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Abstract

Empirical modelling often aims for the simplest model consistent with the data. A new technique is presented which
guantifies the consistency of the model dynamics as a function of location in state space. As is well-known, traditional
statistics of nonlinear models like root-mean-square (RMS) forecast error can prove misleading. Testing consistency is shown
to overcome some of the deficiencies of RMS error, both within the perfect model scenario and when applied to data from
several physical systems using previously published models. In particular, testing for consistent nonlinear dynamics provides
insight towards (i) identifying when a delay reconstruction fails to be an embedding, (ii) allowing state-dependent model
selection and (iii) optimising local neighbourhood size. It also provides a more relevant (state dependent) threshold for
identifying false nearest neighbours.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The construction of mathematical models whose dynamics reflect the observations of physical systems is arguably
the fundamental task of physidd. A model’s ability to reproduce the observed dynamics is often quantified through
the distribution of forecast errors. Indeed in traditional time series analysis the “optimal model” is defined as that
which minimises the root-mean-square (RMS) efgjr For a nonlinear system, this approach has the undesirable
property that it may reject the model which generated the data. In this paper, a new testis introduced which quantifies
the level of consistency between each iteration of the model and the observations; this test is of particular value
for nonlinear models where uncertainty in the data due to observational noise limits the utility of statistics like
RMS error[2—4]. Ideally, a model will admit trajectories which shadow the entire dataset to within the limits set
by observational noisg—6]; testing for consistent nonlinear dynamics (CND) provides a simple, computationally
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tractable, necessary condition for shadowing. The CND approach is applicable to models based on first principles
[7,8] and data-based empirical modgsl1-14] The aim is to confirm the simplest model consistent with the data,
but none simpler.

As a test of the dynamics, the CND approach quantifies consistency as a function of location in model-state
space. It is novel in that it (i) identifies regions where the model is notably imperfect, (i) can suggest regions
where an embedding fails (that is, where no deterministic model is consistent), (iii) provides a rational for setting
a (local) threshold for the method of false nearest neighbfsk and (iv) provides a means of selecting and
weighting models for multi-model ensemble predicti{dri7]. Models may be either linear or nonlinear, and the
results below are easily generalised to stochastic m@2idig], although the discussion here is restricted to the case
of deterministic models and additive observational noise. While most of the examples below evaluate data-based
empirical models, the consistent nonlinear dynamics approach is applicabig dgnamical model: it evaluates
the particular model along with background modelling assumptions such as stationarity and the assumed form of
observational noise.

Basic goals and methodology are presente@eaation 2 Section 3provides a brief and selective review of
data-based model building in delay space. Two mathematical systems are then used to illustrate the method ir
Section 4and applications to previously published models of three widely studied physical systems, each thought
to be chaotic, is given ifBection 5 The implications of these results for nonlinear modelling are discussed and
interpreted irSection 6and conclusions are given 8ection 7

2. Methodology

In this section, a constraint on state-dependent forecast error is derived; this forms the basic consistency test o
CND. A number of simplifying assumptions are made to ease the derivation, often these can be relaxed and more
general solutions deployed numerically (at the cost of simplicity and computational time).

The most common means for quantifying the quality of a model are based on the statistics of prediction errors
[2] (for alternatives, sefd,17—-19). Consider a moddt, with observations; € R™s corresponding to system states
x; € R™x of the “true” deterministic syster®. Assumen; = m, = m in the following! Also assume additive
measurement erroig (i.e.s; = X; + 1;). In this case, the one-step prediction error may be decomposed as

Epred = Siv1 — F(S) = X1 + 0;11) — FXi + 1) = [G(X) — F(X)] + [0 + F(X) — F(X; + ny)]
= Emodel+ Enoise (1)

whereEmogel represents model inadequd@ndEnoise represents error due to observational uncertainty. Viewing

the prediction erroEpreq as a sum of these two distinct sources of error highlights three facts: (i) prediction errors
may be due to noise alone, and need not arise from model error, (ii) model error is obscured by observational
uncertainty, and can only be accurately assessed if this uncertainty is taken into account, and (iii) prediction errors
may manifest extreme fluctuations throughout model-state space due to variations in model sensitivity. Note the
similarity of this decomposition with that for “model drift” used in operational weather forecajg@iag].

1 Note that in general the model-state space will differ from the true state space of the system (assuming one exists); the projection from one
space to another poses several foundational difficulties. This projection operator will be taken to be the identity here (for disci4s2i04 3ke
and references thereof).

2 A given model may be inconsistent dueptarametric error(inaccurate parameter values) or dustaictural error (the model class from
which the particular model equations are drawn does not include a process that might have generated the data, given the observational nois
[18]). In the second case the model equations themselves are inadequate.
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Be(Si+1)
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Fig. 1. Consistent prediction: a trajectory®f with initial and final positionx (x), corresponding observed positianét), their consistency
balls,B,(s)) andB.(s+1) (circles), and images of model-states which are consistent syith{B. (s,)} (ellips. The intersection oF{B.(s)}
with B (si+1) signifies consistency.

Prediction error due to additive noise in a perfect model may be expressed as a Taylor series:
Enoise= 1,41 — J(X)n; — %UIH(Xi)ﬂ,' —, (2

whereJ(x) andH (x) are the Jacobian and HessiarFgk). The distribution o gisein (2) reflects how variations

in the local derivatives of a particular model structure affects the local prediction error. When the distribytiten of
known, the distribution oEneisecan be determined fro2) and, sinceEpreqis known, regions of model-state space
with largeEmogelCan be identifiedrigs. 1 and 2llustrate this in model-state space where, for simplicity, the initial
uncertainty is bounded (constrained to be within the circle) and the dynamics are locally linear (the circle evolves
into an ellipse). The system state at initial timeand at final timex; 1 are marked byrossesFor model-state
vectorss; € R™ and observational uncertainty uniformly distributed in a sphere of ragibere exists an associated
ball of consistent model-stat& (s;)) = {£ : ||E — s|| < ¢}. In practice, only the observed positiogg(pluse3

and their associated consistency b#llgs;) (circles) are known. The consistency of a model’s forecast may be
tested by evolving the ba. (s,) to the final time. This set of evolved stat&$B.(s;)}, will resemble an ellipsoid

if the evolution is locally linear (i.e. whea is sufficiently small and- is sufficiently smooth). I{B.(s;)} and
B.(si+1) intersect, then the prediction is internally consistérg (1), otherwise it is deemed inconsistehid. 2).

The overlap oF{B.(s;)} andB.(s.+1) implies the existence of a model trajectory which lies inside thethahl;)

at the initial time and also inside the bBll(s;11) at the final time; that trajectory is consistent with both the model
dynamics and the observations.

Be(si)

F{Bg(si)}

Fig. 2. Inconsistent prediction: as iig. 1 In this case no model trajectory exists which is consistent with the observational uncertainty since
F{B.(s)} does not intersed, (S;+1).
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The most pedestrian version of CND is simply to verify this necessary condition. The idea is simply to check
whether the largest observational error in the worst direction is likely to account for the observations. In practice,
obtainingF{B.(s;)} by propagating a ball of model-states&i’ may prove to be computationally expensive. A
first-order approximation provides a linear consistency check which is easy to implement. The linear approximation
of (2)is

Enoise = 141 — IXi)n;. ©))

The first singular valuegi(s;), of the Jacobiaf4,7] describes the largest possible (linear) magnification which
corresponds to the major axis B{B.(s;)}. Note fromFig. 2 that there is no initial condition consistent under
the model if the prediction error is greater than the magnitude of the major akieBpfs;)} plus the radius of
B.(sit+1)- If the noise level is large relative to the local curvature of the (model’s) solution manifold, then the linear
approximation may be generalised for locally nonlinear models; for local linear models this result is exact.

The expected value of the observational noise divided by the (local) length scale at which quadratic terms become
important provides a fundamental ratio for each local linear prediction; if this ratio is large one must consider local
guadratic models. In regions where this ratio is small, and the length scale at which quadratic terms become
important is also small relative to near neighbour distances, it is advantageous to take smaller neighbourhoods
thereby improving the local linear model. CND can identify such regions.

Note that the details of the consistency test depends on the type of state space being employed. The state spa
may be constructed using either multivariate data or a delay reconstruction of univariate data. In the first case, eact
component of the model-state vector must be forecast and evaluated while in the case of the delay reconstructior
only one component need be forecast, the others generated by a shift operator; this difference will have an impac
on tests of CND. The type of uncertainty in the measurements may also be either bounded (e.g. truncation error) ot
unbounded (e.g. additive Gaussian noise). In the former, the initial observational uncertainty resulting from bounded
measurement errors lies in a hyper-cube (that is, a box); given Gaussian noise, an isopleth of equal probability in
the space will be a sphere (or an ellipse, depending on the metric adopted). The discussion below is framed in term:
of quantisation error, but this can easily be interpreted in terms of, say. the 99.9% isopleth of an unbounded noise
distribution.

Many of the applications presented below assume a delay reconstructed state space with truncation errors ir
the observations, implying thatis uniformly distributed inside a hyper-cube. The diagonal of argimensional
hyper-cube of side may be stretched to at masi(s;)/me and uncertainty in the (scalar) verification implies an
additional factor ok, so that the consistency measure is

||Epred||
[ou(s)v/m + 1]e

This definition of linear consistency explicitly states its dependence on both the observational uncertainty, quantified
by ¢, and the local stretching due to the model structure, expressed thsgaugh Since the value of1(s) is
obtained from the modeC(s;, ¢) < 1is a necessary but not sufficient condition. If the models) is too small
the inconsistency will be detected, mdtif o1(s;) is too large. This approach can be generalised to explicitly test
for overlap between the two regions, and can be extended beyond one-step fq83rasigrtheless the simplest
case is used here to more clearly illustrate the procedure.

Note that in some regions of model-state space, large prediction errors are expected due to largesdlies of
Alternatively, even relatively small prediction errors may be inconsistent in a region of state spacey(ge¢lie
small. Lone inconsistent predictions may be due to out[@ri the data stream, so significance is afforded by a
localised accumulation of inconsistent predictions. Such accumulations may be due to failure of the delay space
to provide an embedding, erroneous parameter values, or structural error in the model. In a nonlinear dynamical

C(si,e) = 4)
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system these are intrinsically mixed; and they are indistinguishable given only a single modeR(289. Of

course, regions of model error can easily be located and interpreted when both the model and system are known
analytically. While this perfect model scenario (PMS) is usefawtion 4o illustrate the technique, much interest

lies in physical systems where no perfect model (or model class) is known. Physical systems are considered in
Section 5where the CND approach is applied to three widely studied physical systems using previously published
nonlinear models. First, the construction of models in delay space is briefly reviewed.

3. Empirical models

This section provides a summary of the data-driven modelling techniques which are used below. These models
provide a mappindg” : R — R, s +— 3~,~+Tp from the present observed state vedaio an estimatélurrp of the
future observed valug..,, wherery, is the prediction horizon. In the discussionSection 2he model state space
was taken to include simultaneous observations of the physical variables. In the case of univariate obseyvations,
will be represented by an-dimensional delay reconstructi¢2¢4,25]

S = [Sl'—(m—l)‘[dv s Sie1gs Si]» (5)

whererg is the time delay. As noted above, the use of a delay reconstruction allows CND to focus only on the last
component of the state vector.

Local polynomials can be used to provide an approximation of the nonlinear dynamics in a neighb&thpod
about a reconstructed state vecorfwo local polynomial model formulations are employed below:

m

Fs) = a0+ Y ajsi— (-1 ©
j=1

for a local linear model, and

m m m
F(S) =a0+ ) _ajsi—(-Dm+ Y D aimiSi—(~DrgSi—1-Drg Q)
=1 j=11=]

for a local quadratic model. The model parameters or polynomial coefficteate determined by solving the
over-determined system of linear equations formed by substitutingghes{s, . s,((,)+rd}§‘:1 in (6) or (7), where
k(l) gives the indices of the points found in the local neighbourt®@s), specified either by fixing the number of
neighbourg or by choosing a radius Both local linear (LLY10,11]and local quadratic (LQJ)L3,14]are employed
for making predictions in this paper.

Radial basis function (RBF) models of low-dimensional chaotic systemg18ed4]and references thereof)
provide a global, empirically based, nonlinear system of equations. An RBF model is of the form

Nc
F(s) =Y _a;jp(lls — &)+ L(s), ®)

j=1

whereg(r) is the radial basis functios, are centresa = {a,}?’il contains the model parameters dndepresents
an additional global linear (or higher order) polynomial which is often found to improve the approxirfegiad).
The two basis functions used in this paper are cgtio = r° and Gaussiap(r) = g 17/20%, Following[14] the
centres were chosen uniformly in the reconstructed state space in regions where the data existedsagigien
by the average Euclidean distance between centres which were nearest neighbours.
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An attractive feature of the RBF model is that its parameters can be determined via a single singular value
decompositiorj26]. The model parametess= {aj}’j‘.:1 are determined by solving the linear system of equations
b = ®a, where the design matrix ;i = ¢(||s; — &;[l), the images are representedoas- {siﬂp}f\’:'l andn, is
the size of the learning data set. This is achieved by obtaining pararaetérich minimisex? = |b — ®al|2.
Both x2 and|ja|| are minimised by choosirg = <I>Tb, where® ' is the Moore—Penrose pseudo-invers@d6].
Alternatives to using the default weighting (which is, roughly, uniform with respect to the invariant measure) are
discussed irsection 5.Delow (see als@l4]). In both cases, the solution is linear in the parameters.

4. Forecasting where a perfect model exists

In this section models with known inadequacy are used to illustrate that, at least within the perfect model scenario,
CND correctly diagnoses model inadequacy. Two well-studied mathematical dynamical systems are used. When
forecasting physical systems, of course, there is no reason to believe that a perfect model exists. In such case:
methods like CND must be evaluated based on their ability to provide useful information. This is illustrated for a
variety of physical systems iBection 5In both cases, it is crucial to distinguish the model(s) from the system that
generated the data (whether the system be a set of equations or a measuring device).

4.1. Ikeda map

In the late 1970s, Iked7] and Ikeda and Daidf28] pointed out that the plane-wave model of a bistable ring
cavity exhibited period doubling cascades to chaos. Hammel[@Bathen extracted a complex difference equation
relating the field amplitude at the + 1)S* cavity pass to that of a round trip earlier. The amplitucind phase,
corresponding to the real and imaginary parts of the field are related by

b

Xit1 =14 u(x; cosd — y; sinh), i+1 = u(x; Sin@ + y; cosh), 0=a— ———-—.
i+1 M( i Vi ) Yi+1 w(x; Yi ) x1'2+yi2+1

)
This map is chaotic for parameter values- 0.4, » = 6.0 andu = 0.9 [29].

A family of imperfect models of this system was developed by Judd and $t@itby considering the Taylor
expansions of the sinusoidal functiong#). The translatio® = —n +  is employed18] to yield an expansion
about—s which is near the middle of the range @fNeglecting terms of sixth-order and higher yields the model
equations:

cos = coS(—7 + w) = —1+ w? — Lol SiNG = SiN(—7 + ) = —w + 203 — 130°. (10)
Adopting the Ikeda mag®) as the system, time series were generated for both #mely variables with additive
noise. The measurement errors were uniformly distribution-en §] with ¢ = 0.01. Both a third-order truncated
model and a fifth-order truncated model were used to make one step ahead predictions of the noisy bivariate time
series. These predictions were coloured grey when consistent and black when incorBSigte®)t The circle
x? +y% = b/(a + n) — 1, corresponding t6 = —7 andw = 0 (where the truncated models are exact) is also
shown. As expected the models provide consistent predictions in the vicinity of a band around the circle and the
width of this band increases with the addition of higher-order terngsih

It is often the case that no sufficiently relevant model equations are available and that an empirical, data-driven
approach is required. There are two common strategies in this case: to construct a local model as each prediction i
required or to construct a single, global model. For clarity, only local linear models and local quadratic models are
employed below, while the empirical global models used are based on radial basis functions; both approaches wer
introduced briefly inSection 3
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Fig. 3. Consistent (grey) and inconsistent (black) predictions of the full state space Ikeda map using (a) third-order truncation and (b) fifth-order
truncation of(11). The black line indicates where the truncated models are eXaet-(x).

CND considers the local neighbourhood around the base point of the prediction. In this example, a linear model
is fit to describe the evolution of historical base points within this neighbourhood towards their future images. This
linear model is then applied to the base point to yield a prediction of its future image. The optimal size of the local
neighbourhood(x, r), at a poinix with radiusr, depends on (i) the data densityBix, r), (ii) the magnitude of the
neglected nonlinear terms B(X, ) and (iii) the measurement uncertainty of point8itx, r) (for a discussion, see
[30,31). Local linear predictions of the noisy measurements of batidy variables of the Ikeda map using= 0.15
andr = 0.2 are illustrated irFig. 4. The fraction of inconsistent predictions wefig: = 0.025 andfi,c = 0.27 for
r = 0.15 andr = 0.2, respectively. The predictor with the smaller radius ef 0.15 produces fewer inconsistent
predictions because the local linear model is better able to capture the dynamics in this neighbourhood. This makes
sense, in that for larger values othere are more locations where the local quadratic terms play a significant role
and thus the linear model (which is blind to these effects) fails to yield consistent predictions.

The consistency analysis can also be used to explore whether or not there are self-intersections within a recon-
structed state space. For the Ikeda map, there are many self-intersections using a reconstruction dimeas@n of
(Fig. 5a). These self-intersections imply that nearby points, often called false neightstgrabj will have images
in different parts of the attractoFig. 5c). The singular value decomposition of the local linear map provides a
means of calculating the expected region (an ellipse under the linear approximation) where the images should fall.
In this case of self-intersections, the consistency analysis correctly shows that the predictions should lie between
the two extremes of the images, coloured red and Hige 6c3) and the resulting inconsistent predictions reflect a
failure of this reconstruction due @ not being sufficiently large.

Schroer et al[22] have shown that the fraction of the attractor which yields poor predictions due to self-inter-
sections scales a8 ~P1, wherer is the size of the neighbourhood used for constructing the local constant predictor

3 With reference to the colour information in the artwork, the reader is referred to the web version of this artwork.
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Fig. 4. Consistent (grey) and inconsistent (black) predictions of the full state space Ikeda map using local linear prediction with neighbourhood
radii of (a) 0.15 and (b) 0.20.

and D1 is the information dimension. A noise-free time series ofittmordinate of the Ikeda map) significant

to four decimal places was generated and used to provide a reconstructed state space-w2th_ocal linear
predictions with a neighbourhood of radiusvere analysed for consistency against a noise threshold -ef

5x 10~° using(4). The fraction of inconsistent poiny,. decreases with the size of the local neighbourhood radius
r according tofinc o ¥~ P1 (Fig. 6), in agreement with the theoretical calculati¢g@8]. D; was estimated using
the Kaplan—Yorke conjectuf82]

Yl A

Ak+1

(11)
where Dyyqp is the Lyapunov dimensior,; are the Lyapunov exponents akds defined such thaZf-‘=1 A >0
ande;L1 A; < 0. For the Ikeda system with parameter valaes 0.4, b = 6.0 andu = 0.9, Dyyap = 1.71 (for
discussion, seR3]).

4.2. False nearest neighbours

The method of false nearest neighbours introduced by Kennel et alL&gemd references thereof), is commonly
used to select a “sufficient” dimension for models based on a delay reconstruction; here “sufficient” means large
enough to resolve the dynamics without self-intersection of likely solutions in the (projected) perfect model. Let
dij(m) denote the distance between two state vedoasds; in a reconstructed state space of dimensior his
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Fig. 5. An illustration of self-intersection in an = 2 reconstruction of the lkeda map: (a) the reconstructed state gpagex;) showing
observed points within a square centred at the base-point (1.05, 0.2) being consistent with measurement errors of snaghid2de (b) a
zoom-in showing pre-images of points which have large (pluses) and points which have small values;qf, (dots) and (c) the reconstructed
state spaceéy;, x;+1) with images from (b), corresponding local linear predictions (black) and consistency ellipse (grey).
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10t
103 r 10?

Fig. 6. Fraction of inconsistent predictions as a function of the neighbourhood ragsesl for fitting the local linear model (solid). The dashed
line indicates the theoretical slope given/by- D; =2 — 1.71= 0.29.
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method relies on identifying the fraction of false near neighbours, that is pairs of points whose sepaéj@tions
anddjj(m + 1) satisfy A(s;, s;, m) = dijj(m 4+ 1)/djj(m) > y. A shortcoming of that approach to the detection of
these false near neighboyfs] is the arbitrary thresholgt which determines which pairs are “false”. In a state
space where the dimensianis sufficient to remove all self-intersections(s;, s;, m) will be dependent on the
structure of the dynamics in the neighbourhood;@nds; and thus ixpectedo vary throughout the model-state
space ifs; varies.

An alternative method for identifying a sufficient dimensians to make local linear predictions using different
values ofm. If self-intersections exist, the fraction of inconsistent points will scalfas= "1, otherwisefinc
should drop to zero for a sufficiently small valuerofin any case/ should be allowed to vary witl; within the
local linear model, for example, it can vary widh.

4.3. Rulkov circuit equations

A second mathematical system will be used to illustrate how CND can identify state space-dependent model
error, in this case due to incorrect parameter values. The system is the set of equations defining Rulkov’s circuit
[33,34]are

X =y, y=—x-48y+z, z = ylaf(x() — 2] — oy, (12)

wherex(?) is the voltage across the capacitory(r) = /(L/C)i(¢) with i(r) the current through the inductdr,
andz(?) is the voltage across the capaci@r Time has been scaled by{LC. The parameters of this system have
the following dependence on the physical values of the circuit elements

vLC C C
)/:W7 5:}” Z’ 0:5 (13)

The functionf(x) is
0.528 X < —Xa,
fx) ={ x(A—x%), —xa<x<xa (14)
—0.528 X > Xa,

and the control parameter characterises the gain of the nonlinear amplifier araund 0. The parameters of
the circuit correspond to the following values for the coefficients in the differeetjghtions (12)y = 0.294,
0 =152,§ =0.534,0 = 15.6 andxy = 1.2.

The model is the same set of equations but wite= 1.4, thus the model is structurally correct, has one parameter
in error; all other parameters are exactly the same as the system.

CND is now used to map out regions of inconsistent points in the state space. The observations consist of three
dimensional time series of y andz variables, forming a state vecter= (x, y, z), contaminated with additive
measurement noise independently and uniformly distributed-and]; ¢ = 0.01. Numerical integration of12)
using a fourth-order Runge—Kutta methf@®] with a fixed integration step yields a discrete-time map. Given an
observed initial conditiorxg = X(#p) and an initial uncertaintg (zg) at timezg, the uncertainty after an arbitrary
timeris

e(to + ) = M (X0, 1)&(f0), (15)

where the matriM (xg, 1) is thelinear propagatordefined by

o+t
M (Xo, T) = exp [/ J(x(0) dt] , (16)
I

0
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Fig. 7. Consistency analysis of the Rulkov circuit. The upper panels illustrate the prediction errors for the perfect model (a) imperfect model
(b). The grey line is the prediction error and the black line is the consistency envelope. Points above the envelope are inconsistent. The lower
panels are 2D projections of the delay reconstruction showing both consistent points (grey dots) and inconsister) faiqsrfect (c) and

imperfect model (d).

andJ(x(?)) is the Jacobian of the flow given [{§2). Taking discrete steps of size= 0.01, the model was then
used to provide one step ahead predictions of the values of the 3D statexectar y, z).

CND analysis of a model with; = 1.4 can be contrasted with that of a perfect model (thakis—= 1.2)
to demonstrate how the approach identifies regions of model-state space with systematic errors due to parameter
uncertainty.

The first singular value of the linear propagakdrxo, t) provides a consistency bouid) for each prediction
(Fig. 7). As expected, the perfect model with = 1.2 yields no inconsistent point&ig. 7a and c), whereas the
model withxy = 1.4 gives rise to occasional inconsistent predictidgfig.(7b and d), the location of which correctly
diagnoses the (known) model imperfection. In this way, a CND analysis can be used to identify “synoptic patterns”
where models tend to fail. This identification does not replace the need for insight and physical understanding to
determine how to improve the model, rather CND merely identifies where the model is most vulnerable; and it can
be applied to the largest of numerical simulation models.

5. Forecasting physical systems

In this section CND is applied to three physical systems; in each case the performance of previously published
models are contrasted. While the state space reconstructions appear adequate to resolve the dynamics, these exampl
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Fig. 8. Predictions of the Nillaser data. The upper panels illustrate the inconsistent predictigrf®( models RBF (a) and Ll, (b). The
lower panels are 2D projections of the delay reconstruction showing both consistent points (grey dots) and inconsisten} fwiRBI; (c)
and LLy, (d).

demonstrate that other problems arise which are model dependent. The local linear is inaccurate when nonlinea
terms dominate in the local neighbourhood to collect sufficient near neighbours to estimate the model parameters.
This problem often arises when some regions of the state space are sparsely sampled, thereby requiring a larg
neighbourhood. The RBF model provides a global approximation to the dynamics, but is likely to yield a good fit of
regions of state space with a high data density while neglecting those which are poorly s@#pIedID provides

a means of identifying and addressing all these problems and suggests a method for selectively using different
models with complementary strengths and weaknesses.

5.1. Power output from N¢llaser

Fig. 8a shows the output power of a Nlthser whose dynamics are associated with the Lorenz—Haken equations
[35]; this dataset, collected by Hiiner et @6], has been widely studied (s§7], and references thereof). The
noise level is taken to be bel6whe resolution of an (8 bit) analogue to digital converter, thus 1. Following
[38], a local linear model (LL,), was employed to make one-step predictions and compared with a radial basis
function model (RBI). Both models use the same delay reconstruction parameterBafsles]). Typical segments
of the time series and images of inconsistent predictions are plotted for both modtéds & Note that all the
inconsistent points occur around the collapses; this may result either from the relatively sparse sampling of this

4 Except for that due to saturation of the analogue to digital convertef38ge
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Table 1

Description of the models used for the three physical systems

Key System m 7d o M Nt Ne d@) k r Error %finc
RBF; NH3 4 2 1 21 4 128 3 0.0514 1.13
LL1, NH3 4 2 1 21 4 32 0.0381 0.53
LL1p NH3 4 2 1 21 4 8 0.0797 0.48
RBF;LL1, NH3 4 2 1 21 4 128 3 32 0.0376 0.30
RBF;LL 1, NH3 4 2 1 21 4 128 3 8 0.0451 0.27
RBF, NMR 3 1 1 30 4 128 r 0.0207 1.65
LL o, NMR 3 1 1 30 4 50 0.0189 1.40
LL o, NMR 3 1 1 30 4 12 0.0197 0.50
LQz NMR 3 1 1 30 4 50 0.0210 1.40
LQ2 NMR 3 1 1 30 4 25 0.0243 0.83
RBF; Annulus 5 4 18 2 4 128 u%/202 0.4764 2.25
LL3 Annulus 5 4 18 2 2 32 0.4207 0.68
WRBF Annulus 5 4 18 2 2 128 &/ 0.8989 1.07
RBFWRBF Annulus 5 4 18 2 2 128 -&/20 0.5402 1.27

Reconstruction parameters are dimensigrime delayrq, and dataset sizes used for learniig and testingV; (in 1000 s).N. is the number
of RBF centres ang(r) gives the structure of the RBF. The LL neighbourhood is defined by the number of neigklmtee radius-. Error
is the RMS forecast error normalised by the standard deviation of the data gpd®the percentage of inconsistent predictions.

region of model-state space or a local failure of the embedBy A 2D projection of the 4D reconstructed
model-state space is illustratedriy. 8 and d, showing the origins of the inconsistent predictions for each model.
If the reconstruction parameters,andzy are sufficient to resolve the dynamics, it may be possible to improve the
consistency by employing a neighbourhood size which is suitable for the local linear approxif8étion

The problem of low data density around the collapses was addressed by using a different LL megeh{tbL
a smaller neighbourhood size givenby= 8, thereby preventing neighbours with different dynamics from heavily
influencing the predictions in data sparse regions. This new LL model removes some inconsistent predictions at
the beginning of the collapses, but adds some new inconsistent predictions at the end of the cBilgpsgd 4nd
stars in Fig. 9h

The fact that some predictions are inconsistent for one model, yet consistent for aktgh8y $uggests that a
hybrid predictor using both of these models selectively would outperform any one individual model; indeed such
a hybrid model for this system is presented by Sr8] based on RMS error criteria. One advantage of using a
CND criteria instead is that it focuses attention on regions of model inadequacy, even when the one-step RMS error
may be rather small. RBF predictions with large absolute errors tend to correspond with sgadhidrs and vice
versa Fig. 9. While the RBF has inconsistent predictions at the beginning of the collapsgsgivies inconsistent
predictions at the end of the collapse, just as the intensity starts to increaselag&rlprovides a description of
the models and their prediction results aradble 2gives a comparison of the different models. In particular, while
the RBF and Lk, models generate 1.13 and 0.48% inconsistent predictions individually, they have only 0.1% in
common. Furthermore L, provides a better complement to RBF than} Isince there are 0.15% inconsistent
predictions shared between RBF andi}.L

To establish whether or not an in-sample CND analysis of the learning set might contain information on
out-of-sample forecasts, a hybrid model was constructed. Follojtig0], the RBF centres were used to de-
fine a Voronoi partitio of the state space and the fractipn of inconsistent predictions in each partitign
(j =1,..., No) was calculated by making in-sample predictions of the learning data set. For each base point

5 A givens; belongs to partitiorj, associated with centig, if dj = min,",\’;1 dik, wheredix = ||s; — & |l



14

P.E. McSharry, L.A. Smith/Physica D 192 (2004) 1-22

30 T 300
(| Neither
20 {5 250 - "- = RBF
| t‘*. * LL
10 ! g’ . 200f ° . x_Both
§ ****** L ﬁ“‘—l —a® m T wm L] A
g oo PRL O - S, 150}
= .- T T H
10 ” o 100} x o 0%
n L]
Pl A
20 x Ll 50| K %%
(I w, * [ .
30 ‘ e ‘ 0 : :
-30 -20 -10 0 10 20 30 0 100 200 300
S.
(a) RBF Error (b) T
300 T T T T T T T
250 ® . P . |
u
200+ . % 4
L |
L] ™ -
S; 150f - u - i
] . -
100 . * .
so‘F I 3 s 3 ; .: ‘
OL 1 1 1 1 1 i 1 5 J
0 500 1000 1500 2000 2500 3000 3500 4000
(©) i

Fig. 9. Consistency analysis of the Nkser data showing (a) prediction errors for the RBRd LL;, models, (b) 2D projections of the delay
reconstruction and (c) the time series. Markers indicate one of the four outcomes: (i) neither model is inconsistent (dot),i§iiinR&#sistent

(square), (iii) LLy, is inconsistent (hexagon) or (iv) both models are inconsistent (cross). Dashed lines reflect plus and minus one standard
deviation of the error distribution for each model in (a).

belonging to a partition which had one or more in-sample inconsistent predictions, a local linear model (either LL

or LL1,) was used to generate a prediction. If the inconsistent regions of state space are clustered in state spac
and the local linear models are complementary to the RBF model, then this hybrid should improve the prediction
performance. Indeed, both the combined models, B, and RBRLL 1, had smaller RMS errors than their
constituent models and also lower fractions of inconsistent predicti@inde J).

Table 2

Comparison between two models A and B

System Model A Model B 0] (i) (iii) (iv)
NH3 RBF; LL 1, 98.500 0.975 0.375 0.150
NH3 RBF; LL1p 98.500 1.025 0.375 0.100
NMR RBR LL o, 97.675 0.925 0.700 0.700
NMR RBF, LL 2 98.000 1.500 0.375 0.125
NMR RBR LQ2, 97.600 1.000 0.775 0.625
NMR RBF, LQ2p 97.925 1.250 0.450 0.375
NMR LLo, LLo, 98.300 1.200 0.300 0.200
Annulus RBR LL3 97.656 1.660 0.098 0.586
Annulus RBR WRBF 97.266 1.660 0.489 0.586

Percentage of predictions falling into each of four scenarios: (i) neither A nor B are inconsistent, (ii) only A is inconsistent, (iii) only B is
inconsistent and (iv) both A and B are inconsistent.
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Fig. 10. Predictions of the NMR laser data contrasting models,RBig LL,,. The upper panels illustrate the inconsistent predictic)¢r
models RBFE (a) and LLy, (b). The lower panels are 2D projections of the delay reconstruction showing both consistent points (grey dots) and
inconsistent pointsx) for RBF, (c) and LLy, (d).

5.2. Power output from an NMR laser

Fig. 1(aillustrates a stroboscopic view of the output power of a nuclear magnetic resonance (NMR) laser operated
at ETH Zurich[39]. The lasing particles are Al atoms in a ruby crystal, and the quality factor of the resonant structure
is modulated periodically. Output power of the laser is reflected in the voltage across the antenna (thus allowing for
negative values). A local linear model (k) and an RBF model (RBf were constructed followingp]. Details
of the models are given ifiable 1 The model Llp, had a fixed radius neighbourhood of size- 50 (allowing
the number of neighbours to vary); this is roughly equal to twice the amplitude of the reported measurement error
amplitudeg = 25. Inconsistent points are shownHig. 10a and c for the RBF model and iig. 1(b and d for the
LL 2, model. The inconsistent predictions typically originate from the same location of model-state space. In this
case, reconstructed vectors from regions where a large positive observation follows a large negative observation
tended to be inconsistent.

This insight from the CND analysis suggests examining the scatter plot of the prediction Ergorkld). This
figure shows that errors generated by the RBF ang, Iohodels are highly correlated, with both making errors of
similar sign and magnitude. By zooming into the inconsistent region of the attractor, it becomes clear that model
inadequacy around the elbow of the attractor, shown for the base of the inconsistent lpiginisll{) and their
images Fig. 11c), causes both models to fail. This effect is most noticeable for thg friodel at the elbows of
the attractor. In contrast, the ability of the $/L.model to resolve dynamics in a small neighbourhood provides
consistent predictions in the upper part of the attradtag.(11b) whereas the RBF model is unable to resolve the
dynamics around the two leaves of the attractor.
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Fig. 11. Consistency analysis of the NMR laser data showing (a) prediction errors for the modelarRBH,, models, (b) return map of
VS.5i_y and (c) return map of.. 4, vs.s;. Markers indicate one of four outcomes: (i) neither model is inconsistent (dot), (ii) RBF is inconsistent
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One method for addressing the failure of the)l.model to approximate the dynamics at the elbow of the attractor
(Fig. 11b) is to use a local quadratic (LQ) model. A LQ model @.Qwith neighbourhood = 50 did not change
the number of inconsistent predictions and increased the prediction efatrie (). By decreasing the radius to
r =25, anew LQ model (L§,) decreased the fraction of inconsistent predictions (from 1.4 to 0.5%) at the elbow
at the expense of increasing the overall prediction accuitayl€ J).

The benefit of using two models together may be seen from the fractions of inconsistent predictions in the
different scenarioslable 3. While the RBF and L@, independently have 1.65 and 0.83% inconsistent predictions,
respectively Table 1), they only have 0.375% inconsistent predictions in common. Note that the local models using
large neighbourhoods, Lo, and LG, offer little compensation to the model inadequacy in the RBF model.

An alternative to changing the structure of the model is simply to alter the local neighbourhood size; this can even
lead to a meaningf@ireduction of the RMS error. This is illustrated in the next paragraph by taking the inconsistent
points of model (Llz,) and predicting them with a LL model (lJ) that uses a fixed number of neighbours given
by k = 12. While LLy, has a slightly higher RMS error than b, it reduces the fraction of inconsistent predictions
from 1.4 to 0.5% Table 1.

As noted inSection 1the appropriateness of each local linear model can be determined by examining the expected
value of the observational noise divided by the (local) length scale at which quadratic (higher order) terms become
important. CND can suggest where in the model-state space this fundamental ratio is large, and in such locations
one must consider local quadratic models as above. In regions where this ratio is small, and the length scale a

6 A meaningful reduction in that the dynamics are more accurately reflected as opposed to, say, the reduction due to providing the mean of a
bi-modal distribution.
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Fig. 12. A comparison between modelsZl(r = 50) and LLy, (k = 12) for predictions which are inconsistent under)-L(a) magnification
factorsy and (b) absolute prediction errors. Circles indicate points that are also inconsistenfin LL

which quadratic terms become important is also small, it is advantageous to take smaller neighbourhoods thereby
improving the local linear model. In this case CND successfully identifies such regigng2a shows the expected
magnificatiorf in an LLy, model plotted against the that of the s.Lmodel for only those points where the L

model is not consistent. The fact that the points generally lie above the diagonal indicates thaf,theodel is

(locally) more sensitive to uncertainty than thesl.Imodel which averages effects over a larger area. Not only does

this increased sensitivity correctly reduce inconsistency, it also leads to better (local) predictions, as indicated by
Fig. 12b, the corresponding scatter diagram of observed prediction error. For these pointgghaddel has a

lower median error, lower RMS error, and predicts 66% of the points more accurately.

5.3. Temperature data from a fluid Annulus

Fig. 13 shows a time series from a temperature probe in a rotating annulus ¢é&dd ] A classic experiment
in geophysics which Loren#2] cited as physical motivation for deterministic aperiodic flow, the annulus consists
of thermally conducting side walls and insulating boundaries on the top and bottom. A temperature difference is
maintained between the inner and outer side walls, providing an infinite-dimensional simulation of the mid-latitude
circulation of the Earth’s atmosphere. Followifigl], one step ahead predictions were made using a local linear
model (LLg) and an RBF model (RBJ}. SeeTable 1for details of the models. The data was assumed to have
uniformly distributed noise of amplitude = 0.1. The inconsistent point$-ig. 13 reveal that the LL model is
extremely good finc = 0.68%) whereas the RBF modet(c = 2.25%) yields a much larger number of inconsistent
predictions.

One approach for improving the consistency of the RBF model is to force it to provide a better fit to the dynamics
in regions of state space which were inconsistent in the learning data set. The RBF centres were used to form a
Voronoi partition of the state space and the fracgigf inconsistent predictions in each partitip(y = 1, ..., N¢)
was calculated using in-sample predictions of points in the learning data set. Folldwinghich re-weighted
partitions to get a more uniform error in the model-state space, CND analysis provides the information required to

7 In a delay reconstruction, the orientation of the forecast error is known a priori. The expected magnificasdhe stretching in this
direction (it need not be the first singular value); if the data is noise-free the other directions correspond to a rotation. In practice, there is
uncertainty in all components; contrastisgandy provides information about noise reduction that will be considered elsewhere.
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Fig. 13. Predictions of the Annulus data contrasting modelsRBfd LLs. The upper panels illustrate the inconsistent predictioqsfér
models RBE (a) and LLg (b). The lower panels are 2D projections of the delay reconstruction showing both consistent points (grey dots) and
inconsistent pointsx) for RBF; (c) and LLg (d).

construct an RBF model which better approximates the more inconsistent partitions (those with large yafues of
This is done by providing weights = {wi}lN:'l such thatw; = 1+ ap,), wheren(i) is the index of the partition
containings;, and computing new parametexs= (w<I>)T(wb). This new weighted RBF (hereafter, WRBF) model

will have a higher RMS error since, by definition, the RMS error is minimised wheg 1 for all i. While the
prediction errors will increase in the partitions with smaj| the WRBF can be used to reduce the overall number of
inconsistent predictions. The value®@tontrols the balance between increasing the RMS error and improving the
consistency. Using = 128, the fraction of inconsistent predictions was decreased, fre&¥@for the RBF model

to 1.07% for the WRBF model, whereas the RMS (normalised by the standard deviation of the data) increased
from 0.47 to 0.89. Some of the large RBF errors were improved by the WRIBF14a) yielding less inconsistent
predictions Fig. 14 and c). The fraction of inconsistent predictions shared by the RBF and WRBF is only 0.586%
(Table 2. This small fraction is equal to the fraction of shared inconsistent predictions for the RBF and the LL.
While itis to be expected that the RBF and LL would yield different inconsistent predictions because of the disparity
between their model structures, this result suggests that the weights provide a means of obtaining a complementar
version of a given RBF model.

A hybrid model RBFWRBF was constructed using the RBF to make predictions in all partitions except those
where there were one or more inconsistent predictions in the learning set. In this case the inconsistent predictions
are not clustered and so the hybrid gives a medium level of performance, having a lower RMS error than the WRBF
but a higher RMS error than the RBF.
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Fig. 14. Consistency analysis of the annulus data contrasting models RBF and WRBF: (a) prediction errors for the mgdeisl RBFBF,
(b) return map of; vs. sy and (c) return map of; 4, vs.s;. Markers indicate one of four outcomes: (i) neither model is inconsistent (dot),
(i) RBF3 is inconsistent (square), (iii) WRBF is inconsistent (star) or (iv) both models are inconsistent (cross).

6. Discussion

Anew test for consistent nonlinear dynamics has been introduced and illustrated on a number of examples. The key
aim of CND is to quantify the consistency between a model's dynamics and the observations locally throughout the
model-state space. Regions of systematic failure indicate states of the system where the model needs improvement
regardless of whether the absolute value of the errors in that region are large or small. Similarly, regions of large
errors which are consistent with the model dynamics and level of observational uncertainty should not be counted
against the model a priori. In such regions the observations are consistent with the model forecasts, and the model
can be accepted. Of course, this acceptance is provisional, the model may well fail to remain consistent when the
noise level is reduced, or another (locally) consistent model may be found to have better error statistics in this region
and longer shadowing times. In any event, lower one-step forecast errors per se need not indicate a better model.
The errors of the best first guess forecast are simply beside the point: the simplest model consistent with the data
should admit trajectories consistent with the observations.

Where the model has been consistent, prognostic assessment of the likely accuracy of predictions can be made in
real-time, while in regions of the model state space where the model tends to be inconsistent model-based estimates
of predictability (whether analytic, or made with ensemble foreda$tshould not be relied upon; in such regions
historical errors may prove to be of val{il].

Other insights from the application of CND include:

(i) The distribution of prediction errors from a nonlinear model is expected to show correlation in state space
and thus show significant residual predictabi[By30]. Eq. (2) shows that this is to be expected even with a
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perfect nonlinear model: the local residuals need not be symmetrically distributed about the global mean error
[3,23].

(ii) The original method of false nearest neighbo{t§] can be strengthened, replacing the arbitrary global

threshold used to define “false” by adopting a local threshold based on the internal consistency of the dynamics.
(iif) Noise reduction strategies often use a variational appr@&ghhe interpretation of a variational data assimi-
lation scheme assumes the existence of a consistent model trajectory. CND can verify this assumption.

(iv) The “optimal linear predictor” is often inconsistent with the observations in a systematic manner; CND will
detect this.

(v) All models of physical systems contain structural error; no sibgietmodel need exist (for discussion, see
[5,43,44). Rather than trying to obtain a single optimal model, it may prove effective to consider ensembles
over models with different model structures. Ensembles over different initial conditions are often utilised to
account for observational uncertaifity5,7]. Results from this paper suggest a complementary method which
accounts for structural uncertainty by employing ensembles over model structurf&3(4&d.

(vi) Systematic changes in the frequency or location of inconsistent points may indicate nonstationarity in the
underlying procesgl4].

(vii) Given a data stream, selective refinement of points corresponding to inconsistent regions is expected to yield
a better data base for local models than uniform sampling, at least in the noise-free case for local polynomial
models[23,30,45]

7. Conclusion

A new approach for finding the limitations of dynamical models has been proposed and illustrated. By examining
the consistency of the local model dynamics with the observed system dynamics, the consistent nonlinear dynamic:
approach can identify regions of the model-state space where the model is systematically inconsistent. Analysis of
two theoretical systems and three physical systems illustrates that this novel consistency test contains a wealth o
information about a model’s ability to approximate the observed dynamics in general, and delay reconstructions in
particular. If the delay reconstruction does not yield an embedding, then all models will be inconsistent in regions
where the embedding fails. When an embedding does exist, distinct model structures may be preferred in certair
regions; CND identifies these explicitly. Each analysis yields a direct assessment of individual predictions, taking
the local properties of the model structure into account, thereby avoiding biases arising from model sensitivity.

Uncovering the failure or success of candidate model structures provides a useful discriminator for contrasting
different models. The ultimate aim here is to find better models, and a better way to define “better” in this context.
Locally consistent models are expected to allow longer shadowing trajectories; a comparison along these lines will
be presented elsewhere.

By adopting CND as a goal, one aims to get the simplest models consistent with the data, but none simpler. RMS
skill scores can prove a distraction in this quest. By addressing the interplay between the nonlinear model structure
and observational uncertainty in the measurement process, the CND approach opens many avenues for both th
evaluation and the application of nonlinear models.
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