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Abstract

The perfomance of a class of communication systems
is investigated in a probabilistic framework. We in-
vestigate the bit error probability of the optimal as
well as approximately optimal receivers. In general
the latter turn out to be unavoidable due to the com-
putational complexity of the former.

We investigate a certain class of communica-
tion schemes including chaotic systems. Non-
linear filtering theory is employed to obtain a
representation of the optimal receiver. Using
known results on the filtering process we in-
vestigate the bit error probability. It is well
known that in general there is no closed form
expression of the nonlinear filter. Therefore,
in practice approximations are necessary for
the nonlinear filter in general and the optimal
receiver in particular. We obtain bounds on
the approximation error using stability prop-
erties of the filter. These bounds also apply
to approximations of the optimal receiver.

1 Introduction

Since the invention of telecommunication its technical
aspects have been subject to vivid research. Usually
the telecommunication engineer’s goal is to quantify
and to optimally payoff between the demands of low
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cost, low error and high rate of information transfer.
Of course, to obtain nontrivial results certain restric-
tions on the given setup have to be imposed.

A new era of information theory was heralded
by the pioneering works of C. E. Shannon and
W. Weaver [21] and N. Wiener [24]. The book of
Shannon and Weaver contains the basic ideas and re-
sults on channel (and source) coding. Wiener’s work
addresses the problem of reconstructing a stationary
time series that was received in error due to corrup-
tion by noise. Although the aim of both works is to
combat a nonreliable transmission channel, the re-
spective setups and assumptions are quite different
in detail. While Wiener solves his problem by salient
handling of elaborated stochastic tools, Shannon ap-
plied elementary methods and a couple of completely
new and ingenious ideas.

We will briefly review both concepts in section 2.
The main reason is that in this paper we will talk
about communication, and the reader may have the
(completely justified) question, how the presented re-
sults are related to Shannon’s theory. Probably to his
or her disappointment, however, it will turn out that
our paper, although concerned with the transmission
of messages, is more in spirit of Wiener’s work.

As will be explained in section 2 in Shannon’s setup
it is assumed that the message is manipulated before
and after it is sent, in contrast to Wiener’s setup,
where a manipulation is possible at the receiver side
only. This is an important technical difference be-
tween the two theories.

In this paper we will consider a setup that is more
related to Wiener’s setup. More specifically, we as-
sume that a certain signal Yn is transmitted, where
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Yn is a real number and n ∈ N plays the role of time.
In this paper, only discrete time processes will be
considered. The signal Yn is the sum of two parts
Yn = Xn + Wn, where Xn in turn is the informa-
tion carrying quantity and Wn is an unwanted part
or noise. Xn, however, is not the desired information
itself but a physical carrier signal that meets some
technical demands imposed on the transmission sys-
tem. The information is in our case just a stream of
bits Mn ∈ {0, 1} which we assume to be independent
and identically distributed. The assumption here is
that the signal is optimally coded and all redundancy
is removed. This information is modulated into Xn,
i.e. Xn is (not equal to but) depends on M1 . . . Mn.
More specific assumptions on this dependence will be
imposed in section 3. The basic question is

How can we recover the message Mn from
the received time series Y1 . . . Yn

Of course this question referred to as the receiver
problem is very complicated to answer in general and
has various theoretical as well as computational as-
pects. We will try to give a partial answer to this
question for a specific setup.

The outline of the paper is as follows: In section
2 we will give a brief overview over Shannon’s and
Wiener’s work and the main differences. As already
mentioned, our paper is more in spirit of Wiener’s
work. However, this does not mean that it has no sig-
nificance for results following Shannon’s work. This
is explained in detail in section 2. Since this section
is not necessary for an understanding of the rest of
the paper it may be skipped at first reading.

In section 3 we will present the theory of nonlinear
filtering. This theory generalizes Wiener’s original
question to the problem of finding the best estimator
(in a mean square sense) of Xn among all possible
estimators (and not just the linear ones, as consid-
ered by Wiener). Of course, this estimator depends
not only on spectral properties of the involved pro-
cesses but on their entire probability distributions.
It turns out that the fundamental quantity emerg-
ing from nonlinear filtering theory is the conditional
probability of Xn given Y1 . . . Yn. We will try to give
a fairly general presentation of this subject, keeping
the mathematical level as elementary as possible.

The section 4 explains why for the considered mod-
els the results from nonlinear filtering can be used to
build receivers. It turns out that the optimal receiver
evaluates a simple decision criterion that involves the
conditional probability calculated in nonlinear filter-
ing. Furthermore, results concerning the asymptotic
properties of nonlinear filters are employed to calcu-
late asymptotic bit error rates.

In the section 3 the reader already gets aquainted
not only with the benefits but also with the difficul-
ties of nonlinear filtering. A general problem is that
the nonlinear filter obeys an infinite dimensional dy-
namics. Refering to known results we will explain
that an explicit expression for the optimal estimator
is seldom available in a nonlinear context. There-
fore, approximations are essential. This is subject of
section 5.

In section 6 we will show how error bounds on
the approximations can be obtained. The filter can
be viewed as a dynamical system on the space of
probability distributions which is infinite dimensional
but in some cases insensitive with respect to its ini-
tial condition. The approximation consists, roughly
speaking, of replacing each iteration step of this sys-
tem by a simpler step. If the filter is stable, then the
error obtained in every step will not be amplified and
therefore a bounded total error remains.

Finally, in section 7 we apply these results to the
receiver problem. It turns out, that an explicit bound
on the maximal achievable bit error rate can be ob-
tained.

2 Shannon vs Wiener

In Shannons channel coding theory the problem of in-
formation transmission over a not fully reliable chan-
nel is considered, i.e. it is assumed that with a cer-
tain probability the transmitted message is decoded
in error. It is pretty obvious that a certain amount
of errors can be corrected at the receiver’s side if a
certain amount of the transmitted message is redun-
dant. For example, every bit (assuming the message
is represented as a stream of zeros and ones) can be
send twice. The surprising result of Shannon and
Weaver [21] was that a finite and fixed amount of re-
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dundancy is sufficient to achieve an arbitrarily small
amount of errors. This will be explained a little more
in detail now. The reader already aquainted with this
theory may skip this section. It contains no material
inevitably necessary for the remainder of the paper.

Suppose we are concerned with binary messages
only, i.e. the message is a stream of bits. Suppose the
transmitter allows for one bit per second to be sent.
At the receiver side we also obtain a bit per second,
but with a certain probability this bit is different from
the bit that was transmitted. This behaviour can be
expressed in a 2× 2-matrix

pij := Prob. of receiving i when j was sent

where i, j = 1, 2. Let us now formalize the procedure
of introducing redundancy. The basic idea is to use a
code as follows (see also Fig. 1). Consider all possible
words of, say, N bits. There are 2N such words. Let
R ≤ 1 and specify a subset containing only 2bRNc

words. Here b·c means the integer part. This subset
is called a code of rate R. The elements of this set are
called code words, hence there are 2bRNc code words.
We can transmit a message using this code by simply
dividing the message into blocks of length bRNc (at
most 2bRNc different blocks can appear) and assign-
ing a code word to each such block. Now the code
word can be sent through the channel. Recall that the
code word has length N , but the message block that
is assigned to the code word has lenght only bRNc.
So using the code effectively reduces the transmission
rate by a factor of R. In Fig. 1 we used N = 6 and
R = 2/3, i.e. 1/3 of the bits are redundant.

If a code word is transmitted, at the receiver’s side
a word of N bits obtains. However, some of the N
bits are received in error (in Fig. 1 the last bits of
both code words are incorrect). So a received block
of N bits forms a word that is usually not a code word
(although this may accidentally be the case). Here in
general a decoder is needed that maps any word of
length N back onto a code word. For example, we
may take the code word that has the smallest amount
of bits different from the received word (minimum
Hamming distance). Finally, inverting the message–
code assignment, we get back what is supposed to be
the transmitted message.

For a given channel, the performance of this scheme
obviously depends on the rate R, the lenght N , the
chosen set of code words and the decoder. The out-
standing theorem of Shannon states that associated
to the channel there is a number C called the capacity
with the following property: By taking N sufficiently
large we can find a code of rate R arbitrarily close to
C and a decoder yielding arbitrarily small transmis-
sion error. This is called the direct part of the coding
theorem. If however R is larger than C, the error is
bounded away from zero. This statement is called
the converse part. Actually, Shannon and Weaver
[21] proved this result (together with an explicit ex-
pression for C) in the case of memoryless channels,
i.e. the probability that a transmission error occurs
at time n does not depend on what has happened in
the past.

Note that in a practical situation to establish a re-
liable communication with rates close to the channel
capacity it is necessary to manipulate the information
carrying quantity before and after it is send. The sit-
uation considered by N. Wiener [24] that will now
be described briefly however does not permit a ma-
nipulation of the signal before transmission, which
from a communication theoretic viewpoint consti-
tutes the main difference between Wiener’s and Shan-
nons setup.

As in Shannon and Weavers work, Wiener consid-
ers a stationary stochastic process Xn, n ∈ Z as the
quantity carrying the desired information (in contrast
to Shannon however, it is not explicitly considered as
a message). He assumes that at the receiver the pro-
cess Yn = Xn +Sn obtains, where Sn is the unwanted
part or the noise. Hence effectively he assumes a very
specific form of a channel.

Wiener now considers the problem of reconstruct-
ing Xn from Yn in a linear manner. More specifically,
taking the ansatz

X̂n :=

∞
∑

k=−∞

a
(n)
k Yk (1)

and the least mean square optimality criterion

E(Xn − X̂n)2 = min!

he obtains an equation (Wiener–Hopf equation) for
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the coefficients, a
(n)
k , where E(·) denotes the mathe-

matical expectation. It turns out that only auto and
cross correlations of Xn and Yn enter the Wiener–
Hopf equation. Wiener studies a variety of related
problems, mainly differing in how much Y ’s enter
the right hand side of the ansatz (1). The result-
ing Wiener–Hopf equations are tackled by spectral
methods.

Wiener finished his work already in 1942, but due
to its significance for war time issues (radar tracking,
automatic fire control) it was classified and published
not until 1950. Since then, a huge amount of improve-
ments and generalisations to Wiener’s theory have
been conceived. The most important where proba-
bly the Kalman filter [11], where gaussian processes
admitting a state space description where considered
and the extension to nonlinear stochastic differential
equations given by Stratonovich and independently
by Kushner (see [9] for an overview).

All the works following Wiener show various at-
tempts to the solution of the general problem: Which
was the signal that led to the aquired data? Looking
back to Shannons setup, we see that this is basically
the decoding problem: which was the code word that
led to the received data? One may even say that first
Wiener’s theory (or its extensions) have to be applied
to build good receivers and then results in spirit of
Shannons work (i.e. coding) are applied to improve
the performance of the receiver. In other words, to
apply error correcting codes the receiver problem al-
ready has to be solved! Coding theory does not cir-
cumvent the receiver problem, it merely addresses the
question how the performance of a given receiver can
be improved using manipulations of the message be-
fore and after transmission.

Actually, Shannons classical result can be estab-
lished using a quite suboptimal receiver. Neverthe-
less, the trade–off between N and the error depends
heavily on the decoder, which is important in prac-
tical applications. Furthermore, Shannons result is
valid in full generality only for memoryless channels.
For channels having memory, the problem turns out
to be quite difficult. In general, a different C appears
in the direct and the converse part of the coding theo-
rem, i.e. it is stated that at rates < C1, reliable com-

munication is definitely possible and at rates > C2

definitely not, but in general C1 < C2. Furthermore,
the results usually depend heavily on the employed
decoders. In general, to obtain a larger C in the di-
rect coding theorem, more sophisticated decoders are
necessary, probably having a complexity prohibiting
their practical implementation.

Thus for application and extension of Shannons
theorem, good decoders are mandatory. By good we
mean as reliable as necessary to obtain the direct cod-
ing theorem at high rates, but as simple as possible
to be implementable in applications. Of course, in
this paper we will not solve the problem completely.
The basic aim of this paper is to convince the reader
that a possible route to good decoders goes via the
beforementioned theory of filtering.

3 Nonlinear Filtering

In this section we present the theoretic background
of the paper, namely the theory of nonlinear filtering
and some auxilliary stochastic tools.

In general message transmission is done employing
a (usually electronic) device called the transmitter.
The internal state of the transmitter at time instant
n ∈ N is assumed to be determined by a variable
Xn in an appropriate space. The state Xn depends
on its predecessors X1 . . .Xn−1, the message to be
transmitted and some additional random influences.
In this paper we will only allow for the simplest pos-
sible messages, namely a sequence {Mn} of indepen-
dent, identically distributed random variables assum-
ing the values 0 or 1 only. Furthermore, we assume
Mn, the message element at time n, to be indepen-
dent of X1 . . . Xn−1, whence the message element has
influence only on the present and future evolution of
the transmitter state.

Based on this general considerations a lot of trans-
mitter models can be considered differing basically in
how much past information enters the future evolu-
tion of Xn. The simplest model of interest obtains
if we assume that Xn is, up to random disturbances,
determined by Mn and Xn−1.

Usually a transmitter is employed to generate a sig-
nal that is capable of passing through a channel. For
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example, consider a radio transmitter. The channel
here is the atmosphere and the signal transmitted by
the channel is the voltage at the antenna, which is
a function of the transmitter state. Of course, at-
mospheric disturbances will take place and lead to a
corruption of the transmitted signal. In our model
channel noise is taken into account by additive iid
random variables. Thus our model of a transmission
channel is again a very simple one, namely we assume
that the channel output Yn is a function of the trans-
mitter state corrupted by additive noise.As a simple
example let us consider the following stochastic pro-
cess on the unit interval

Xn+1 = fMn+1
(Xn) (2)

where

f0 : [0, 1]→ [0, 1], x→ |2x− 1|
f1 : [0, 1]→ [0, 1], x→ 1− |2x− 1|

(3)

are the usual and the inverted tentmap. As received
signal we take simply Xn itself. As random noise
due to channel disturbances we take random variable
{Wn} which are independent, have a centered normal
distribution with unit variance and are independent
of {Xn}. The signal arriving at the receiver now is
assumed to be

Yn = Xn + σWn

where σ is a given positive constant. The basic ques-
tion, the receiver problem now is:

Assume a sample of values Y1, ..., Yn has
been recorded. What is the value of the
message Mn ?

Let us mention also the basic question of nonlinear
filtering, which reads slightly different:

Assume a sample of values Y1, ..., Yn has
been recorded. What is the value of the
system state Xn ?

At first sight it seems superfluous to calculate the
estimator for Xn, since we are eventually interested
in getting estimators for the message Mn rather that

Xn. It will, however, turn out that all these problems
can be encompassed by calculating a fundamental de-
vice, namely the conditional probability of Xn given
Y1, ..., Yn. This in turn is the main aim of filtering
theory. How it can be employed to solve the receiver
problem will be subject to section 4.

Of course, the answer to the basic question in filter-
ing cannot be given with infinite accuracy due to the
unknown noise Wn (except if σ = 0). What is desired
are estimators (i.e. functions X̂n = X̂n(Y1, ..., Yn))
having a good average performance. Wiener’s the-
ory provides the best linear estimator with respect
to an average quadratic error criterion. For nonlin-
ear systems, however, this estimator is outperformed
by nonlinear estimators calculated by the theory of
nonlinear filters which we now will present.

Let us formalize now our basic model of a trans-
mitter. For a comprehensive presentation of the ba-
sic notions of probability theory to follow we rec-
ommend [3]. A few notations are explained in the
Appendix. Let (Ω, P,A) be a probability space.
Let E be a complete separable metric space and
{Xn}n∈N0

: Ω→ E (the transmitter state) as well as
{Mn}n∈N : Ω→ {0, 1} (the message) be random pro-
cesses. Furthermore we assume that the joint process
{Mn+1, Xn}n∈N0

is Markov, the variables {Mn} are
all identically distributed and Mn+1 is independent
of {Mk+1, Xk}k=0...n−1. Let µ(A) := P (X0 ∈ A) and
pi := P (Mn = i), where i = 0 or 1. Then the ini-
tial distribution of the process {Mn+1, Xn} is given
by P (X0 ∈ A, M1 = i) = µ(A)pi and the transition
probability is

P (Xn ∈ A, Mn+1 = i|Xn−1 = x, Mn = j) = pi·ϕj(A, x)

where we define

ϕj(A, x) := P (Xn ∈ A|Xn−1 = x, Mn = j). (4)

Our setup allowes to assume that conditional proba-
bilities as well as conditional expectations are regular.
This means, for A held fixed, ϕ(A, x) is an integrable
function in x and for any x held fixed, ϕ(·, x) is a
measure (see [3] for regular conditional probabilities).

It is easy to see that {Xn} alone is a Markov pro-
cess with transition probability ϕ(A, x) := P (Xn ∈
A|Xn−1 = x) =

∑

j ϕj(A, x)pj . Let us shortly stop
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here for a short remark about canonical representa-
tions of a stochastic process. If {Xn}n≥0 is a Markov
process on a probability space (ΩX , PX ,BX) in dis-
crete time (i.e. n ∈ N0) assumed to have values in a
complete separable metric space (i.e. a polish space)
E equipped with a Borel σ–algebra BE, we can al-
ways assume the probability space to be canonical,
i.e. ΩX = E∞, BX = B∞

E . According to Kolmogorovs
theorem, PX is well defined by specifying the finite
dimensional distributions of {Xn}. Since {Xn} is
Markov, the finite dimensional distributions are de-
termined by the distribution ν of X0 and the transi-
tion kernel

ϕ : BE ×E → R+,

(A, x)→ ϕ(A, x) := P (Xn+1 ∈ A|Xn = x)

by the equation

P ν
X(X0 ∈ A0, . . . , Xk ∈ Ak)

=

∫

Ak×···×A0

ϕ(dxk , xk−1) · · ·ϕ(dx1, x0)ν(dx0)

where A0, . . . , Ak ∈ BE . The dependence on ν is de-
noted by the superscript and in fact we consider not
only one measure PX on ΩX but a whole family P ν

X .
If ν assigns probability one to a single point z ∈ E
we write P z

X . Further properties of Markov processes
(mainly concerning their ergodic behaviour) are sum-
marized in the Appendix 8.

Now we turn to the channel. Let {Wn}n≥1 be a
process of i.i.d. random variables having values in R.
We assume that the Wn have a probability density
function g with respect to Lebesgue measure λ. We
assume the {Wn} to be of zero mean and unit stan-
dard deviation. By using Kolmogorovs theorem again
we can assume the corresponding probability space to
be canonical, i.e. ΩW = R

∞, BW = B∞, where B is
the Borel algebra on R. The probability measure is
defined by the finite dimensional distributions:

PW (W1 ∈ A1, . . . , Wk ∈ Ak) =

k
∏

i=1

∫

Ai

g(x)dx.

Furthermore, let {Wn} be independent of {Xn}.
It is well known that the corresponding probability

space covering both {X} and {W} can be chosen as
Ω := ΩX × ΩW , P ν := P ν

X × PW , B := BX ⊗ BW .
The filtration of the process (Xn, Wn) is denoted by
Fn. Expectation with respect to P ν or P x will be
denoted by Eν or Ex respectively.

Finally we introduce a third process called mea-
surement process. Let h : E → R be a measurable
function. Now define the process {Yn}n≥1 by

Yn = h(Xn) + σWn.

The σ–algebra σ(Y1, . . . , Yk) is denoted by Gn. Note
that Wn and also Yn are defined for n ≥ 1, while Xn

is defined for n ≥ 0.
The aim of filtering now is to estimate the “hid-

den” process {Xn} from the measurements {Yn} in
a causal manner, i.e. the estimator X̂n of Xn shall
depend only on Y1, . . . , Yn, that is, it shall be Gn–
measurable. It can be shown (see e.g. [10]) that for
any such estimator

E[(Xn − X̂n)2] ≥ E[(Xn −E(Xn|Gn))2],

while if equality holds, X̂n = E(Xn|Gn) almost sure.
This is a general property of the conditional expec-
tation and also holds for estimators f̂n of f(Xn) for
any measurable function for which E|f(Xn)| < ∞,
e.g. if f is bounded and continuous.

To calculate conditional expectations we consider
the filtering process πν

n defined as

πν
n(A) := P ν(Xn ∈ A|Gn),

where the conditioning on Gn can be viewed just as
a shorthand notation for Y1 . . . Yn. Define also

πν
n(f) := Eν(f(Xn)|Gn) =

∫

f(x)πν
n(dx)

for a given bounded continuous function f : E → R.
The aim of filtering is to give convenient formulas for
πν

n as an explicit function of Y1, . . . , Yn.
It follows from the Kallianpur–Striebel formula

(see [10]) that

πν
n(f) = c·

∫

E

f(z)·g(
Yn − h(z)

σ
)

∫

E

ϕ(dz, x)πν
n−1(dx)

(5)
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where c is the normalisation constant

c =

∫

E

g(
Yn − h(z)

σ
)

∫

E

ϕ(dz, x)πν
n−1(dx)

Let ME be the space of all finite positive measures
on E. Elements of ME will be denoted by small
greek letters in the following. Furthermore, denote
by PE the subset of probability measures. Define the
operator

S : R×ME → PE ,

S(y, ν)(A) := c·

∫

A

g(
y − h(z)

σ
)

∫

E

ϕ(dz, x)ν(dx),

(6)
where c is again the normalizing constant. So S(y, ·)
maps finite positive measures to probability mea-
sures. With this definitions we have the iterative
formula

πν
n+1 = S(Yn + 1, πν

n)

Furthermore, πν
0 = ν. The process πν

n, called the
filtering process is a random process on PE and turns
out to be a Markov process. Introducing the weak
topology on PE, the transition kernel

Π(Λ, µ) := P ν(πν
n ∈ Λ|πν

n−1 = µ)

turns out to be Feller, i.e. for any function F : PE →
R bounded and continuous in the weak topology, also
ΠF (ν) :=

∫

F (µ)Π(dµ, ν) is bounded and continuous
in the weak topology. To compute average quantities
in the filtering problem like average filtering errors or
approximation errors, ergodic properties of the filter-
ing process are required. The main results needed in
this paper are due to Stettner [22] and Kunita [15]
to which we refer the interested reader. This section
is finished with the presentation of three examples
serving as standard models throughout this paper.

1 Example (CSK-scheme) Let again {Mn} be a
binary message and f0, f1 be two continuous map-
pings of a closed interval I (which might be the whole
real line) to itself. Let X0 be a random variable and
define the process

Xn+1 = fMn+1
(Xn).

The measurement process is taken as

Yn = Xn + σWn

where Wn is gaussian (noise). The transition proba-
bility of Xn is

ϕ(A, x) = p1δf1(x)(A) + p0δf0(x)(A)

where the delta measure δz(A) is 1 if z ∈ A and 0 else.
Often I is chosen as the unit interval and f0, f1 are
piecewise expanding Markov maps. In this case this
setup is called Chaotic Shift Keying (CSK) scheme.

If the distribution of Xn has a density h with re-
spect to Lebesgue measure, then so has the distribu-
tion of Xn+1, and the Markov transition kernel trans-
lates into an operator on L1, called the Frobenius–
Perron–Operator (FPO). The FPO of a CSK–scheme
is given by

Lh(x) = p1

∑

y∈f−1

1
(x)

h(y)

|f ′
1(y)|

+ p0

∑

y∈f−1

0
(x)

h(y)

|f ′
0(y)|

If the distribution ν of X0 has an L1 density π0(x)
with respect to Lebesgue measure, then also the fil-
tering process πν

n has a representation in terms of
densities (denoted by πν

n(x)) given by

πν
n(x) = c·g(

Yn − x

σ
)Lπν

n−1(x)

where again c is normalisation and g the density of
Wn.

Piecewise expanding Markov maps are thoroughly
investigated in [18]. It is shown that there exists an
invariant measure ν on the unit interval which has a
density h with respect to Lebesgue measure that is
of bounded variation. Furthermore, if f is aperiodic,
this measure is exact (in particular, ergodic and the
only one having a density with respect to Lebesgue
measure). The density h is everywhere positive and
for any continuous function f

Lnf(z)→

∫

fdx·h(z)

uniformly in z. This analysis depends entirely on the
FPO, and it turns out that much of it carries over
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to our setup. Especially there is an invariant mea-
sure ν on the unit interval which has a density h
with respect to Lebesgue measure that is of bounded
variation. The corresponding measure P ν is there-
fore stationary and the finite dimensional distribu-
tions have all densities. Furthermore it can be shown
that under a modified aperiodicity assumption, any
function g ∈ L1(ν) on the interval which is invariant
under ϕ is ν–almost sure equal to a constant. It fol-
lows then from Lemma 16 of the Appendix that P ν

is even ergodic.
The relevance of CSK–schemes as models for a real

time electronic transmitting device may of course be
doubted. They are hovewer subject to vivid research
on a more abstract level. They are used to generate
signals having desired statistical properties (see e.g.
[12])

2 Example (Mixing process) Let W ′
n be a pro-

cess of iid random variables on R
d having a contin-

uous and strictly positive pdf d(x) with respect to
Lebesgue measure. Let f : R

d → R
d be a continuous

and bounded function. Then the process

Xn+1 = f(Xn) + W ′
n

is a Markov process satisfying the conditions of the-
orem (13). The transition kernel is given by

ϕ(A, x) =

∫

A

d(z − f(x))dz

and the FPO by

Lh(x) =

∫

Rd

d(x− f(z))h(z)dz

This setup can also be extended to a message trans-
mission scheme by letting {Mn} be the usual message
process and taking two functions f0, f1 : R

d → R
d,

both bounded and continuous. {Xn} is now defined
by

Xn+1 = fMn+1
(Xn) + W ′

n

Again {Xn} is a Markov process satisfying the condi-
tions of theorem (13). The transition kernel is given
by

ϕ(A, x) = p0ϕ0(A, x) + p1ϕ1(A, x)

=

∫

A

p0·d(z − f0(x)) + p1·d(z − f1(x))dz

and the FPO by

Lh(x) =

∫

Rd

(p0·d(x − f0(z)) + p1·d(x − f1(z))) h(z)dz

Again, if the distribution ν of X0 has an L1 density
π0(x) with respect to Lebesgue measure, then also
the filtering process πν

n has a representation in terms
of densities (denoted by πν

n(x)) given by

πν
n(x) = c·g(

Yn − x

σ
)Lπν

n−1(x)

where again c is normalisation.

3 Example (Linear gaussian process) The first
system class for which the filtering process was cal-
culated explicitely was of course the linear gaussian
case. This example contains no message transmis-
sion and is presented here as a standard example of
filtering.

Xn+1 = FnXn + an + W ′
n

where W ′
n has a gaussian distribution with covariance

matrices {Rn}, {Fn} is a sequence of d× d–matrices
and {an} a sequence of d–dimensional vectors. Fur-
thermore assume X0 has a gaussian distribution with
covariance matrix Γ0. Let the measurement process
be given by the equation

Yn = GnXn + bn + Wn

where Wn has a gaussian distribution with covariance
matries Sn, {Gn} is a sequence of d× l–matrices and
{bn} a sequence of l–dimensional vectors. Then

πn(x) =
1

√

(2π)d det Γn

exp
[

−0.5 (x− µn) Γ−1
n (x− µn)

]

where Γn and µn are given by

Γ−1
n+1 =

(

FnΓnF t + Rn

)−1
+ Gt

nS−1
n Gn

µn+1 = Fnµn + an

+ Γn+1G
t
nS−1

n (Yn+1 −Gn(Fnµn + an)− bn)

These equations are due to Kalman [11] and a direct
consequence of equation (5).
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The Kalman filter is an example where the fil-
tering process admits a parametrisation. This is,
πn(x) = π(x, θn) and θn is given iteratively by a fi-
nite dimensional dynamical system of the form θn =
F (Yn, θn−1). We will discuss in section 5 that this is
in some sense a very unusual situation.

4 Message transmission

The receiver is any device that produces a reasonable
estimate M̂n for the actual message Mn based on
the time series Y1, . . . , Yn. We will show that this
problem can be solved if the conditional probability
ρn(m) := P (Mn = m|Gn) is known.

We now give an expression for ρn(m) in terms of
the filtering process. This establishes the beforemen-
tioned condition between the receiver problem and
the theory of nonlinear filtering.

4 Lemma Let (slightly different from the examples
of section 3 and formula 4)

ϕ1(A, x) := p1P (Xn ∈ A|Xn−1 = x, Mn = 1)
ϕ0(A, x) := p0P (Xn ∈ A|Xn−1 = x, Mn = 0)

Then we have (with ϕ defined as before)

ϕ = ϕ1 + ϕ0

Then

ρν
n(m) =

∫

dϕmπν
n−1

dϕπν
n−1

πν
n(dx)

Proof This follows easily using change of measure
like in the Kallianpur–Striebel formula. An informal
derivation is given in [4]. For the meaning of the
Radon–Nykodim derivative d·

d·· see [3] and the Ap-
pendix �

The performance of a binary communication chan-
nel is usually measured by the Bit Error Rate (BER)
which is defined as

BER =
1

N

N
∑

k=1

|Mk − M̂k|

where Mk is the transmitted message and M̂k is the
received message. It should be kept in mind that in

general, the bit error rate is a random quantity and
depends on N . It is an interesting question whether
the bit error rate converges to a (possibly random)
limit or not.

In any case (ergodic or stationary or nothing) we
will call

P ν(Mk 6= M̂k)

the bit error probability (denoted by BEPµ
k ) where

M̂k is used as an estimator for Mk and ν is the dis-
tribution of X0. We now define the receiver M̂k we
will use throughout the rest of this paper.

5 Definition We set M̂k = 1 if ρν
k(1) > ρν

k(0) and

M̂k = 0 else. Since in fact M̂k depends on ν we will
write M̂ν

k in the following.

Obviously, M̂k is a function of Y1 . . . Yk. Further-
more, this estimator turns out to have a certain min-
imum property. If M̄k is an estimator depending on
Y1 . . . Yk and assuming the values 0 or 1 only, it can
be shown that

P ν(Mk = M̄k) = Eν(ρν
k(M̄k))

whence we have that for any such estimator

P (Mk = M̄k) ≤ P (Mk = M̂ν
k ).

Hence the estimator M̂ν
k yields the least bit error

probability and, in this sense, provides an optimal
estimator. Our first theorem concerning ergodicity
of the bit error rate can be obtained using ergodic
theory of nonlinear filtering.

6 Theorem Suppose µ is a ϕ–invariant measure.
Then the bit error rate

BERN =
1

N

N
∑

k=1

|Mk − M̂µ
k |

converges almost surely to a (possibly random) limit.
If µ is even a unique ϕ–invariant measure satisfying
condition (14), then the limit is almost sure equal to
a constant.

9



Proof We only sketch the main ideas. A full
outline will be given elsewhere. If µ is ϕ–invariant
it follows from theorem 1 in [22] that the distribu-
tion of πµ

n converges to an invariant measure of Π,
the transition semigroup of the filter. Calling this in-
variant measure Φ it turns out that the joint random
variable (Mn+1, π

µ
n) has asymptotic distribution pi·Φ,

Furthermore, the process {Mn+1, π
µ
n} is Markov hav-

ing invariant measure Φ·pi. So the compound process
is asymptotically stationary. Since |Mk−M̂k| can be
expressed as a function of Mk, πµ

k and πµ
k−1 it turns

out to be stationary as well. The first assertion now
follows from Birkhoffs theorem. The second assertion
follows if the filtering process turns out to be ergodic.
Under condition (14), the invariant measure Φ of Π
having barycenter µ is unique (see [22], theorem 2).
However, any other Π–invariant measure must have
a barycenter which is ϕ–invariant. Since there are no
such measures except for µ it turns out that Φ is the
unique invariant measure of the filtering process. By
Lemma 15, (3) the filtering process is ergodic. �

Concerning the asymptotic properties of the bit error
probability we have the following theorem

7 Theorem If µ is an ϕ–invariant measure satis-
fying condition (14), then the BEPµ

k is convergent
and decreasing in k. Call the limit BEPµ. If fur-
thermore ν satisfies the assumption νϕk → µ, then
BEPν

k → BEPµ.

Proof This follows from the fact that the bit error
probability BEPν

k can be written as

BEPν
k

=
1

2
Eν

[

1−

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π

ν
n−1(dx)|dy

]

which is an expectation over a concave function of
πν

n−1. The theorem now follows from the results in
[22]. �

We remark that the transmitter model introduced in
example 2 actually satisfies the conditions of theorem
13 (see Appendix), hence there is a unique invariant
measure satisfying the condition (14). Thus, both
theorems apply.

Theorems 6 and 7 may be of restricted practical
use since a quite restricted receiver model is assumed.
However, the main purpose was to show that theoret-
ical methods of nonlinear filtering translate into the
framework of message transmission.

5 Approximations of the Filter-

ing Process

It was already stated informally in section 3 that the
filtering process in general has a very high complexity
rendering it unfeasible for direct applications. We
will make this a little more precise in this section by
stating some well known results about (non)existence
of finite dimensional filters due to Sawitzki [20] we
will explain later in this section.

For this suitable approximations of the filtering
process turn out to be essential. This is the main
subject of this section. A lot of methods have been
conceived. For an overview and further references see
[4].

The idea of parametric approximation is to consider
a set P of strictly positive integrable functions on E
which are normalized, i.e.

∫

pdλ = 1 for all p ∈ P
and a fixed (not necessarily finite) carrier measure λ
on E. A parametrisation of P is a mapping

p : Θ→ P ; θ 7→ p(·, θ)

where Θ is a subset of a finite dimensional vector
space. The parametrisation is called faithful if θ1 6=
θ2 necessarily yields p(·, θ1) 6= p(·, θ2). Such a set P
together with a faithful p and a carrier measure λ can
be considered as a parametrized family of probability
density functions (pdf’s) with respect to λ as well as
a parametrized set in PE .

The basic idea of parametric approximation is to
chose a parametrized family (P , p, λ) and replace πn

by a sequence π̃n in P which by p can be pulled back
to a sequence θn in Θ. More formally, this means
that there is a map

F : R×Θ→ Θ (7)

defining the stochastic parameter process

θn+1 = F (yn+1, θn) (8)
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so that π̃n = p(·, θn). Actually, the filtering pro-
cess is called finite-dimensional if such a represen-
tation can be found that holds exactly rather than
just approximately. The result of Savitzki states that
this is the case if and only if P (Xn ∈ A|Yn) and
P (Xn ∈ A|Y1...Yn−1) are of exponential form in Xn.
Whether a given model admits a finite dimensional
filter is relatively easy to decide. However, it is not
easy to use Savitzki’s results to create state space
models admitting finite dimensional filters. In [19] a
Laplace transform approach is used. However, start-
ing from a linear observation equation Runggaldier
and Spizzichino arrive at a linear state space model
as well.

For the approximation, a certain fitness criterion
between the true and the approximated filtering pro-
cess is required. In [4] we employed the Kullback
Leibler distance which proved to be suitable from a
computational point of view. We will now describe
the general approximation scheme. Details as well as
numerical simulations may be found in [4].

Let µ, ν ∈ PE , ν � µ. Then the Kullback–Leibler
distance

KL(µ, ν) :=

∫

E

log(
dν

dµ
)dν =

∫

E

dν

dµ
log(

dν

dµ
)dµ

is positive (but maybe ∞), vanishes if and only if
ν = µ and is a convex function of both µ and ν. We
will now define the approximative filtering process in
the course of the following

8 Definition Suppose a parametrized set of pdf’s
(P , p, λ) is given as well as a filtering process πn. Sup-
pose the following requirements are met:

1. We assume the initial measure π0 := P (X0 ∈ ·)
to be given and fixed throughout this chapter.

2. πn � λ. The densities will be denoted by πn(x).
Since p(·, θ) ∼ λ, we also have πn � p(·, θ) for
all θ.

3. For any ν � λ, KL(p(·, θ), ν) is a convex function
on the convex parameter space Θ ⊂ R

d.

4. For any ν � λ, there is a θ(ν) ∈ Θ with the
property

KL(p(·, θ(ν)), ν) ≤ KL(p(·, θ), ν) ∀θ ∈ Θ

and equality implies θ = θ(ν). So θ(ν) is the
unique minimizer of KL(p(·, θ), ν)

Then we can define the Approximative Filtering Pro-
cess {θn}n≥0 on Θ by

θ0 := θ(π0),
θn := θ(S(Yn, p(·, θn−1)))

Obviously θn is a function of θn−1 and Yn. We will
also call

π̃n := p(·, θn)

the approximative filtering process.

6 General Error Bound for the

Approximative Filtering Pro-

cess

In section 5 we proposed a scheme to approximate
the filtering process on the level of probability dis-
tributions. Suppose a stochastic process π̃n on PE

intended to be an approximation of the correct fil-
tering process πn is given. The question is whether
π̃n is a good approximation of πn or not. A possi-
ble way to characterize “good approximations” is to
calculate the KL–distance between π̃n and πn. How-
ever, a more natural criterion is the accuracy up to
which expectations like

∫

f(x)πn(dx) are reproduced
using π̃n instead of πn. If π̃n � πn and f ∈ CB(E),
then

|

∫

f(x)πn(dx) −

∫

f(x)π̃n(dx)|

≤

∫

|f(x)||
dπ̃n

dπn
− 1|πn(dx)

≤ max
x
|f(x)|

∫

|
dπ̃n

dπn
− 1|πn(dx)

The quantity TV (µ, ν) :=
∫

|dµ
dν − 1|ν(dx) is called

the Total Variation Distance. If µ, ν have densities
with respect to Lebesgue measure it can be written
in the form

TV (µ, ν) :=

∫

|µ− ν|dx

11



It turns out that TV is symmetric, convex in both ar-
guments, vanishes iff µ = ν and satisfies the triangle
inequality (in contrast to the KL–distance).

9 Lemma 1. If ϕ is a Markov kernel, then

TV (ϕµ, ϕν) ≤ TV (µ, ν)

2. Between KL and TV the following relations hold

TV (µ, ν) ≤ 2
√

1− exp(−KL(µ, ν))

TV (µ, ν) ≤ 2
√

KL(µ, ν)

The first inequality is called Bretagnole–Huber
Inequality, the second Furstemberg Inequality.
In both inequalities, the right hand side is a con-
cave function of KL.

Proof For the first assertion see [16]. For the
Bretagnole–Huber inequality see [23]. The second
inequality is an easy consequence of the first. �

So far there is not the least evidence that the algo-
rithms defined in 8 will actually work. The process
π̃n is controlled only by θn which in turn depends
on θn−1 and Yn, that is, has only restricted input
from outside. In the course of the approximation, no
reference to πn is made. This may lead to an un-
bounded amplification of errors. However, results on
the stability property of the nonlinear filter [1, 6, 5]
give hope that the filter may be insensitive to errors
in the initial condition which leads to a damping of
the errors in the course of the approximation. We
will first consider again the tentmap example (Eq. 3)
already encountered in section 3 exemplifying our as-
sertion and then formalize the statements.

Figure 2 shows the time evolution of two proba-
bility distributions (more specifically their densities)
under the operator S(0.25, ·) (see Eq. 6) in the left
resp. right column. The first row shows the initial
densities which have been chosen ad libitum. The
solid line curves in the second row show the densities
after applying the transition kernel. The dash–dot
line is g( 0.25−x

σ ). The third row shows the final prod-
uct after normalisation. It is apparent that in effect

the densities are much more similar than at the be-
gining. This observation is of general nature. We
will however not prove the stability for this model
(see end of this section) but for the models given in
example 2.

For our analysis we need yet another metric for
measures called the Hilbert metric. Call two mea-
sures µ, ν ∈ ME comparable if there are two positive
constants c1, c2 so that

c1 ≤
µ(A)

ν(A)
≤ c2 ∀A.

This is actually equivalent to µ ∼ ν and

c1 ≤
dµ

dν
≤ c2

The Hibert Distance is defined as

H(µ, ν) := inf(log(c2/c1))

where the infimum is taken over all such c1, c2. We
have the following properties of H

1. H is symmetric

2. H vanishes iff µ = c·ν for a positive c

3. H fulfills the triangle inequality

4. H(aµ, bν) = H(µ, ν) for positive constants a, b

5. If f is positive and in L1, define the measures
dµ̄ = fdµ, dν̄ = fdν. Then H(µ̄, ν̄) = H(µ, ν)

This immediately yields for the filtering process

H(S(y, µ), S(y, ν)) = H(ϕµ, ϕν)

since the normalisation and the multiplication with
g(· · · ) cancels out (see [1]). Furthermore, the Hilbert
distance has outstanding properties in connection
with positive operators. We restrict our attention
to Markov transition kernels. If µ, ν are comparable,
then so are ϕµ, ϕν and

H(ϕµ, ϕν) ≤ H(µ, ν)

Furthermore,

sup
0<H(µ,ν)<∞

H(ϕµ, ϕν)

H(µ, ν)
≤ tanh(

∆

4
)

12



where
∆ := sup

µ,ν∈PE

H(ϕµ, ϕν)

is the projective diameter of ϕ (see [1, 2]). For a
Markov kernel satisfying the conditions of theorem
13 we have ∆ ≤ 2 log(c1/c2), whence

H(ϕµ, ϕν) ≤ τH(µ, ν)

where τ = tanh( log(c1/c2)
2 ) < 1.

This analysis shows that such Markov kernels have
a negative Lyapunov exponent with respect to the
Hilbert metric. According to the properties of the
Hilbert metric, this behaviour immediately carries
over to the filter and will be exploited in our error
analysis to follow soon. The technique of using H in
connection with filtering was (to our knowledge) first
used in [1].

A connection to the total variation distance is given
in the following lemma

10 Lemma In general

TV (µ, ν) ≤
2

log 3
H(µ, ν)

where the right hand side is maybe infinite. Further-
more, if ϕ satisfies the conditions of theorem 13, then

H(ϕµ, ϕν) ≤ 2 log(1 +
c2

c1
TV (µ, ν))

Proof The first inequality is due to Atar and
Zeitouni [1]. The second inequality is due to Kushner
and Budhiraja [5]. �

Now we are ready to embark for the first estimate on
the error of our approximative filtering process. Let

• {Xn} be a Markov process satisfying the condi-
tions of theorem 13

• πn be the true filtering process

• π̃n be a process obtained by the approximation
scheme 8

• Sn
k (µ) := S(Yn, S(Yn−1, S(. . . S(Yk, µ) . . .) be

the k + 1 fold iterate of S with arguments µ and
Yk . . . Yn, where, if k > n we set Sn

k (µ) = µ. We
also write Sn(µ) := S(Yn, µ).

Then a direct application of the triangle inequality
yields

TV (πn, π̃n) ≤ TV (Sn(π̃n−1), π̃n)

+
n−1
∑

k=1

TV (Sn
k (π̃k−1), S

n
k+1(π̃k))

+ TV (Sn
1 (π0), S

n
1 (π̃0))

(9)

The first term is by the Bretagnole–Huber inequality
bounded by

TV (Sn(π̃n−1), π̃n) ≤ 2
√

1− exp(−KL(Sn(π̃n−1), π̃n))

The other terms concern comparable probability
measures, so we apply the Atar–Zeitouni inequality
and the Kushner–Budhiraja inequality to get

TV (Sn
k (π̃k−1), S

n
k+1(π̃k))

≤
2

log 3
H(Sn

k (π̃k−1), S
n
k+1(π̃k))

≤
2

log 3
τn−(k+1)H(Sk+1

k (π̃k−1), Sk+1(π̃k))

≤
2

log 3
τn−(k+1)H(ϕSk(π̃k−1), ϕπ̃k)

≤
4

log 3
τn−(k+1) log

(

1 +
c2

c1
TV (ϕSk(π̃k−1), ϕπ̃k)

)

Since log(1 + c2

c1
x) ≤ c2

c1
x we get finally using again

the Bretagnole–Huber inequality

TV (Sn
k (π̃k−1), S

n
k+1(π̃k))

≤ 8
c2

c1 log 3
τn−(k+1)

√

1− exp(−KL(Sk(π̃k−1), π̃k))

In a similar manner, the last term can be treated to
give

TV (Sn
1 (π0), S

n
1 (π̃0))

≤ 8
c2

c1 log 3
τn−1

√

1− exp(−KL(π0, π̃0))

Since 2 ≤ 8 c2

c1 log 3 =: C we get finally

TV (πn, π̃n) ≤
C

τ

n
∑

k=0

τn−kRk (10)
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where Rk is the approximation residual given by

Rk :=
√

1− exp(−KL(Sk(π̃k−1), π̃k))

if k > 0 and by

R0 :=
√

1− exp(−KL(π0, π̃0))

if k = 0.
Recall that KL(Sk(π̃k−1), π̃k) (resp. KL(π0, π̃0)) is

exactly the quantity we minimize in the approxi-
mation sheme. Indeed, π̃k is chosen to minimize
KL(Sk(π̃k−1), q), where q varies over the parametric
family of distributions. Since

√

1− exp(−x) is in-
creasing, the algorithm “optimizes” the bound (10).

Furthermore, remark that the calculations circum-
vent Hilbert distances of the form H(Sk(π̃k−1), π̃k),
whence we don’t need to assume that Sk(π̃k−1) and
π̃k are comparable. This would be a quite inconve-
nient restriction of the parametrized families.

The whole analysis was done under the assumption
that {Xn} satisfies the conditions of theorem 13. If
this is not the case, the Kushner–Budhiraja inequal-
ity is not valid and furthermore the Lyapunov expo-
nent with respect to the Hilbert metric may be 1, so
the filter is not so easily proved to be stable. In this
case a more involved analysis of the TV distance is
required. Basically the same considerations apply if
we know that

lim
n→∞

1

n
log sup

TV (Sn
1 (µ), Sn

1 (ν))

TV (µ, ν)
< 1 (11)

where the supremum should not be taken over all
µ, ν ∈ PE but only over the restricted set

{S(yn, S(yn−1, . . . , S(y1, µ) . . .)); µ ∈ P , yi ∈ R}

where P is the parametrized set of distributions cho-
sen for the approximations. This is basically the set
of distributions that may appear in the course of the
approximation. The existence of the limit in (11)
may be shown using Kingmans subadditive ergodic
theorem [14]. We have not carried out the analysis,
but we would like to remark that the nonlinear filter
for CSK–schemes does not satisfy the conditions of
theorem 13 and in fact is not insensitive to its initial
condition in general. Suppose that in the CSK setup,

f0 and f1 have two distinct periodic orbits in com-
mon, that is x̄ = {x1 . . . xp} and z̄ = {z1 . . . zq} are
periodic orbits for both f0 and f1. Then the filter-
ing process initialized with a measure supported on x̄
will always have support on x̄. The filtering process
correctly reproduces the fact that Xn cannot escape
from x̄. The same holds for the periodic orbit z̄. So
the two filtering processes initialized with a measure
supported on x̄ and on z̄ respectively will never be-
come similar in any sense if n goes to infinity.

However, looking back to figure 2 we see apparently
a stability property. The main point here seems to
be that the densities we start with in our numerical
example are smooth. Then it is pretty obvious how
the stability emerges: The Frobenius–Perron opera-
tor stretches the function and thus reduces all slopes
(in this example, by a factor of two). Then multiply-
ing with g(. . .) (dash–dot line) effectively cuts out a
small part of the function leading to a further regu-
larisation. So for CSK–schemes, the filter seems to
be stable for a restricted class of initial conditions.
We conjecture that this is the case for initial distri-
butions having a density of bounded variation with
respect to Lebesgue measure. This would suffice for
most applications.

In figure 3 we show a logarithmic plot of the TV of
two filtering processes for the tentmap example (Eq. 3
in section 3) initialized with two different densities.
The Lyapunov exponent of the filter seems to be ∼=
−0.88 and the stability of the filter is apparent in this
case.

7 A Bound on the Bit Error

Rate

We have seen how to build the optimal causal receiver
using the nonlinear filtering process. Since the non-
linear filtering process cannot be calculated in gen-
eral, we suggested several approximation schemes. In
section 6 we gave a bound on the error between the
true and the approximative filtering process. In this
section we show the implications of this result on the
bit error rate obtained by receivers based on approx-
imative filtering processes rather than the true one.
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Consider the function

fn(y) := |

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π

ν
n−1(dx)|

From section 4 we know that

BEPν
n =

1

2
Eν

[

1−

∫

fn(y)dy

]

.

we now have using the triangle inequality

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π

ν
n−1(dx)|

= |

∫

1

σ
g(

y − h(x)

σ
)

× (ϕ1 − ϕ0)(π
ν
n−1 − π̃ν

n−1 + π̃ν
n−1)(dx)|

≤ |

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π̃

ν
n−1(dx)|

+ |

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)(π

ν
n−1 − π̃ν

n−1)(dx)|

(12)

The second term can be bounded using the triangle
inequality

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)(π

ν
n−1 − π̃ν

n−1)(dx)|

≤

∫

1

σ
g(

y − h(x)

σ
)|ϕ(πν

n−1 − π̃ν
n−1)|(dx)

The integrant is an integarble function of x and y so
we can replace the second term in (12), integrate over
y and reverse the order of integration in the second
term to get

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π

ν
n−1(dx)|dy

≤

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π̃

ν
n−1(dx)|dy

+ TV (ϕπν
n−1, ϕπ̃ν

n−1)

≤

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π̃

ν
n−1(dx)|dy

+ TV (πν
n−1, π̃

ν
n−1),

since TV (ϕ·, ϕ··) ≤ TV (·, ··) (Lemma 9). In exactly
the same manner (exchanging the role of π and π̃)

one obtains
∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π

ν
n−1(dx)|dy

≥

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π̃

ν
n−1(dx)|dy

− TV (πν
n−1, π̃

ν
n−1)

If we define the quantity

˜BEP
ν

k

:=
1

2
Eν

[

1−

∫

|

∫

1

σ
g(

y − h(x)

σ
)(ϕ1 − ϕ0)π̃

ν
n−1(dx)|dy

]

which is the same as BEPν
k but with π replaced by π̃

we can write our estimate as

|BEPν
k − ˜BEP

ν

k | ≤
1

2
EνTV (πν

n−1, π̃
ν
n−1)

We assume now the validity of the estimate (10).
Then we get

|BEPν
k −

˜BEP
ν

k | ≤
C

2τ

n
∑

k=0

τn−kEνRk

So far this estimate is of restricted practical use since
both the approximated bit error probability ˜BEP as
well as the right hand side of the above estimate in-
volve the true expectation Eν .

Under the additional assumption that the com-
pound process {Yn, θn} is ergodic, then we can com-
pute EνRn and ˜BEPn in an offline experiment, since
Rn is a function of θn−1 and Yn, and furthermore

˜BEPn is the expectation over a function depending
on θn−1 only. Then both ˜BEPn and EνRn are asymp-
totically equal to a constant depending on the system
and the approximation algorithm and can be com-
puted numerically by an empirical mean over a long
realisation.

8 Conclusion

In this paper we investigated a certain class of com-
munication schemes. Basically we consider a trans-
mitter whose internal state is a Markov process de-
pending on a message which is in turn a binary se-
quence of independend and identically distributed
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random variables. At the receiver a time series {Yn}
is recorded, where Yn is a function of the transmitter
state plus additive noise. We formulate the receiver
problem as the question: What is the value of the ac-
tual message bit Mn given the time series Y1, . . . , Yn.
We show that the optimal reveiver M̂n (giving the
least probability of errors) can be obtained using re-
sults from nonlinear filtering. Furthermore, straight-
forward application of known results on ergodic prop-
erties of the nonlinear filter leads to results on asymp-
totic properties of M̂n.

A quite well known problem of the optimal nonlin-
ear filter is the unbounded growth of its complexity.
This problem appears to be present also in our com-
munication setup. This underlines the necessity of
approximations of the nonlinear filter and in turn of
the optimal receiver M̂n. Assuming a quite general
approximation scheme we derive errorbounds on the
approximative nonlinear filter as well as on the opti-
mal receiver. It turns out that the validity of these
calculations essentially depends on a stability prop-
erty of the nonlinear filter or, roughly speaking, on
its largest Lyapunov exponent.

The following questions left open in the paper
merit further investigation. First, a lot of interesting
and frequently investigated communication schemes
(either novel or classical) do not fall into the classes
investigated here. These are (among others)

• Shift keying schemes where two independent dy-
namical systems run in parallel. The output
of the first or the second system is transmit-
ted (for a certain amount of time) depending on
whether the bit to be transmitted was zero or
one, respectively. Sometimes two chaotic sys-
tems are used (see for example [17]), whence
this setup, although different from example 1,
is called Chaotic Shift Keying as well.

• Setups where the transmitted signal is again the
output of a dynamical system, but now the state
space is divided into two regions representing the
bit zero or one, respectively. By nonlinear con-
trol methods this system is steered into one of
the regions after the other depending on the bits
to be sent. Of course, at the receiver side the
problem is to locate the position of the system

in state space to recover the bits. Of particu-
lar interest are systems where the control input
vanishes for a possibly restricted set of messages.
This indeed can be the case for chaotic systems,
where the remaining set of messages is still suf-
ficiently large for communication [8]. At the re-
ceiver side the system then can be considered as
autonomous.

• System with more users involved

• Communication systems based on synchronisa-
tion. In [13] a setup is considered where the
message (actually a continuous valued message
is permitted) appears in the state space equa-
tion and in the transmitted signal. In the case
of no measurement noise a synchronisation based
receiver reveals the message with asymptotically
vanishing error. Synchronisation in the presence
of chaos, however is known to be quite sensi-
tive to noise in the transmission line, so the re-
ceiver fails for even small amounts of measure-
ment noise. In other words, the receiver for the
noise free case appears to be a too simple ap-
proximation of the optimal receiver and has to
be replaced by more sophisticated devices.

A further field of investigation may concern CSK–
Schemes. It turned out that CSK–schemes often do
not fulfill the assumptions required to obtain the re-
sults of the paper. However, this does not mean that
these results cannot be extended to CSK–schemes,
maybe in weaker form. A first step obviously is to
give conditions on the ergodicity of CSK–schemes,
which apparently in many investigations published so
far was tacitly assumed. We already mentioned that
a modified aperiodicity assumption seem to make the
analysis of [18] applicable also in this case. Fur-
thermore, proving the negativity of Lyapunov expo-
nents for the nonlinear filtering process associated
with CSK–schemes is quite important. We already
mentioned that a possible route goes via densities of
bounded variation.
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Ergodic Theory of Markov Pro-

cesses

We recall some results about ergodic properties of
Markov processes. We will keep the same notation
as in the paper, namely let

• E a polish (complete separable metric) space

• BE the Borel field

• PE the space of probability measures on E

• Cb(E) the spaces of continuous bounded func-
tions on E

• B(PE) the Borel field of PE enowned with the
weak topology

We write as usual
∫

f(x)P (dx)

for the lebesgue integral of f over P . A measure
Q is absolutely continuous with respect to P (write
Q � P ) if P (A) = 0 always implies Q(A) = 0. In
this case there is a function denoted by dQ

dP (Radon–
Nykodym derivative, see [3]) with the property

Q(A) =

∫

A

dQ

dP
(x)P (dx).

If both Q� P and P � Q, they are called equivalent
and we write P ∼ Q.

11 Definition A random process {Xn} is station-
ary if, for any k and sets Aj ∈ BE the probability
P (Xn+1 ∈ A1, . . . , Xn+k ∈ Ak) does not depend on
n, i.e. is invariant with respect to time shifts.

12 Lemma A Markov process is stationary iff the
probability measure ν(A) := P (X0 ∈ A) has the
property

ν(A) =

∫

ϕ(A, x)ν(dx)

Such a measure is called invariant.

Proof See [3] �

The question arises wether for a given transition ker-
nel ϕ(A, x) there is an invariant measure ν so that
the canonical process on (E∞, P ν ,B∞

E ) is stationary.
A fruitful idea is to consider iterates of the kernel:
Define ϕ(1)(A, x) := ϕ(A, x) and iteratively

ϕ(n)(A, x) :=

∫

ϕ(A, z)·ϕ(n−1)(dz, x).

The following theorem gives conditions under which
the sequence ϕ(n)(A, x) generated by a Markov tran-
sition kernel converges to an invariant measure:

13 Theorem Suppose there is a finite measure µ
and two positive constants c1, c2 with the property

c1µ ≤ ϕ(·, x) ≤ c2µ for all x ∈ E. (13)

then there is an invariant probability measure s ab-
solutely continuous with respect to µ. Furthermore,
there are constants K ≥ 0 and 0 < δ < 1 independent
of x with

sup
A∈BE

|ϕ(n)(A, x)− s(A)| ≤ Kδn

Proof The theorem is a slight modification of
results presented in [7], chapter V,§5. �

A trivial verification shows that if ϕ(n)(·, x) satisfies
the conditions of theorem 13, then we also have the
property

lim
n→∞

∫

|fϕ(n)(x) − s(f)|s(dx) = 0 ∀fCb(E)

(14)
Condition (14) (which is weaker than the result of
theorem (13)) will prove to be essential for ergodic
properties of the filtering process.
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Starting with s as the initial distribution,
the resulting probability on the probability space
(E∞,B∞

E ) is denoted by P s, as for every proba-
bility measure ν on E the resulting probability on
(E∞,B∞

E ) is denoted by P ν .
Stationary processes may or may not be ergodic.

We recall the basic concepts of ergodic theory. Let
{Xn}n∈N be a stationary process. An event A is in-
variant if there is a fixed B ∈ B∞ so that for any k,
A can be represented as

A := {ω ∈ Ω; (Xk, Xk+1, . . .) ∈ B}.

The invariant events form a σ–algebra denoted by I.
This is the basis for the following famous result:

14 Theorem (Birkhoff’s ergodic theorem) Let
Xn be a stationary process, E|X1| < ∞. Then the
following limit holds a.s. and in L1:

1

n

n
∑

k=1

Xk → E(X1|I)

Proof See [3] �

If Xn are iid random variables, all invariant events
have probability zero or one (Kolmogorovs zero–
one law). Obviously, then E(X1|I) = E(X1), and
Birkhoff’s ergodic theorem translates into the strong
law of large numbers. To generalize this, call a pro-
cess ergodic, if all invariant events have probability
zero or one. Obviously, a process is ergodic iff all
random variables measurable with respect to I are
a.s. constant. Hence, if E|X1| < ∞ and the process
is ergodic, E(X1|I) = E(X1) and Birkhoff’s theorem
gives

1

n

n
∑

k=1

Xk → E(X1)

both a.s. and in L1.
Obviously, conditions for ergodicity are quite es-

sential:

15 Lemma 1. Let f : E∞ → R be measurable.
Then the process

Yn := f(Xn, Xn+1, . . .)

is stationary (ergodic) if Xn is stationary (er-
godic).

2. A stationary process Xn is ergodic iff all random
variables measurable with respect to I are a.s.
constant.

3. If a process Xn admits a unique stationary mea-
sure it must be ergodic

Back to Markov processes we have the following more
special criteria

16 Lemma 1. If E is compact, there are always
invariant measures for ϕ.

2. If an invariant measure ν for ϕ is unique, then
P ν must be ergodic

3. Let ν be an invariant measure for ϕ. Then if any
f ∈ L1(E, ν) with the property

fϕ(n)(x) = f(x)

is ν–almost sure constant, then P ν must be er-
godic.
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All Words code words
of Length 4 of Length 6

0000 010001
0001 000011
0010 010100
0011 000111
0100 011001
0101 001010
0110 011101
0111 001111
1000 110000
1001 100011
1010 110101
1011 100110
1100 111001
1101 101011
1110 111100
1111 101111

(a) Codetable

. . . |0101|1001|. . . Message
↓

Encoder

↓
. . . |001010|100011|. . . Correspondig code words

↓

Channel

↓
. . . |001011|100010|. . . Transmitted code words

↓

Decoder

↓
. . . |0101|1001|. . . Decoded Message

(b) Communication Scheme

Figure 1: The panel 1(a) shows all words of length 4
(first column). The second column contains possible
code words of length 6. Panel 1(b) shows a communi-
cation setup using the code.

Two initial probabilities

←
T

im
e

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 2: The time evolution of two probability dis-
tributions (more specifically their densities) under
the operator S(0.25, ·) (see Eq. 6) is shown in the
left resp. right column. The first row shows the ini-
tial densities. The second row shows the probabilities
after applying the transition kernel (solid line). The
dash–dot line is g((0.25−x)/σ). The third row shows
the final product after normalisation.
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Figure 3: A logarithmic plot of the TV of two fil-
tering processes for the tentmap example initialized
differently. The stability of the filter is apparent in
this case.
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