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Real-Time Construction of Optimized Predictors from Data Streams
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A new approach to the construction and optimization of local models is proposed in the context of
data streams. that is, unlimited sources of data where the utilization of all observations is impractical.
Real-time rcvixion of the learning set allows selective coverage of regions in state space which
contribute most to reconstructing the underlying dynamical system.
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tnrmdllclion.-Prcdicting the evolution of a dynami-
cal system is a common goal in science. Often the under
lying dynamical equations are unknown and only a time
series of observations is available. In the case of deter-
ministic dynamical systems, there are well-established
methodologies [IJ based on state space reconstructions
using local statistical models (e.g., local polynomial
models) constructed from the observations. Given the
fact that properties of noul inea r dynamical systems
such as local curvature or the solution manifold and the
local density of the invariant measure may vary enor-
mously across state space, the question of optimizing such
prediction schemes arises. Previous studies have opti-
rnized local model structure [2J, and varied the complex-
ity of the model (or data weighting) in a partitioned state
space [3-5J. The present Letter considers the setting of a
data stream, a continuing source of data such that retain-
ing and processing all observations is impractical [6]. Our
aim is to extract a learning data set of limited size
optirnized in terms of predictive power either in the
context of a data stream or for a huge observational
database. Two conceivable applications among others
are the prediction of turbulent gusts in surface wind
velocities [7] and grid frequency.
Our approach is contrasted with the traditional method

in which the learning set is uniformly distributed with
respect to the system's invariant measure. Our refined
learning set adapts both tu local curvature and to local
data density; it is illustrated in the context of local linear
prediction using [he Ikeda m<lp.

/·vlethodology.-Consider a data stream of scalar values
{.I'll} measured at equally spaced times {It,}. The (un-
known) underlying dynamical system may be either a
discrete map or a continuous flow. 'Ne restrict atteu-
tion to a single-channel measurement for simplicity; gen-
eralization to a multichannel situation is straightforward.
The prediction problem at time In consists of predict-
ing S.1+ 1 from an m-dimensional time-delay vector
(sn-"' ...j •••• , sn) (see [1]). Let '~n+1 denote the predicted
value as opposed to the observed value S,,+I' We consi-
der local linear ruodeling. that is, S,,+I"= an +
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Li:; a,s,,-m+l' where the prediction coefficients {aJ;:o
are determined by least-squares regression Oil rhe points
in some neighborhood of (s"'-m+j, ... , s,,). These neigh-
bors in delay space are chosen from a learning data set of
prescribed size N, collected at times prior to t.; Denote
the learning set by L = {(x".,Y")}~~I with x , =
(slJ«-m+ I ... " snn) and ..v{) = Snu +1,
A traditional learning set, hereafter £0, consists of N

points distributed uniformly in time (say, fI" .~~a + m -
I), and thus (rough ly) according to the invariant measure.
We take £0 as a starting point for our learning set, L
(that is, L = £0 initially), and then refine L keeping N
fixed via the following algorithm.
(1) Read the next point (v. 11') from the data stream,

where v = (snl- m{ I,··", "/'11) and HI =. 51,,'+1-

(2) Calculate the prediction ,~"II 1 based on the current
refined learning set L and the absolute prediction error
e' = !sn'+ I - sr.'+ 11.
0) Draw a point at random from L, each point being

equally likely, and denote it as (x"., Ya')'
(4) Calculate the prediction s" •.•. 1 with the learning set

£+=£U{(v,w)}\{(x".,y,y.)}"[that is, include (v,w)
while excluding (x"" Ya")] and corresponding prediction
error e" = ISn .+ I - Sn .+tI·
(5) If e" < ~I then exchange (x"" )'00

) for (v, 11'), that is
take L" as the new refined learning set; otherwise do not
alter L. Proceed to Step (I).
This algorithm aims to selectively include points in L

from regions in reconstruction space with the largest
errors, at the cost of removing points in regions where
prediction is relatively good; it immediately generalizes
to analogue prediction, higher order local polynomial
prediction, or other local models. The ultimate precision
of the model is limited by technological constraints,
effectively the value of N. The algorithm can be run
indefinitely.
Let p denote the exchange probability, that is, the

probability that a new point is included in L. Let p(cj
be the probability distribution of out-or-sample abso-
lute prediction errors at some stage of the algorithm
and eNe) the corresponding cumulative disrrihution,
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while p*(s) and <T)*(£) denote the corresponding in-
sample distributions. The exchange probability is then
p ~ J~ p(e)(P*(f:) cif: and, since p and 1'* are ini-
tially the same, the Initial exchange probability is
Pu = J~ p(r:)<!>(f:) de = 4. independent of the distribu-
tion, Depending nu uperatimml constraints, one could, of
course. repeat steps (:1), (4). and (5) above, thereby testing
each new point against several in L and increasing the
probability of changing L In the cases presented below,
this modification had little effect and is not pursued
further in th is Letter.

Results. We illustrate the methodology with the Ikeda
map [iI]. In the complex plane, the map is Z,l+1 = P +
Bz" exp[i(K - [(4(1 + Iz,.I"l])], with p = 1, B = 0.9,
K = 0.4, and (J == 6. The data stream consists of the
scalar observable s" = Re(ZI1), generated by numerical
iteration of the map. In the noise-free case, local linear
models were constructed from time-delay vectors
formed with m >= 4 using K 10 nearest neighbors: K
IS then twice the number of free parameters in the
model. We use the Euclidean norm throughout. The vari-
ance or the prediction error is drastical ly enhanced by
occasional Ill-conditioned fits. Eigenvectors of the
predictor-predictor co variance matrix corresponding to
eigeuvalues smaller than 10-5 times the largest eigcn-
value were omitted in the noise- free case (in the cases
with observational noise discussed below, only the three
largest eigenvalues were included) [9).

The results shown are means over 40 independent
realizations using different data streams; also the initial
learning sets and the test sets differed in each realize-
iion. Figure I outlines the one-step ahead performance
of the algorithm with N = 1500. The mean absolute
(MA) error and the root mean square (rrns) error are
given as a function of k, the number of points processed
after the initial learning set. Thus, k ,= 0 corresponds
to the traditional learning set Lo. Both the MA error
and the rms error are calculated out-of-sample using
5000 points. Sampling fluctuations in the estimated
lVIA and rms errors were of order 0.0001; hence, the
visible differences are almost entirely due to the two
different algorithms used. Figure 1 shows the mean
error and the central interval containing 95'1'" of the
realizations. The mean prediction error of a learning
set consisting of all IV + k data points is also shown as
an indication of ideal model performance; in realistic
applications with large k this comparison is imprac-
tical. Initially, both the MA error and the rrns error
decrease rapidly as the algorithm proceeds, saturating
after about 10 000 and 15000 points, respectively. hav-
ing dropped by 5 I 'J,.; and 74%, respectively, Moreover,
0\11 algorithm has the additional advantage that the vari-
abililY of both quantities between di Iferen: realiza-
lions decreases with increasing k. Note that, with respect
to rms error, the refined method remains fairly close
to the learning set retaining all the available dara;
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FIG. 1. Mean absolute error (a), rms error (b), and exchange
probabitity (c) as a CUfl(:lioll of k for one-step prediction with
N= 1SOO. Dotted curves reflect error when keeping all obscr-
vations. The. error; n the traditional method is denoted by the
horizontal dash-dotted line. Solid, dotted, and dash-dotted
curves are means over 40 realizations; dashed curves capture
the central 95'k· of the distribution rrns error (d) with 2%
observational noise on the data stream.
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the refined learning set with N = 1500 points yields
forecasts with accuracy similar to that of Cl traditional
learning set a factor of 7 larger (10500 points),

Figure 2 illustrates the evolution of the cumulative
distribution of absolute prediction errors, The distribution
of errors obtained with Lo is contrasted with that reached
after 1500 (k = N), 15000 (k = 10N), and 30000 (k =
20N) additional observations. Large errors decrease
greatly and small errors increase slightly, converging in
distribution after about 15000 points. The refined learn-
ing set L provides a more homogeneous error distribution
and substantially reduced mean error which would almost.
always be preferable to that of Lu.

Figure 3 contrasts both the one-step a nd the (iterated)
two-step forecast quality of models using Lo with that of
models using L at k = 201\1 (when the error distribution
has stabilized). The ratio between the forecast error using
L and that using Lo is plotted as it function of N for three
error measures: the MA error, the rrns error, and the 90%
quantile of the error distribution. With N = 50nO, the
refined method improves the one-step MA error by 57%
while the rms error is reduced by 87%; as shown, a
significant reduction remains at two steps. With N =

1500, L maintains a systematic advantage over Lo as
the forecasts are iterated into the future (not shown); at
one, two, three, and four steps, the rrns error is reduced by
74%, 49%, 15%, and 4%, respectively. As expected,
larger values of N enhance these reductions. as well as
introducing significant reductions at longer lead times.

There remains the question of noise. Given a data
stream contaminated with additive Gaussian noise (er ~.~
0.0097, correspondi ng to a noise level of 2%). local linea r
models were formed by using the ten nearest neighbors
and all other points (if any) within a distance of $leT. For
N = 1500, Fig. J(ci)illustrutes that by k = 10000 the rrns
error has saturated ut a value 29% below that of Lo.

o L-__~ __-L ~ __~ __~ __~ __~

o 0.Q1 0.02
absolute error

0.040.03

FIG. 2. Cumulative probability distribution of one-step abso-
lute prediction errors for N = 1500 with k = ()(solid line). k =
1500 (dashed line), k: = 15 000. (dush-doncd line). and" =

3()()()O (dotted line). Each curve represents an average over 40
realizations.

164101-3

Iterated forecasts again show i rnprovement: in the noisy
case using L with N= I SUO yields reductions of rrns
error by 29%, 22tk, 14%. and 5'70 at one. two, three, and
four steps, respectively. Even at only i'OUT steps ahead,
rms and MA error are misleading tools for model evalu-
ation; evaluating probabilistic forecasts or shadowing
ti rnes yields more insight [10 J. Nevertheless, these sys-
temaiic forecast improvements are substantial, indicating
that our method captures the dynamics of the system
noticeably better than the t radit ional approach.

In its present form, the algorirh m has no mechanism to
distinguish whether a large prediction error is due to local
nonlinearity or a particularly noisy observation. He lice ,
the aJgorithm is expected to accumulate observations
with extreme realizations of the noise. This is indeed
visible at k = SO O(X) (not shown). An elegant solution
to this problem is under investigation; however, simply
monitoring the prediction error over a large window
provides a simple slopping criterion. Alternatively. rea-
SOilS for not employing any stopping criteria arc consid-
ered below. In any event, the algorithm is robust to low
levels of additive noise.

0.7

0.6

O.S
0
.~ 0.4
g

0.3o

0.2

0.1

0
0

0.9
0.8

0.7

0 0.6
~ 0.5
g 0.4
'" 0.3

0.2

0.1

0
0

40003000 50001000 2000

b

3000 4000 50001000 2000
N

FIG. 3. Ratio of prediction errors or the refined method to the
traditional method as a function of N for one-step (a) and two-
step iterated (b) prediction .showing mean absolute error (solid
line). rills error (dashed line). and 90% quantilc of absolute
error (dotted line).
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Discussion. - We have shown that learning sets that
selectively sample state space can improve prediction.
This approach is complementary to methods which ex-
plicitly partition the state Sp<:lCC and either (i) increase the
complexity of the model in poorly forecast regious by
growing cell structures l4j, using cluster-weighted IlH.J-

els [51 or employing multiple models, or (ii) fix tbe model
complexity and rcwcight the: data [3]. Network ap-
preaches [4,5] have the advantage that clustering (or
vector quantization) offers efficient noise reduction.
Altematively, the high degree of locality inherent to
nearest-neighbor schemes yields a very high effective
model complexity which is an advantage, as long as it is
not employed to fit the noise. i\ systematic comparison of
these approaches is desirable.

Another advantage of local models is the ease
with which they can be updated by merely changing the
learning set. Our method is easily generalized to con-
sider the age (or the expected value of inclusion) of a
point in L, allowing application to non stationary sys-
tems. including those undergoing gradual parameter
shifts, as well as nddressmg the noise issues above. By
construction, our method continuously adapts the learn-
ing set to the system.

We have introduced a general method for refining local
models of data streams, and demonstrated improved
short-term prediction. We hope this approach will prove
useful in practice I appl ication.

Wc thank P. E. MeSharry and K. .ludt! for detailed
discussions and implemeutations of earlier algorithms.
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