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Abstract

Given a perfect model of a chaotic system and a set of noisy observations of arbitrary duration, it is not possible to determine
the state of this system precisely, rather one must consider a set of states which are indistinguishable from one another given
the observations [K. Judd, L.A. Smith, Indistinguishable states I, Physica D 151 (2001)]. Yet the perfect model scenario is a
fiction; in practice all models are imperfect. How do the results from the perfect model scenario change under imperfect models?
It is shown to be essential to take even small model imperfections into account: failure to do so can systematically degrade
state estimation or prediction of nonlinear systems. With an imperfect model, the system state space and model state space are
rarely (if ever) equivalent, and so one must consider a projection of the system state into the model state space. Furthermore, it
is almost certain that no trajectory of the model is consistent with an infinite series of observations, thus there is no consistent
way to estimate the projection of system state using trajectories. There are pseudo-orbits, however, that are consistent with
observations and these can be used to estimate the projection of the system state. Using pseudo-orbits one finds that, as in the
perfect model scenario, there is a set of states that are indistinguishable from the projection of the system state. Estimation of
this set of indistinguishable states and the probability density on these states is discussed. The main conclusions are (i) that there
is no state of the model that can be identified with the state of the system; and (ii) that great care must be taken when using
an imperfect model to forecast the system, because the initialization of the model state from observations can provide a poor
analogue for the system. The forecast may not shadow the future behaviour of the system for very long, even if one were able
to obtain a noise-free projection of the system state. The ultimate aims of probability forecasts should be re-examined in light
of these results.
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1. Introduction

Given a perfect model of a chaotic dynamical system and an arbitrarily long series of noisy observations, it is
not possible either to identify the current state of the system[10] or to accurately forecast a unique future state.
It is possible, however, to define a probability distribution on a set of indistinguishable states, thereby allowing
accountable probability forecasts[23]. In the current paper we consider the more relevant case where no perfect
model is at hand, indeed where the class of available models does not contain a perfect model, and investigate the
implications for state estimation again with a view towards prediction. We show that, in general, there will be no
trajectory of the model which is consistent with the observations, that is, that the set of indistinguishable states is
empty, and discuss the implications this holds for modelling a deterministic system when a good model is at hand.
In short, our results suggest that one should consider pseudo-orbits of the model, not trajectories; that stochastic
models may be required even if the underlying system is deterministic. Weather forecasting provides an example
[18,17]where the physics of the system is fairly well understood, but the scale and complexity of the problem alone
means that computer models are necessarily imperfect. How should one best initialize the state of the model to
obtain a forecast when given noisy observations of the system?

After a brief summary of the perfect model scenario, we introduce the imperfect model scenario along with two
particular realizations of model inadequacy[13]: structural inadequacy and ignored-subspace inadequacy. Our aim,
of course, is to shed light on the ubiquitous problem in modelling physical systems where the nature of the model
error is unknown. The special cases presented below are just that. InSection 3, we explore issues of state estimation
in the imperfect model scenario, establishing a set of indistinguishable states for this case requires the introduction
of pseudo-orbits of the model.Section 3.4then considers the construction of indistinguishable sets when the true
state is known; this is extended inSection 4to consider the calculation given only noisy observations, that is, the
case in practice. The implications our results hold for forecasting and forecast interpretation are discussed inSection
5, while our conclusions are briefly reviewed inSection 6.

In Ref.[10], we showed that, contrary to what might be expected, collecting more and more data will not provide a
continually improving estimate of the true state of a chaotic system, in the sense that the estimate will not converge
to the true state. Rather, there is always a set of states (spread along the unstable set of the true state) that are
indistinguishable from the true state: the best estimate of the state one can achieve is a probability distribution on
these indistinguishable states. Consequently, to forecast the future behaviour of a system one must either evolve a
probability density of the indistinguishable states or evolve an ensemble of states drawn from the distribution of the
indistinguishable states.

In the perfect model scenario, if the true trajectory of the system isxt , t = 0,−1,−2, . . ., then the final statex0 is
distinguishable with probability 1 from another statey0, which is the final state of a trajectoryyt , if Qρ(y0|x0) = 0,
where

Qρ(y0|x0) =
∏
t≤0

qρ(yt − xt),

qρ(b) = qρ(b)

gρ(0)
,

gρ(b) =
∫
ρ(z)ρ(z− b) dz,

(1)

andρ is the probability density of the additive observation error. The set of indistinguishable statesHρ(x) of a state
x is the set of statesy such thatQρ(y|x) > 0. In this caseHρ(x) summarizes our knowledge of the current state of the
system given the observations, conditioned on our knowledge of the model and the background knowledge that the
model is perfect; clearlyx is inHρ(x) and if the system is chaotic thenHρ(x) includes much more. How do these
conclusions change when our background knowledge includes the fact that the available model(s) is imperfect?
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2. The imperfect model scenario

Outside pure mathematics, the perfect model scenario is a fiction. Arguably, there is no perfect model for
any physical dynamical system[1–3,19,24]. The two central questions posed by the current paper are: whether
assuming the perfect model scenario (hereafter, PMS) in the presence of model inadequacy can significantly de-
grade the conclusions drawn and if so, whether more productive alternative approaches exist. We answer “yes”
to both questions. Yet while knowledge of the true system is not obtainable with real systems, some knowledge
of the true system is required if firm mathematical results are to be established. In this section, we introduce two
examples of model inadequacy, cases where both the true system and a class of models are known. We stress
we are not attempting to resolve how to best model these particular cases (after all, we know this a priori as
we know the true system!). Rather, we consider these model-system pairs in the hope of constructing methods
which are relevant to the study of data from physical systems where no perfect model is known (if such a thing
even exists).

One form of model inadequacy arises in a structurally incorrect model, where the system dynamics are not known
in detail or cannot be expressed in terms of known mathematical functions. Arguably many “Laws of physics” are
but useful approximations in restricted circumstances[3]. In an electronic circuit the resistances are assumed to
follow Ohm’s law, but there is always some nonlinearity, not to mention the unique features of this particular circuit.
Consequently, the model is not exact, even though trajectories of the model may be (largely) qualitatively similar
to those of the system and even quantitatively similar. Two related forms of model imperfection are (1) where one
has the correct model class (that is, the model has the correct form), but the parameters in the model are incorrect,
or (2) where one has a phenomenological model not derived from any physical principles which has been fitted to
observed data (see[8] and references therein).

Another important type of model inadequacy is found in an ignored-sub space model where a system has a
component of its dynamics that is unknown, unobservable, or not included in the model. Perhaps the unknown
component is treated effectively as a heatbath[12] or ignored by careful consideration of evolution on a slow
manifold[5]. Another example of the ignored-subspace model is where the model involves some course graining,
or averaging, for example, a weather model[18,17] where model variables represent some sort of average of a
system variable over region or “grid-box”. A discussion of the role this type of model inadequacy plays in climate
modelling can be found in[26]; the disconnect it causes between spatially distributed pointwise observations and
weather models is sometimes called representativeness error[17].

2.1. Structurally incorrect model inadequacy

In the deterministic case there is a systemxt+1 =Φ(xt), xt ∈ K⊆Rd . An imperfect model of the system will have
the formyt+1 = f(yt), yt ∈ K, wheref defines dynamics that are not topologically conjugate to those defined byΦ.
We will use the Ikeda[7] system as a simple example of this situation; the system hasx = (u, v) ∈ K = R2, and

Φ(u, v) =
(

1 + µ(u cosθ − v sin θ)

µ(u sin θ + v cosθ)

)
, (2)

whereθ = a− b/(1 + u2 + v2), anda = 0.4,b = 6, µ = 0.83. An imperfect model is obtained by replacing the
trigonometric functions inΦ with truncated power series. The essential point here is that the resulting model is
polynomial inu, v andθ, or if θ is eliminated, rational inu andv; models of this class are frequently derived as
analytic approximations[19]. We will use the truncations

cosθ = cos(w+ π) 	→ −w+ w3/6 − w5/120,

sin θ = sin(w+ π) 	→ −1 + w2/2 − w4/24,
(3)
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Fig. 1. The one-step prediction errors for the truncated Ikeda map. The small dots are 1000 points on the attractor of the Ikeda map, the lines
show the prediction error for 500 points by linking the prediction to the target.

where the change of variable to itw is made sinceθ has the approximate range−1 to−5.5, and−π is conveniently
near the middle of this range.

Fig. 1shows the one-step prediction error between the Ikeda system and the truncated Ikeda model. Generally,
the truncated Ikeda model is a good predictor of the Ikeda system, but there are regions where it is not. Numerical
investigation indicates that the maximum error is less than 0.15, in agreement with a calculation using the truncation
error bound of Taylor’s theorem.

2.2. Ignored-subspace model inadequacy

Consider a deterministic system with state spaceK × K′ ⊆ Rd × Rd
′
, where the subspaceK is observed and

modelled and the subspaceK′ is either unknown or unobserved1 and is not modelled. Thus, we have an imperfect
model, which reflects only the dynamics onK, of the formyt+1 = f(yt), yt ∈ K. A more complicated model–system
pair introduced by Lorenz[14] has been discussed in the current context[24] and used to illustrate practical
issues in weather forecasting[6]. A simple example is coupled Ikeda systems where only one system is modelled.
The state space isK × K′ = R2 × R2. Define the variablesx = (u, v) ∈ K for the modelled subspace andx′ =
(u′, v′) ∈ K′ for the unmodelled subspace. The dynamics are given by, (xt+1, x

′
t+1) = F (xt, x′t), whereF: R4 →

R4,

F (u, v, u′, v′) =




1 + µ(u cosθ − v sin θ) − γ ′u′

µ(u sin θ − v cosθ) − γ ′v′

1 + µ(u′ cosθ′ − v′ sin θ′) − γu
µ(u′ sin θ′ − v′ cosθ′) − γv


 (4)

1 Takens’ theorem and subsequent generalizations[28] state that generically a time-delay embedding ofxt ∈ K provides complete knowledge
of the dynamics onK′. Theoretically it might seem the present formulation is unnecessary, but merely knowing that a diffeomorphism exists,
while comforting, does not provide a perfect model.
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whereθ = a− b/(1 + u2 + v2), θ′ = a− b/(1 + u′2 + v′2), with a = 0.4,b = 6,µ = 0.83 andγ = γ ′ = 0.02. The
imperfect model will be,yt+1 = f(yt), yt ∈ R2, whereF: R2 → R2,

f (u, v) =
(

1 + µ(u cosθ − v sin θ)

µ(u sin θ − v cosθ)

)
, (5)

with θ, a, b andµ as above. Note that the couplingγ ′ = 0.02 implies that the imperfect model makes around a 2%
error at each step. This prediction error does not have a zero mean, however, and a significant bias arises as the
expected value ofx′ = (u′, v′) is around (0.67,−0.29).

3. A state consistent with observations

Is there a state of an imperfect model that is consistent with observations of the system? In general, no. Clearly
there is the immediate problem that the imperfect model is not the same as the system; arguably their state spaces
differ even in the case where they have the same dimension and share the same labels. As noted above, the state of
the imperfect model can be taken to be a projection of the system state onto a model state. While we believe that
this projection operator is important[24], and that much confusion has resulted from taking it to be the identity
operator, we shall take it to be the identity operator throughout this paper, noting explicitly where doing so may cause
difficulty. In general, the projections of system trajectories will not be trajectories of the model. With structurally
incorrect models, the system and model have different dynamics which are not topologically conjugate. In the
ignored-subspace models, one model state can represent many system states.

A consequence of the model and system having different dynamics is that no state of the model has a trajectory
consistent with observations of the system. To accommodate these difficulties, we will consider pseudo-orbits rather
than trajectories; these are sequences of states of the modelxt that at each step differ only slightly from trajectories,
that is,xt+1 = f(xt); the (hopefully small) difference reflects imperfection error.

3.1. Imperfection error

Before proceeding we need some method to account for differences between the system and a model. Suppose
xt is the projection of a system trajectory into the model state spaceK ⊆ Rd . The model has dynamicsyt+1 = f(yt),
yt ∈ K, so allowing for the imperfection of the model we expect thatxt = f (xt−1) + wt , with error termswt ∈ Rd .
We will refer to thewt as imperfection errors. If it were possible to obtain a better model one would have done
so; for example, given a recurrent system one can, over time, identify systematic model errors and can therefore
correct some of the imperfection error[9,25]. Henceforth, we will assume that all imperfection errors have been
reduced to the minimum given the available information. By this definition, the actual imperfection errors cannot be
known; in practice even statistical information about them (e.g., a bound on their magnitude) may be unavailable.
For our theoretical development of indistinguishable states of imperfect models, it will be convenient to assume a
distributionη for the imperfection errorswt . When we come to estimation of indistinguishable states from data,
an explicit distribution may need to be assumed; to be tractable, this usually requires either that the duration of the
observations is such that the system is recurrent in the model state space (for a discussion, see[26]) or fairly general
assumptions about the nature of the errors.

The imperfection error distributionη, and the interpretation of this distribution, will depend on the model scenario
and the differences between the system and model. When assuming a structurally incorrect model,η represents the
distribution of prediction errors of the model taken over the projection of the system attractor into the model state
space as shown inFig. 1. In an ignored-subspace modelη also reflects the fact that there is a multiplicity of system
states projecting onto the same model state, the realized trajectory depending on the actual system state.
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Fig. 2. Letxt be the projection of the system state into model-state space and the solid circle represent the set of observations that could result
from a bounded measurement error with distributionρ. Let yt be a model state andwt represent an imperfection error of a bounded distribution
η, represented by the smaller dotted circle. Given the bounded measurement error, the possible observations of the stateyt +wt lie in the dashed
circle. An observationst of xt is consistent with the stateyt if it falls in the overlap of the solid and dashed circle for somewt . That is,xt andyt
are indistinguishable on the basis of a single observation that falls in this overlap region for somewt .

In reality η may be a strange (fractal) distribution; usually (hopefully) it will be a bounded distribution. While
η might be modelled as time-varying or state-dependent or fractal, we choose to ignore these generalizations for
clarity. We will assumeη has a density with respect to Lesbegue, which we will also callη. Inasmuch as the actual
distribution is, by definition, unknowable we can at best only guess a distribution; this admits these simplifying
assumptions. For clarity, we will assume the imperfection errorswt are independent and identically distributed.

3.2. Determinism and inconsistency

In this subsection, we develop the theory of indistinguishable states for the imperfect model scenario as a direct
extension of the perfect model theory and show that it is almost certain that no trajectory of the imperfect model
is consistent with observations. In the next section we modify the theory to use pseudo-orbits and show that at
least some pseudo-orbits will always be consistent with observations. We stress that our aim is not to rectify the
particular model imperfections introduced in the examples below, but to develop an approach which is of value in
the ubiquitous case where the model imperfection is not known.

Henceforth, letxt ∈K represent the projection of a system trajectory into the model-state spaceK. Suppose that at
time twe make an observationst of xt and that this observation is affected by observational uncertainty. Assume that
st = xt + εt , whereεt ∈ Rd andεt has densityρ with respect to Lesbegue measure,2 and that theεt are independent
and identically distributed. The results below generalize considerably from these assumptions; for example,ρ can
be time-varying or state-dependent or fractal.

On the basis of a single noisy observationst of xt ∈ K there are other statesyt ∈ K that are indistinguishable
from xt , seeFig. 2. The joint probability density of the projection of the system statext and a model stateyt being
indistinguishable is given by3

∫
ρ(st − xt)ρ(st − yt − wt)η(wt) dst dwt. (6)

2 The density should not be singular, but rather more typical such as Gaussian or uniform on a disk.
3 This analysis implies the model trajectoryyt at least shadows the projection of the system trajectoryxt when we assume that the shadowing

error is distributed asη. Shadowing is certainly a necessary condition for consistency, but observational error and imperfection error usually do
not have the same distribution. It remains to be seen just how harmful this distortion of meaning is in the present context.
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Define

g(b) =
∫
ρ(z)ρ(z− b− w)η(w) dzdw, (7)

q(b) = g(b)

g(0)
,

Observe that the joint probability (6) isg(yt − xt) and that the conditional probability thatxt andyt are indis-
tinguishable, given thatxt is the projection of the system state, isq(yt − xt). Also observe that ifη is replaced by
a delta-function at the origin (an atomic measure of mass one), then one recovers the perfect model scenario. For
notational convenience we will frequently identify a trajectory of either the system or model with the state at time
t = 0, furthermore, we will generally drop the zero subscript of this state and write, for example,x for x0.

Given a time series of observationsst , t = 0,−1,−2, . . ., it follows (from the independence of the observational
errors) that the probability that a model trajectoryyt is indistinguishable from the projection of the system trajectory
xt is given by,

Q(y|x) =
∏
t≤0

q(yt − xt). (8)

From which immediately follows:

Theorem 1. Given any time series of observations, extending into the infinite past, of a system trajectory such that
the projection of the system trajectory into model-state space terminates at x, and given a trajectory of a model that
terminates at y, if Q(y|x) = 0, then the states x and y are distinguishable with probability1.

If Q(y|x) > 0, thenQ(y|x) is the probability thatx andy will not be distinguished, given observations into the
infinite past. DefineH(x), the set of indistinguishable states, as

h(b) = −logq(b), (9)

H(x) = {y∈K : Q(y|x) > 0} (10)

H(x) =

y∈K :

∑
t≤0

h(yt − xt) <∞

 . (11)

One-dimensional Gaussian error density: whend = 1 we have,

ρ(z) = 1√
2πσ

e−z2/2σ2
, (12)

ρ(w) = 1√
2πζ

e−z2/2ζ2
, (13)

h(b) = b2

4σ2 + 2ζ2
, (14)

andH(x) consists of ally such that
∑
t≤0(yt − xt)2 <∞.

Multi-dimensional Gaussian error density: whend> 1 andA−1 andB−1 are the symmetric co-variance matrices
of ρ andη, respectively, then

ρ(z) = |A|√
2π

e−zTAz/2, (15)
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η(w) = |B|√
2π

e−wTBw/2, (16)

h(b) = bTSb = bT(A− A(A+ 2B)−1A)b, (17)

andH(x) consists of ally such that
∑
t≤0(yt − xt)TS(yt − xt) <∞, and becauseS is non-singular, the condition

is equivalent to
∑
t≤0||yt − xt||2 <∞. Note that in the case of isotropic error densitiesA = I/σ2 andB = I/ζ2, the

multi-dimensional case is equivalent to thed = 1 case.
Just as in the PMS, ifH(x) is non-trivial (that is, if it contains states other thanx), then the statex cannot

be distinguished with certainty from the other states inH(x). But unlike in PMS, there is no necessity thatx ∈
H(x) when the model is imperfect. In fact,H(x) could be empty, which has the embarrassing interpretation that
no state of the model is consistent with the observations. This situation can arise even when the model trajectory
remains in the proximity of (the observed part of) the system trajectory, that is, even though a proximity condition
||yt − xt|| < ε, t ≤ 0, is satisfied, an indistinguishability condition

∑
t≤0||yt − xt||2 <∞ is not.

Call the requirement thatx ∈ H(x) asymptotic consistency. For imperfect models asymptotic consistency can
rarely be satisfied, indeed,H(x) is almost always empty, for the following reason. An indistinguishability condition,
for example,

∑
t≤0||yt − xt||2 <∞, implies that the imperfect model hasα-limit sets equivalent to those of the real

system. This might be possible for systems with a finite number ofα-limit sets, but in chaotic systems (defined by a
continuous mapping) the attractor contains a dense set of unstable periodic orbits and equivalence of all theα-limit
sets would imply, by continuity, that a continuous model is perfect on the attractor[16].

3.3. Pseudo-orbits and consistency

Next we modify the theory of indistinguishable states to use pseudo-orbits, rather than trajectories, and show
that with this modification asymptotic consistency with observations is always assured. There are three obvious
ways to deal with asymptotic inconsistency and emptyH(x). One is to weaken the notion of indistinguishability,
that is, modify the definition ofgandq in Eq. (7), so that proximity is a sufficient condition for indistinguishability.
This approach is difficult to implement and seems to lead to a cumbersome, perhaps intractable theory. A second
approach is to note that in practice one does not have access to infinite past data and so cannot calculateQ(y|x) and
hence determineH(x). Instead one can calculate finite-time approximations

QT (y|x) =
∏

−T≤t≤0

q(yt − xt), (18)

HT (x) = {y∈K : QT (y|x) > 0}. (19)

Clearly, asT→ ∞,QT (y|x) →Q(y|x) point-wise andH(x) = ∩T≤0HT (x). The functionQT (y|x) and the setHT (x)
represent knowledge about the indistinguishable states when only finite information is available. The setHT (x)
could still be empty, however, which represents the discovery that no state of the model is consistent with a finite
number of observations. In general, reducingT increases the probability thatHT (x) is non-empty, but onlyH0(x) can
be guaranteed to be non-empty. This approach is unsatisfactory because the setHT (x) may be small either because
the a statex is very predictable or because it is not very consistent with the observations.4

The third approach, developed below, considers pseudo-orbits of the imperfect model rather than trajectories.
Observe that when a system trajectory is projected into the model state spaceK, the sequence of states visitedxt
∈ K forms a pseudo-orbit of the modelf, that is, one can writext = f(xt−1) + wt , and by assumptionwt has a

4 This statement has a familiar ring to it: imperfect models often make confident predictions that are entirely wrong.
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densityη. Call the seriesxt , which is a projection of the system trajectory intoK, the true pseudo-orbit. In order
to differentiate notationally between trajectories and pseudo-orbits, let ˜z denote a pseudo-orbitzt that arrives at
z at t = 0; x̃ can denote the true pseudo-orbit. Using pseudo-orbits is mathematically equivalent to replacing the
deterministic imperfect model,yt = f(yt−1), with a stochastic model

zt = f (zt−1) + wt, (20)

wherewt has a densityη. Observe, however, that the system is still considered deterministic: only the model becomes
stochastic in order to overcome the imperfection offwhen used as a deterministic model. Ideally one should improve
the modelf, but we have assumed we have taken all practical steps to do so, and our only option is to cope with the
imperfect model. Note this is quite different from the common approach that assumes the system must be stochastic
too.

In this formulation the joint probability density that a pseudo-orbit statezt is indistinguishable from the true
pseudo-orbit statext given the preceding pseudo-orbit statezt−1, is given by,5

g(xt, zt|zt−1) =
(∫

ρ(st − xt)ρ(st − zt)dst
)
η(zt − f (zt−1)), (21)

from which we can define

qρ,η(xt, zt|zt−1) = g(xt, zt|zt−1)

g(xt, xt|xt−1)
= qρ(zt − xt) η(zt − f (zt−1))

η(xt − f (xt−1))
,

Qρ,η(z̃|x̃) =
∏
t≤0

qρ,η(xt, zt|zt−1),
(22)

whereqρ(b) is the conditional probability that occurs in the PMS (seeEq. (1)), while qρ,η(.) andQρ,η(z̃|x̃) are the
corresponding probabilities in the pseudo-orbit case of the imperfect model scenario. The following theorem is a
result of these definitions.

Theorem 2. Let x̃ be a true pseudo-orbit of a system,wherex̃ extends into the infinite past and terminates at x. Let
z̃ be a pseudo-orbit of an imperfect model with an imperfection error densityη,wherez̃ extends into the infinite past
and terminates at z. If Qρ,η(z̃|x̃) = 0, then for observations of̃x with an observational error densityρ the states x
and z are distinguishable with probability1.

LetHρ,η(x) be the set of stateszfor which there exists a pseudo-orbit ˜zwithQρ,η(z̃|x̃) > 0, that is, the set of states
accessible by pseudo-orbits indistinguishable from the true pseudo-orbit. Returning to the example of Gaussian error
densities it is seen in thed = 1 case, or in isotropic cases, thatHρ,η(x) is the set of pseudo-orbits such that

∑
t≤0

(
1

4σ2
||xt − zt||2 + 1

2ζ2
||zt − f (zt−1)||2 − 1

2ζ2
||xt − f (xt−1)||2

)
<∞. (23)

Clearly in this casex ∈ Hρ,η(x) and so we have asymptotic consistency. The terms of the above condition have
a nice interpretation. The first term is identical to the indistinguishability condition in the PMS, see[10]. The last
two terms represent the total square deviation of pseudo-orbits from trajectories of the imperfect model; these terms
effectively require that for a pseudo-orbit ˜z to be indistinguishable from the true pseudo-orbit ˜x, the deviation of ˜z
from a trajectory of the model should be on average no worse than the deviation of the true pseudo-orbit. Also note
that the expected value of||xt − f(xt−1)||2 isµ2 + ζ2, whereµ andζ2 are the bias (mean) and variance ofη. Thus,
the expected value of the partial sum over−T < t ≤ 0 of the last term of the inequality (23) is (µ2 + ζ2)T.

5 Note that unlike Eq. (6),η here is precisely the imperfection error density.
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Fig. 3. Indistinguishable sets for six separate states in the perfect model scenario. The background of dots is the attractor of Ikeda system (2).
The cross-hairs in large circles mark the true system states. The observation error is Gaussian with aσ = 0.1, which is the radius of the large
circles with cross-hairs. The indistinguishable states are marked with plus signs.

When the imperfection error is non-Gaussian and bounded, asymptotic consistency holds provided the model
has a pseudo-orbit remaining in the proximity of the true pseudo-orbit.6 For uniform bounded observation error and
uniform bounded imperfection error,

ρ(z) =



1

V (R, d)
, ||z|| ≤ R,

0, otherwise,
(24)

η(w) =



1

V (r, d)
, ||w|| ≤ r,

0, otherwise,
(25)

whereV(·,d) is the volume of ad-dimensional ball, thenHρ,η(x) is the set of stateszfor which there are pseudo-orbits
z̃ such that

sup
t≤0

||xt − f (xt−1)|| ≤ r, (26)

sup
t≤0

||zt − f (zt−1)|| ≤ r, (27)

sup
t≤0

||xt − zt|| ≤ R, (28)

∑
t≤0

||xt − zt|| <∞. (29)

Note that the first two inequalities ensure that the pseudo-orbits are consistent withη, and the last two inequalities
are identical to those of the PMS with uniform bounded observational error[10].

It is instructive to contrast the indistinguishable sets of perfect and imperfect models.Fig. 3 illustrates indistin-
guishable sets for six different states in the perfect model scenario, andFig. 4 illustrates theQ-density (22) for six

6 Loosely speaking, one could say that the pseudo-orbit shadows the true pseudo-orbit; in doing so, however, care must be taken when
interpreting the error bound. Forι-shadowing, this bound is based on the observational uncertainty as this interpretation is complicated by the
projection from observation space to model-state space.
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Fig. 4. TheQ-density (22) for six separate states of (a) the structurally incorrect model (3) and (b) the ignored-subspace model (5). The
background of dots is the attractor of the system. The cross-hairs in large circles mark the projections of system states. The observation error
is Gaussian with standard deviationσ = 0.1, as reflected by the radius of the large circles with cross-hairs. TheQ-densities of each state are
represented by 10 equally spaced contour levels of probability. Note that projections of the system states are not the same in the two panels.
Contrast these densities with those in figure (3).

similar states for the two imperfect models considered above. In PMS the indistinguishable sets are one dimensional
and so theQ-density (1) is difficult to represent (see Ref.[10] for plots these densities). The character of the indis-
tinguishable sets of comparable states can vary markedly between the perfect and imperfect scenarios. Generally,
in the imperfect model scenario the sets become fatter (with a perfect model the sets are ultimately restricted to the
unstable set of the true state). Comparing the indistinguishable sets of the perfect and imperfect model scenarios
is not entirely justified, because there are states visited in the imperfect scenario that lie off of the attractor of the
perfect model (that is, the model gives asymptotically zero probability of visiting a neighbourhood of the relevant
state); such a situation is shown at the far left ofFig. 4(b).7

7 In fact, the common confusion of the system state space with the model-state space[23], inadvertently promoted by the use of the identity
as the projection operator between system and model, disallows this comparison.
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3.4. Estimating indistinguishable sets for known states

In principle, calculating the indistinguishable states in the imperfect model scenario is no more difficult than in
the perfect model scenario; in practice some details need to be appreciated. In PMS the indistinguishable states can
be calculated from a sufficiently long segment of the true trajectory by making small (say uniform or Gaussian)
perturbations of the initial state of the segment and calculating the resulting trajectory. The indistinguishable states
are the final states of trajectory segments for whichQT (y|x) exceeds some threshold. The length of trajectoryT and
variance of initial perturbation are easily determined by trial: the length is determined by observing the convergence
of QT and the variance of the perturbation by the magnitude and spread ofQ. Once we know the maximum value
of Qwe can impose a significance threshold (so thatQ > 10−2, say) and then “cover” the most significant range of
values ofQ.

In the imperfect model scenario one has to calculate potential pseudo-orbits around the true pseudo-orbit,8 that
is, find solutionszt to the stochastic modelEq. (20), and then calculate the finite-time approximation

Qρ,η,T (z|x) =
∏

−T≤t≤0

qρ,η(xt, zt|zt−1). (30)

Calculating random pseudo-orbits is not efficient because most pseudo-orbits rapidly diverge from the true
pseudo-orbit, resulting in very smallQρ,η probabilities. In other words, this simple approach may require computing
a very, very large number of pseudo-orbits, most of which are immediately discarded. A more efficient approach
is to perturb the true pseudo-orbit. If the true pseudo-orbit ˜x has deviations from being a trajectorywt = xt+1 −
f(xt) then construct another pseudo-orbit ˜z with deviationszt+1 − f(zt) = wt + κt . If the perturbationsκt are chosen
carefully, then potential pseudo-orbits can be generated more efficiently. For example, a method for a Gaussian
distributionη of the imperfection errorswt is to use Gaussian perturbationsκt with standard deviationsσt = σ0 eλt ,
t = 0, . . ., p, whereσ0 andλ are chosen as follows. To determineσ0 initially setκt = 0 for t > 0 and find a value for
σ0 so that the variance of the perturbationκ0 results in pseudo-orbits whoseQ values “cover” the most significant
range of values ofQ, as in PMS. Then selectλ so thatσp = σ0 eλp = ζ, that is, the final imperfection has the same
variance asη. The effect of this choice is that perturbationsκt are initially small but grow exponentially in size;
this ensures that the pseudo-orbits do not diverge too far from truth, but far enough to cover the significant part the
indistinguishable set. ForFig. 4we used a bounded uniform distributionη, but the alteration to the stated method
is clear.

If a sample of states drawn fromQρ,η,T is required, then a Monte Carlo Markov Chain (MCMC) method[4] could
be used to generate them. The method described above provides an efficient generator for a Metropolis-Hastings
implementation. With MCMC calculations there is always a probability normalizing factor that is conveniently
avoided, and so it is here. For example, with Gaussian imperfection error, the last term ofEq. (23), which derives
from the factorsη(zt − f(zt−1)) in Eq. (22), is effectively a constant with an expected valueµ2 + ζ2. When calculating
Qρ,η,T from a finite product, however, these factors contribute an indeterminate scaling factor. Consequently, it is
convenient either to set this term to its expected value or ignore it entirely.

4. Maximum likelihood states

In the perfect model scenario we can obtain ensemble estimates of the true state by finding a maximum likelihood
estimate of the state of a system and then obtaining an ensemble estimate of the indistinguishable set of this maximum
likelihood estimate of the state[10]. Unfortunately, there are several difficulties in extending this procedure to the

8 By “true pseudo-orbit” we mean the observations after they are assimilated into the model-state space; for simplicity we assume the identity
operator as the projection operator throughout this paper.
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imperfect model scenario. First, there is no meaningful maximum likelihood state of an imperfect model, only
a maximum likelihood projection of the system state into model-state space. Second, there is an unavoidable
confounding of observational uncertainty and model imperfection error, which has the consequence that maximum
likelihood estimates of the projection of the system state can have a significant, and unavoidable, bias that is
dependent on properties of the trajectory of the system. Third, there is no reason that the forecast initiated from the
maximum likelihood model-state, however it is defined, will be particularly skillful.

4.1. The gradient descent algorithm

Within PMS a maximum likelihood estimate of a true statex can be found by minimizing a cost function and via
gradient descent. The generalization of the cost function and optimization to imperfect models is as follows. For a
finite sequence of observations,st , t = 1, . . ., p + 1, define

et = st+1 − δt+1 − ωt+1 − f (st − δt) (31)

and

L(δ, ω) = 1

2

p∑
t=1

eTt et . (32)

To find a suitable pseudo-orbit from the observations, solve

min
δ,ω
L(δ, ω), (33)

by gradient descent[10], that is, solve the differential equations

δ̇ = −∂L
∂δ
, ω̇ = −∂L

∂ω
, (34)

to compute the asymptotic values of (δ, ω) when starting from the initial values (δ, ω) = 0.
To find a maximum likelihood pseudo-orbit one could solve

min
δ,ω
L(δ, ω) + a

(
δTδ

σ2
+ ωTω

ζ2

)
, (35)

for a→ 0, or iteratively solve the above while alternatinga = 0 anda > 0.
Our algorithm differs from the perfect model case by introducing perturbationsωt that are intended to allow for

the imperfection of the model. It is clear that there is a confounding of the perturbationsδt andωt , that is, it is not
possible to determine whether a model prediction is incorrect as a result observation errorδt or model errorωt and
thus it is not clear how the total error should be distributed between the two sources of error.9 Thus, the maximum
likelihood estimate of the projection of the system state can have a significant bias, depending on details of the true
pseudo-orbit and how we choose to distribute error between the two sources; we return to this point later. Simply
ignoring theωt terms is equivalent to assuming that the model is perfect; this is ill-advised.

Note that the additional termsωt play an important role. It is necessarily the case thatL(δ, ω) attains a minimum
of zero. If a minimum ofL occurs at (̂δ, ω̂), then it follows thatL(δ̂,0) = (a/ζ2)

∑
t ω̂

Tω̂, that is, the amount by
which thest − δ̂t fail to be a trajectory of the model is precisely ˆωt . This would seem to imply that one could just
minimizeL(δ, 0) ignoring theω terms. Doing so, however, is equivalent to assuming the model is perfect. This
yields biased estimates of the projection of the system state, because it forces the solution to give a trajectory of the

9 This problem might vanish if the model admitsι-shadowing trajectories over the duration of the observations; then one might arguably be
within the perfect model scenario. We know of no dynamic physical examples[24].
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model whenever one can be found,10 but since the model is imperfect one should look for a solution in the broader
class of pseudo-orbits. By including the termsωt in L, the gradient descent minimization ofL arrives at a nearby
pseudo-orbit that is less biased than the one obtained by gradient descent in the restricted sub-space whereω = 0. In
fact, when there is no trajectory of the model consistent with the data (or perhaps better said, only model trajectories
with negligible probability given the data), then estimates of the state by gradient descent withoutω terms can be
wildly “inaccurate”.

To better understand the confounding imperfection and observation error, consider the analysis of noise-free
observations of a true pseudo-orbit. Ideally such a pseudo-orbit is unaltered, but it is more likely that the algorithm
will find a “more probable” pseudo-orbit, attributing some of the deviation from a trajectory to be observational
error; typically the larger imperfection errors will be altered more. This altering of noise-free pseudo-orbits results
in biased estimates of the projection of the system state. The bias is dependent on particulars of the pseudo-orbit and
is in general unavoidable, although other state estimation schemes may have better performance than our algorithm.

Figs. 5 and 6show maximum likelihood estimates of the projection of the system states based on observations
of six different true pseudo-orbits: firstly, under the assumption that the model is perfect, that is,ω = 0 (panel (a))
and secondly under the assumption of an imperfect model (panel (b)). Recall within PMS the gradient descent
algorithm applied to noisy observations provided maximum likelihood estimates of the state which lay in the
indistinguishable setHρ of the true state. These estimates were distributed more or less asQρ. Figs. 5(a) and 6(a)
reveal a significant bias under the perfect model assumption. When presented with the noise-free true pseudo-orbit,
the perfect-model gradient descent algorithm converges to a nearby trajectory. The noisy observations converge to
states in the indistinguishable setHρ (that is, in the perfect model sense) of the noise-free solution. This is exactly
as should be expected: the estimates lie in the indistinguishable set of a meaningless “true state”.

It is important to note that there are cases inFigs. 5(a) and 6(a)where the maximum likelihood estimates of
the state are far from the relevant projection of the true state. Thus, ensembles constructed under the perfect model
assumption may have zero probability of containing the projection of the true state.Figs. 5(a) and 6(a)show that
even under assumptions of an imperfect model the minimization ofL(δ, ω) can lead to biased estimates, that
is, although the size and shape of the set of state estimates inFigs. 5(a) and 6(a)are similar to the densities of
indistinguishable states ofFig. 4, they are sometimes displaced from their correct locations. Comparing panels (a)
and (b) ofFigs. 5 and 6shows the bias under the imperfect model assumption is less than half the bias that occurred
under the perfect model assumption. When presented with the noise-free true pseudo-orbit, the imperfect-model
gradient descent algorithm can converge to a different pseudo-orbit, as there can be pseudo-orbits which in the
presence of observational error are more likely than the true pseudo-orbit. We do not claim that the this approach
is optimal. While this kind of bias is unavoidable,11 other methods may be able to obtain better results than those
obtained here.

5. Forecasting with imperfect models

Forecasting with an imperfect model is a dubious endeavor, yet all real-world forecasts are made in this context.
Forecasts using an imperfect model under the assumption it is perfect are unnecessarily suboptimal. We postpone a
number of issues regarding forecasting with imperfect models for the moment, and assume both sufficient wisdom
to recognize a model is imperfect and sufficient knowledge to at least guess a distributionη for the imperfection
errors that provides some form of an upper bound on the actual imperfection errors. Specifically, we try to avoid
systematically underestimating imperfection errors. Given these assumptions, cautious ensemble forecasting with
an imperfect model is described below.

10 A similar approach, called 4DVAR, is used in operational weather forecastsing, see[18].
11 There is a fundamental question of identifiability, perhaps even definition, which is not pursued here.
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Clearly, forecasting with an imperfect model cannot be a better situation than forecasting with a perfect model.
In the perfect model scenario we suggested[10] first obtaining a maximum likelihood state estimate ˆx, then basing
a forecast ensembleε(x̂) on states from the set of indistinguishable statesHρ(x̂). Within PMS a symmetry exists in
thatx is the true state and ˆx a maximum likelihood estimate ofx, thenx∈Hρ(x̂) andx̂∈Hρ(x). In fact we found that
within an ensembleε(x̂) we expect to find the true statex, or states close to it, with the same probability as obtaining
the maximum likelihood estimate ˆx given the true statex. In general, a desirable property of an ensemble is that it
contain the true state in the following sense.

Definition 1. An ensembleε is said to contain the statex, if x lies within the convex hull (or bounding box) of the
ensembleε.

Making a probability forecast by assuming an imperfect model is perfect is a downright dangerous practice, the
forecasts are at best misleading. We have already seen inFigs. 5 and 6how this perfect model assumption leads

Fig. 5. Maximum likelihood estimates of states using the structurally incorrect model, obtained by using the model (2) with the truncation (3),
under assumptions of (a) a perfect model and (b) an imperfect model. The cross-hairs in a large circle locate the six states. The observation
error was Gaussian with mean zero and standard deviationσ = 0.1. The radius of the large circles corresponds to the standard deviation of
the observation error. The background of dots is the attractor of the model. Maximum likelihood estimates were calculated for 30 different
observations (noise realizations) of the same pseudo-orbit segments of 16 steps terminating on the marked states. The plus signs locate the
state estimates obtained. The large cross-hairs not in circles locate the maximum likelihood estimate when the estimate was calculated from the
noise-free pseudo-orbit. The misalignment of the circled and uncircled cross-hairs shows the bias of the state estimates.
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Fig. 6. Maximum likelihood estimates of model states using the ignored-subspace model (5) under assumptions of (a) a perfect model and (b)
an imperfect model. The cross-hairs in a large circle locate the six states. The observation error was Gaussian with mean zero and standard
deviationσ = 0.1. The radius of the large circles corresponds to the standard deviation of the observation error. The background of dots is the
attractor of the model. Maximum likelihood estimates were calculated for 30 different observations (noise realizations) of the same pseudo-orbit
segments of 16 steps terminating on the marked states. The plus signs locate the state estimates obtained. The large cross-hairs not in circles
locate the maximum likelihood estimate when the estimate was calculated from the noise-free pseudo-orbit. The misalignment of the circled
and uncircled cross-hairs shows the bias of the state estimates.

to an increased bias in the estimate of the maximum likelihood state ˆx; this is expected to result in a predictive
disadvantage. It should be clear that constructingHρ(x̂) for any of the states ˆx in Figs. 5(a) and 6(a)will not overlap
the projection of the true statex, especially when ˆx lies far from the attractor of the system. This is, in fact, just a
resurfacing of the problem of asymptotic consistency. One consequence of this is that an ensemble of statesε(x̂)
selected fromHρ(x̂) has zero probability ofcontaining(in the above sense) the projection of the true statex, and is
therefore of little forecast value. If the imperfections of a model are taken into account, then more useful ensembles
can be obtained, and the same approach to finding a maximum likelihood estimate ˆx of the projection of the system
statex and an ensemble of statesε(x̂) ⊂ Hρ,η(x̂) can be applied.

Referring again toFigs. 5 and 6, we observe that failing to take into account an imperfection error of less than
2% results in wildly inaccurate maximum likelihood estimates of the projection of the system state, even with
noise-free observations (panel (a)). Of course, maximum likelihood estimates can be just as far from the projection



240 K. Judd, L.A. Smith / Physica D 196 (2004) 224–242

of the system state when model imperfection is taken into account, but in this case, selecting the ensembles from
Hρ,η(x̂) accounts for the variation, whereas selecting fromHρ(x̂) does not. Recall thatFig. 4 shows what typical
densities of indistinguishable states look like. It should be clear that when ensembles are selected according to
densities like these for any of the state estimates shown inFigs. 5(a) and 6(a), then there is a non-zero probability
that they contain the projection of the true statex. When compared to their counterparts under the perfect model
assumption, the state estimates ˆx are less biased and the indistinguishable states are more spread out, particularly
away from the unstable set of the state estimate.

5.1. Weighted ensembles

Often one would like to associate a weight with each ensemble member reflecting, for example, either the
likelihood that it represents the projection of the true state or the relative value of its inclusion in an ensemble.
Constructing a weighted-ensemble estimate of the projection of the system state using an imperfect model can
proceed along the same lines used when the model is perfect. With a perfect model we found the maximum
likelihood estimate of the state ˆx, and then selected members for the ensemble from the indistinguishable set of
the maximum likelihood stateHρ(x̂). The weight of ensemble membery is Qρ(y|x̂); in practice, a finite-time
approximationQT is used. For an imperfect model the method is similar. A maximum likelihood estimate of the
projection of the system state ˆx is found as above. Elements in the indistinguishable set of ˆx are found using the
method described inSection 3.4and weights are again assigned withQρ,η(y|x̂) or its finite-time approximation. An
alternative to weighted ensembles is to select states fromQρ,η(x̂) according toQρ,η(y|x̂) using a MCMC approach.

While methods of constructing an ensemble in the imperfect model scenario look reasonable at first sight, there
is a crucial problem that they assume knowledge of the imperfection error distributionη, which we now recall is
unknowable. To construct (and evolve) an ensemble in the imperfect model scenario requires guessing a reasonable
stand-in for the distributionη. Given bounds for the errors (or their standard deviation), an appropriate uniform on a
disk (or Gaussian) density might supply a guess forη. Usually this information is not immediately available, however,
the gradient descent algorithm described inSection 4.1provides useful information since it estimates the errorsδt
andωt , which are estimates of the observational error and imperfection error, respectively. We found that for all the
180 pseudo-orbits calculated forFig. 6(b) the standard deviation of the observation error, estimated from theδt and
ωt , fell in the range from 0.070 and 0.17, and the standard deviation of the imperfection error fell in the range from
0.012 and 0.033. These numbers are in general agreement with the actual observational error of 0.1 and the actual
imperfection error of around 0.02. The accuracy of both estimates give confidence in using the imperfection errors
as information to obtain a guess of the imperfection error distributionη. Further analysis of this point is underway.

5.2. Forecasting

Interpreting ensemble forecasts with an imperfect model is no longer the simple matter of calculating the tra-
jectories of the ensemble members as in the perfect model scenario. When the model is imperfect, a reasonable
ensemble forecast will only be obtained by calculating pseudo-orbits. Ideally one would evolve the density of in-
distinguishable states using the stochasticEq. (20), but it is impossible to represent this distribution analytically
in practice (and would not yield the desired PDF even in principle). Given a weighed ensembleε0 at t = 0, one
could generate a forecast weighted ensembleεt representing the forecastt steps into the future. One could construct
εt+1 by generating for eachzt∈εt a number of forecast stateszt+1 = f (zt) + ωt where the weight of eachzt+1
is the product of the weight ofzt andη(ωt). In practice some pruning of the ensembleεt+1 may be necessary to
prevent the ensemble growing too large. Pruning in the imperfect model scenario requires care, however, as it is not
clear whether forecasts which would be considered “unlikely” in the perfect model scenario should be thinned or
encouraged. Nevertheless, one might want to consider variants of the particle filter or SIR filter[21].

Without a perfect model and a perfect ensemble, an ensemble forecast will not be accountable[22], it will suffer
from more than the effects expected from finite counting statistics. While there are a number of skill scores used in
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practice, there is no accepted optimal method for scoring such probability forecasts. We would recommend using
proper skill scores[29,15], such as the ignorance score (see[20] and references thereof). It is not clear that one
should interpret these ensembles as probability forecasts at all. Other aims, such as a ensemble that contains the
verification within its convex hull, or its bounding box, provide alternative targets (see[24] and references thereof).

Once the unrealizable goal of finding a perfect model has been discarded, scientific motives for determining the
‘best’ model become clouded;12 the value of using multiple models needs to be carefully re-examined. The use of
multiple models may well provide new methods for estimatingη as well as the best operational defense against
model inadequacy, particularly when the various models have similar over-all prediction skill and very different
structural assumptions. There are additional complications, including projections between the various model-state
spaces and complications in interpreting the results[24], but this approach holds the prospect of increasing our
understanding of the phenomena by easing the identification of shortcomings in our various models, in addition to
providing more useful forecasts.

6. Conclusions

We have extended the concept of indistinguishable states and methods for calculating them to the case of imperfect
models. In order to maintain consistency between observations of a system and an imperfect model it is necessary
to study pseudo-orbits rather than trajectories. The theory applies to a wide variety of model imperfections. It is not,
of course, our aim to solve the two particular examples of model error above (where we knew a perfect model and
merely proceeded as if we did not); rather we aim to develop tools which can be applied when no perfect model is
known (if such a thing even exists). It is, of course, impossible to prove anything about the relation of the system
to the model in this scenario; nevertheless this is arguably the case with every physical system.

Treating an imperfect model as a perfect model yields an inaccurate estimate of the projection of the system state
and an incoherent ensemble results. Consequently, it is essential to take model imperfections into account, failure
to do so will result in degraded forecasts. These results are also relevant to parameter estimation, where there are
two rather distinct situations: (i) the perfect model class, where there are parameter values that realize a perfect
model, and (ii) imperfect model classes, which contain no perfect model for any parameter set. Work in progress
addresses the question of simultaneously estimating the state and the parameter values of the model, where again we
employ the gradient descent algorithm to good effect. The cost of obtaining gradient information in high (say, 107)
dimensional models is not trivial even when a relevant adjoint is available[18]; we are also investigating methods
of gradient-free descent[11].

To conclude we note that the very concept of “uncertainty in the initial condition” is brought into question in
the imperfect model scenario. If there is no initial state in the whole of the model-state space which willι-shadow
the observations[27,24]over the forecast period of interest, then model inadequacy will limit accurate probability
forecasts in a manner analogous to the way that uncertainty in the initial state limits accurate best-first-guess forecasts
of chaotic systems in the perfect model scenario. In the imperfect model scenario, there need be no initial state
to be uncertain of. How then, should one identify a good model? or progress towards a better understanding the
underlying physical system?
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