis-
tribution compared to the climatology. The monthly mean spread
of the ensemble relative to the spread of the climatology for
forecast lead times 1–3 and 4–6 months of the bias-corrected
data is displayed in Fig. 7. Here ensemble spread (climatological
spread) is defined as the absolute difference between the max-
imum and minimum ensemble members (difference between
the maximum and minimum historical realizations within that
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Fig 7. Ratio of the bias-corrected
multi-model ensemble spread to the spread
of all historical ERA-40 data (climatology).
The spread is defined as the difference
between the largest and smallest member of
all realization. The data shown cover all
six-hourly T2m forecasts from 1989–1998
for lead times 1–3 months (top) and for lead
times 4–6 months (bottom). Isolines at 0.5,
0.75, 1.0 (white), 1.25, 1.5 and 1.75.

month). For most continental grid points, the ensemble spread
is smaller than the climatological range. The spread ratio is also
smaller than that over the Gulf of Mexico, the Indonesian warm
pool area, and parts of the Indian Ocean. In the tropical Pacific
and, to a lesser extent, in the Arctic as well, there is substan-
tial variability among the seven DEMETER models leading to a
much larger ensemble spread than climatological range. These
results do not change significantly upon moving to, say, 90% of
the climatological spread; although it is interesting to note that
BBs with a range of less than 0.6 times the climatological range
almost never capture the target.

A high fraction of points that bound based on an ensemble
which has a smaller-than-climatology spread appear to be the
most desirable forecast, given the ensemble’s ability to cap-
ture/not capture ERA-40 together with the information provided
by the relative ensemble spread. In this case the ensemble can
be regarded as reasonably useful in the BB sense, regardless of
the actual ensemble probability distribution and its interpreta-
tion. For those cases where the BB captures the target but the
ensemble spread is larger than the climatology, one might still
obtain some useful information from the ensemble forecast, for
example by analysing the probabilities allocated to a certain
event. If the ensemble-to-climatology spread ratio is smaller than
1 and the ensemble often fails to bound the target, one can think
of enlarging the ensemble size, hoping to obtain a better forecast
which captures more often. However, a huge ensemble spread
which nevertheless fails to capture the target suggests a relatively
useless forecast.
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Fig 8. Four-colour plot for all bias-corrected
six-hourly T2m forecasts from 1989–1998.
Green: spread ratio smaller than 1 AND
fraction inside the multi-model ensemble BB
larger than 95%. Yellow: spread ratio larger
than 1 AND fraction inside the multi-model
ensemble BB larger than 95%. Red: spread
ratio smaller than 1 AND fraction outside
the multi-model ensemble BB larger than
5%. Grey: spread ratio larger than 1 AND
fraction outside the multi-model ensemble
BB larger than 5%.

These four categories have been summarized in Fig. 8 (see
also Table 1 for the colour definition). Here, green indicates
the most easily appreciated case of a high bounding fraction
and a small ensemble spread. This is true almost everywhere
in Africa, South America, Australia, large parts of Asia and for
certain European and North American areas. This result alone
provides evidence of the promising potential of DEMETER-
style forecasts for useful predictions on seasonal to interannual
time-scales in these areas. Most oceanic regions, especially in the
tropical belt, as well as the northern parts of America and Asia,
are classified as failing to capture the target in more than 5% of all
cases, while having a smaller-than-climatology ensemble spread
(red). The spread underestimation in the tropics is a well-known
problem in weather forecasting (Puri et al., 2001). The eastern
tropical Pacific, the key region for El Niño forecasts, is able to
capture more often while having a rather large ensemble spread
(yellow). Many oceanic grid points and parts of Greenland and
Antarctica, while having a larger-than-climatology spread, are
yet unable to capture ERA-40 in more than 5% of the cases
(grey).

Similar statistics for forecast lead times from one to six
months suggest that grid points are very likely to remain within
whichever category they fall in at the two-month lead time for
the remainder of the integration period. The first month of each

Table 1. Definition of the four categories and their colour codes

Does the ensemble Is the ensemble
capture with at least spread narrower

95% frequency? than climatology?

Grey No No
Red No Yes
Yellow Yes No
Green Yes Yes

integration appears to be more problematic in that the ensem-
ble spread is often too small, leading to more frequent failures
in capturing ERA-40. This initial failure to bound increases for
the first 5–7 d of the simulation, when roughly 10% of all grid
points cannot be captured, and indicates transient behaviour that
extends for two weeks. The ability to bound in this initial phase
is better for the February start dates than for the August start
dates, as illustrated in Fig. 9. This suggests that, in general,
classifications obtained in the second forecast month are good
indicators of performance in the further course of the simula-
tion, up to month 6. Looking at different seasons reveals that the
ensemble performs better in JJA than in DJF, with large areas
where the ensemble spread is relatively small and still captures
the target with a high probability.
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Fig 9. Fraction of grid points outside the BB for all bias-corrected
six-hourly T2m forecast lead times up to two months and different start
dates from 1989–1998.
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What is the impact of ‘ensemble-mean-bias correction’? If,
in fact, this operator merely addressed the issue of removing
systematic model errors, one would expect it to lead to signifi-
cant, uniform improvement in terms of the frequency when the
reanalysis is captured by the ensemble’s BB. We now illustrate
that this is not the case.

Based on the raw non-corrected data, roughly 50% of all
10 224 grid points do capture the analysis with a probability
larger than 95% (green or yellow). After the bias correction,
this is true for ∼38%. Tables 2 and 3 summarize the four-
colour statistics and quantify the portion of changes in colour
for land and sea grid points separately, after ensemble-mean-bias
removal. Approximately two out of three land points (before and
after bias correction) are able to bound the analysis. While, on
average, every second sea point fails to bound before having been
bias-corrected, this figure rises up to 73% after the correction.
The number of grid points which often bound the target tends to
become somewhat larger for the month 4–6 lead time than for
months 1–3.

Most grid points, as a result of the bias correction, do not
change colour. Over land, roughly half of the grey points turn
to yellow with the bias correction, i.e. do include ERA-40 when
they did not before, although still with a very large ensemble

Table 2. Fraction (in %) of all grid points over land that change their
four-colour classification (see text for details) as a result of the
ensemble-mean-bias correction. The rows stand for the
non-bias-corrected raw data; the columns for the data after the
correction. In each cell, the top line corresponds to all forecast data
from 1989–1998; the middle and lower lines are for all lead times of
1–3 and 4–6 months, respectively. The sum over all points in each
category is given by the numbers in the last row and column,
respectively

Grey Red Yellow Green �

Grey 9.6 1.7 10.2 0.6 22.1
Lead 1–3 13.0 2.7 8.4 0.7 24.8
Lead 4–6 6.2 1.1 11.1 0.8 19.1

Red 0 10.1 0 5.1 15.1
Lead 1–3 0 14.9 0 6.2 21.0
Lead 4–6 0 6.5 0 4.4 10.9

Yellow 6.8 4.0 14.7 3.0 28.5
Lead 1–3 7.3 3.9 9.9 1.7 22.8
Lead 4–6 6.4 3.4 20.2 4.5 34.4

Green 0 6.3 0 27.9 34.2
Lead 1–3 0 8.4 0 23.1 31.4
Lead 4–6 0 5.5 0 30.1 35.6

16.4 22.1 24.9 36.5 100.0
� 20.3 29.8 18.3 31.6 100.0

12.6 16.4 31.2 39.7 100.0

Table 3. As in Table 2, but for sea points

Grey Red Yellow Green �

Grey 16.3 20.3 4.1 0.2 40.8
Lead 1–3 14.4 23.7 3.9 0.2 36.5
Lead 4–6 17.2 20.2 4.6 0.1 42.1

Red 0 15.5 0 0.0 15.5
Lead 1–3 0 23.7 0 0.0 23.7
Lead 4–6 0 10.0 0 0.1 10.1

Yellow 14.1 6.1 21.6 0.7 42.5
Lead 1–3 13.2 5.9 18.7 0.8 38.6
Lead 4–6 14.3 6.6 24.8 0.6 46.4

Green 0 0.9 0 0.2 1.1
Lead 1–3 0 0.9 0 0.3 1.2
Lead 4–6 0 1.2 0 0.2 2.4

30.4 42.7 25.7 1.1 100.0
� 27.6 48.5 22.6 1.4 100.0

31.5 38.0 29.4 1.1 100.0

spread. Real improvements in the sense of an increasing number
of green points (capturing with a rather small spread) can be no-
ticed for ∼30% of the former red land points. However, quite a
large fraction of yellow land points change for the worst – they
lose their ability to bound and are reclassified grey after having
been corrected. Depending on the lead time, a substantial number
(15–27%) of all non-corrected green land points fail to capture
ERA-40 after the application of the ‘ensemble-mean-bias cor-
rection’. The statistics for sea points in Table 3 emphasizes the
qualitative impression from Fig. 8. Approximately one-third of
all non-bias-corrected yellow sea points (or, equivalently, ∼14%
of all points) lose the capability to bound the analysis and be-
come grey. A smaller number of grid points change from yellow
to red, meaning that, while the ‘correction’ both decreases their
ensemble spread, it also increases the failure rate.

4. Future forecast systems

It is important, of course, to distinguish between providing the
most useful interpretation today of the currently available fore-
casts, and attempting to improve the forecast systems of the
future. In this section we move to the second task, and risk an
extrapolation of the BB scenario based on the results of analysing
DEMETER forecasts in terms of future ensemble forecast sys-
tems. The first observation, of course, is that, within the green
areas in Fig. 8, the current system shows skill. Proof-of-value
experiments to demonstrate this skill are underway.

A rough estimate of the minimum ensemble size required to
provide a BB which regularly captures the target is discussed in
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the next subsection; the last subsection then discusses issues of
multi-model and single-model ensembles.

4.1. Minimum ensemble size

Equation (4) offers a simple relationship between the probability
to capture, P BB, the considered dimension d and the size of
the ensemble n for a single forecast and corresponding target.
Provided that the characteristics of the ensemble in terms of its
one-sided probabilities pi from eq. (3) are known, this allows us
to estimate the minimum size of the ensemble which would be
needed so that the ensemble’s BB captured the target with any
arbitrary probability P BB.

Figure 10 shows that a minimum ensemble size of ∼100 mem-
bers would, within the framework of the multi-model ensemble
set-up in DEMETER, provide probabilistic forecasts that would
very likely (95% capture) include the ERA-40 T2m target for
most locations of the globe. This is merely an increase of about
50% in computational resources above the DEMETER sys-
tem. This estimate is based on all ensemble-mean-bias-corrected
DEMETER T2m data from 1989–1998. Over some regions over
the equatorial Pacific, Central–South America, Africa, the Ara-
bian Peninsula and India, a smaller ensemble would do as well;
a much larger ensemble (of some 300 members) is required
to ensure a high fraction of capture over the tropical oceans
of the Caribbean and the Indonesian area. In agreement with
the discussion above, it is found that a bias-corrected ensemble
would need a larger size than the non-corrected ensemble in the
Caribbean and Indonesian region, while the opposite is true for
grid points where the applied bias correction helps to improve
capturing (e.g. most notably near the coasts of Africa and South
America).

Of course, an operational seasonal ensemble would be put to
more uses than the construction of BBs. The ideal size of an
operational ensemble would be determined by some weighted
average over its applications. Although it is unclear how to con-
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Fig 10. Estimation of the minimum
ensemble size needed to capture with a 95%
probability. Data shown are based on all
bias-corrected six-hourly T2m forecasts
from 1989–1998. Isolines at 63, 80, 100, 120
and 160.

struct probabilistic forecasts from an ensemble of seasonal sim-
ulations, it is clear that an upper limit on the useful ensemble
size will be approached as the additional ensemble members tell
us more about the individual model than the likely future state of
the atmosphere. In short, model inadequacy suggests that there
is an ensemble size above which addition ensemble members
are effectively redundant, unless the model and the assimilation
scheme are perfect.

We expect that optimal resource allocation would demand dif-
ferent ensemble sizes for different models (based on their compu-
tational cost and marginal value to the mix of simulations already
available). It would be interesting to see if resource allocation
based on redundancy criteria in the BB context suggests the same
distribution of computing power as resource allocation based on
redundancy in probability forecasts, however computed. The BB
criteria will undoubtedly be less costly to compute.

4.2. Multi-model versus single-model ensemble

One key result of both the PROVOST (Brankovic and Palmer,
2000; Doblas-Reyes et al., 2000) and the DEMETER (Palmer
et al., 2004; Doblas-Reyes et al., 2005; Hagedorn et al., 2005)
projects is the enhanced reliability and skill of the multi-model
ensemble over a conventional single-model ensemble approach
(see also Ziehmann, 2000). The BB analysis supports this find-
ing. Each of the seven single-model ensembles based on per-
turbed initial conditions performs clearly worse than the full
multi-model ensemble, as is shown in Fig. 11. The individual
models, although corrected for their specific bias, fail to cap-
ture ERA-40 target significantly more often for certain model
specific regions than the super-ensemble combining all mod-
els. The single-model ensemble spread is almost always smaller
than the climatology (not shown), whereas the multi-model en-
semble can provide a better and useful forecast (Fig. 11, lower
right). Although there is a factor of 7 difference in ensemble size,
the observed scaling of probability of capture with ensemble
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Fig 11. Comparison of the performance of
the single-model ensemble versus the
multi-model ensemble. Fraction of all
six-hourly T2m forecast data from
1989–1998 when ERA-40 is outside the BB.
The panels on the left and the first three
panels on the right show results based on the
individual BBs for each of the seven
single-model ensembles. For comparison, the
lower-right panel gives the full multi-model
ensemble results. Isolines in all panels at
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8.

parameters suggests that it is the multi-model nature that im-
proves the capture rate of the DEMETER ensembles, not the
change in counting statistics due to the larger ensemble size.

Assuming for a moment that the ensemble members were
drawn within the context of the BB picture of Section 2, the
multi-model ensemble is also expected to be superior to ensem-
bles based on one single model in terms of the estimated mini-
mum ensemble size. The temperature in most parts of the globe
could only be captured when the single-model ensemble would
comprise of the order of 300 ensemble members; geographical
regions of strong model failures would require more than 500.
DEMETER-style multi-model ensembles would have similar ex-
pected performance characteristics with only 100 members or
so.

5. Conclusions and future work

We have explored the multi-model multi-initial-condition sea-
sonal ensemble forecasts of the DEMETER project in the con-
text of BBs. It has been demonstrated that, in many relevant
regions of the globe, the forecast BB provides potentially useful
information, placing both upper and lower limits on the expected
target value with a range less than that of climatology, and cap-
turing the target more than 95% of the time. Obvious land/sea
contrasts are observed in the ability to bound the ERA-40 tar-
get; it would be interesting to better understand the extent to
which this reflects the relationship between the observations and

the DEMETER forecast system, as opposed to that between the
observations and the reanalysis used as the target.

Interpreting the BB of an ensemble provides information
which complements interpreting the same ensemble as a prob-
ability forecast. There is no direct relationship between con-
ventional skill scores and the BB ability to capture the target.
The relative frequency with which a given ensemble BB cap-
tures the target is easily generalized to higher-dimensional tar-
gets, which we hope to demonstrate elsewhere, while making
joint probability forecasts would require astronomical ensemble
sizes.

Both the raw simulations interpreted as forecasts and
‘ensemble-mean-bias-corrected’ forecasts have been analysed.
Both are seen to provide useful information, but this simple ap-
proach to removing systematic errors from ensemble forecasts
is shown to systematically degrade the BB forecasts in some
regions. Interestingly, this ‘correction’ seems to shift roughly
equal numbers of ensembles from bounding to non-bounding,
and vice versa, when only regions with small spread relative to
climatology are considered. In regions where the spread is large
compared to the climatological range, roughly one-sixth of non-
bounding grid points bound after the adjustment; this represents
about 6% of the surface of the globe.

What is the connection between the mathematical results in
Section 2 and the analysis of the DEMETER forecast in later
sections? Arguably there is no direct connection, because in
Section 2 we assumed full knowledge of both the distributions
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corresponding to the forecast model and those corresponding to
the target system. In reality, we have only a finite Monte Carlo
sample of forecasts, not the full distribution, and inasmuch as
only a single target exists, the epistemological status of the ‘dis-
tribution from which the target is drawn’ is unclear. Even if it
exists, it is certainly unknown outside the perfect model scenario.

On the other hand, we can estimate the distribution of pi by
simply seeing where in the ensemble the target falls over a se-
ries of forecasts. Under the assumption that this distribution is
robust, we can then place an upper bound on the minimum en-
semble size required to obtain a given capture rate as follows.
First, form a rank histogram of the number of ensemble mem-
bers less than the verification (that is, a Talagrand diagram); next,
make a conservative association between each bin and a value
of pi (for example, because we are looking for an upper bound
on the minimum ensemble size, assign pi = 0 to the first and
last bins, pi = 1/63 to the second and 63rd bins, and so on.)
For a given value of n, eq. (4) then gives the expected capture
rate P BB for each bin. Weighting these rates with the relative
frequency of the corresponding bins then provides the capture
rate for that value of n. In this way, one can construct the ex-
pected capture rate P BB as a function of n, and then determine
the value of n required for a given rate. Note, of course, that
under the assumptions above there may be some capture rates
that can never be obtained. While this calculation lies beyond the
scope of the current paper, it would be interesting to see how this
upper bound on the minimum ensemble size varies for different
forecasts. Using the BB approach does not require such calcula-
tions or detailed assumptions; the forecast BB can be exploited
by any user who believes the observed capture rate is sufficiently
large. The empirical capture rate itself can be a useful measure
of skill.

A well-argued, coherent, deployable framework within which
to account for systematic model errors in the elements of a
multi-model multi-initial-condition ensemble is needed. Simi-
larly, there are a number of interesting questions regarding re-
source allocation between models in such an ensemble system
if run operationally. Ultimately, mapping the joint distribution
of simulations available into a single forecast is expected to out-
perform any piecemeal scenario-based approach. Viewing the
ensembles through their BB statistics may prove a useful guide
both in evaluating our current models and in constructing this
future forecast.
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