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A Dynamical Model for Generating Synthetic
Electrocardiogram Signals

Patrick E. McSharry�, Gari D. Clifford, Lionel Tarassenko, and Leonard A. Smith

Abstract—A dynamical model based on three coupled ordinary
differential equations is introduced which is capable of generating
realistic synthetic electrocardiogram (ECG) signals. The operator
can specify the mean and standard deviation of the heart rate, the
morphology of the PQRST cycle, and the power spectrum of the
RR tachogram. In particular, both respiratory sinus arrhythmia at
the high frequencies (HFs) and Mayer waves at the low frequencies
(LFs) together with the LF/HF ratio are incorporated in the model.
Much of the beat-to-beat variation in morphology and timing of
the human ECG, including QT dispersion and R-peak amplitude
modulation are shown to result. This model may be employed to
assess biomedical signal processing techniques which are used to
compute clinical statistics from the ECG.

Index Terms—Dynamical model, heart rate variability (HRV),
Mayer waves, QRS morphology, QT-interval, respiratory sinus ar-
rhythmia, RR-interval, RR tachogram, synthetic ECG.

I. INTRODUCTION

T HE electrocardiogram (ECG) is a time-varying signal re-
flecting the ionic current flow which causes the cardiac

fibers to contract and subsequently relax. The surface ECG is
obtained by recording the potential difference between two elec-
trodes placed on the surface of the skin. A single normal cycle of
the ECG represents the successive atrial depolarization/repolar-
ization and ventricular depolarization/repolarization which oc-
curs with every heartbeat. These can be approximately associ-
ated with the peaks and troughs of the ECG waveform labeled
P, Q, R, S, and T as shown in Fig. 1.

Extracting useful clinical information from the real (noisy)
ECG requires reliable signal processing techniques [1]. These
include R-peak detection [2], [3], QT-interval detection [4],
and the derivation of heart rate and respiration rate from the
ECG [5], [6]. The RR-interval is the time between successive
R-peaks, the inverse of this time interval gives the instan-
taneous heart rate. A series of RR-intervals is known as a
RR tachogram and variability of these RR-intervals reveals
important information about the physiological state of the
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Fig. 1. Morphology of a mean PQRST-complex of an ECG recorded from a
normal human.

subject [7]. At present, new biomedical signal processing
algorithms are usually evaluated by applying them to ECGs
in a large database such as the Physionet database [8]. While
this gives the operator an indication of the accuracy of a given
algorithm when applied to real data, it is difficult to infer how
the performance would vary in different clinical settings with a
range of noise levels and sampling frequencies. Having access
to realistic artificial ECG signals may facilitate this evaluation.

This paper presents a model for generating a synthetic ECG
signal with realistic PQRST morphology and prescribed heart
rate dynamics. The aim of this model is to provide a standard
realistic ECG signal with known characteristics, which can be
generated with specific statistics such as the mean and stan-
dard deviation of the heart rate and frequency-domain char-
acteristics of heart rate variability (HRV), for instance, low-
frequency/high-frequency (LF/HF) ratio, defined as the ratio
of power between 0.015–0.15 Hz and 0.15–0.4 Hz in the RR
tachogram [7]. By generating a signal which represents atyp-
ical human ECG, this facilitates a comparison of different signal
processing techniques. A synthetic ECG can be generated with
different sampling frequencies and different noise levels in order
to establish the performance of a given technique. This perfor-
mance can be presented, for example, as the number of true pos-
itives, false positives, true negatives, and false negatives for each
test. Such performance assessment could be used as a “stan-
dard” and would enable clinicians to ascertain which biomedical
signal processing techniques were best for a given application.

This paper is organized as follows. Section II summarizes the
physiological mechanisms underlying the cardiac cycle and re-
views the morphological variability, which is reflected in the
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ECG signal. A brief review of HRV is presented in Section III.
The dynamical model is introduced in Section IV and investi-
gated in Section V. Section VI concludes and discusses exten-
sions to the model which may be useful for simulating specific
disorders.

II. ECG MORPHOLOGY

Each beat of the heart can be observed as a series of deflec-
tions away from the baseline on the ECG. These deflections re-
flect the time evolution of electrical activity in the heart which
initiates muscle contraction. A single sinus (normal) cycle of
the ECG, corresponding to one heartbeat, is traditionally labeled
with the letters P, Q, R, S, and T on each of its turning points
(Fig. 1). The ECG may be divided into the following sections.

• P-wave: A small low-voltage deflection away from the
baseline caused by the depolarization of the atria prior to
atrial contraction as the activation (depolarization) wave-
front propagates from the SA node through the atria.

• PQ-interval: The time between the beginning of atrial
depolarization and the beginning of ventricular depolar-
ization.

• QRS-complex: The largest-amplitude portion of the ECG,
caused by currents generated when the ventricles depo-
larize prior to their contraction. Although atrial repolar-
ization occurs before ventricular depolarization, the latter
waveform (i.e. the QRS-complex) is of much greater am-
plitude and atrial repolarization is therefore not seen on
the ECG.

• QT-interval: The time between the onset of ventricular
depolarization and the end of ventricular repolarization.
Clinical studies have demonstrated that the QT-interval
increases linearly as the RR-interval increases [4]. Pro-
longed QT-interval may be associated with delayed ven-
tricular repolarization which may cause ventricular tach-
yarrhythmias leading to sudden cardiac death [9].

• ST-interval: The time between the end of S-wave and the
beginning of T-wave. Significantly elevated or depressed
amplitudes away from the baseline are often associated
with cardiac illness.

• T-wave: Ventricular repolarization, whereby the cardiac
muscle is prepared for the next cycle of the ECG.

III. H EART RATE VARIABILITY

Analysis of variations in the instantaneous heart rate time
series using the beat-to-beat RR-intervals (the RR tachogram)
is known as HRV analysis [7], [10]. HRV analysis has been
shown to provide an assessment of cardiovascular disease [11].
The heart rate may be increased by slow acting sympathetic ac-
tivity or decreased by fast acting parasympathetic (vagal) ac-
tivity. The balance between the effects of the sympathetic and
parasympathetic systems, the two opposite acting branches of
the autonomic nervous system, is referred to as the sympatho-
vagal balance and is believed to be reflected in the beat-to-beat
changes of the cardiac cycle [7]. The heart rate is given by the
reciprocal of the RR-interval in units of beats per minute. Spec-
tral analysis of the RR tachogram is typically used to estimate

Fig. 2. Typical trajectory generated by the dynamical model (1) in the 3-D
space given by (x, y, z). The dashed line reflects the limit cycle of unit radius
while the small circles show the positions of the P, Q, R, S, and T events.

the effect of the sympathetic and parasympathetic modulation
of the RR-intervals. The two main frequency bands of interest
are referred to as the LF band (0.04–0.15 Hz) and the HF band
(0.15–0.4 Hz) [10]. Sympathetic tone is believed to influence
the LF component whereas both sympathetic and parasympa-
thetic activity have an effect on the HF component [7]. The ratio
of the power contained in the LF and HF components has been
used as a measure of the sympathovagal balance [7], [10].

Respiratory sinus arrhythmia (RSA) [12], [13] is the name
given to the oscillation in the RR tachogram due to parasympa-
thetic activity which is synchronous with the respiratory cycle.
The RSA oscillation manifests itself as a peak in the HF band of
the spectrum. For example, 15 breaths per minute corresponds to
a 4-s oscillation with a peak in the power spectrum at 0.25 Hz.
A second peak is often found in the LF band of the spectrum
at approximately 0.1 Hz. While the cause of this 10-s rhythm
is strongly debated, one possible explanation is that it may be
due to baroreflex regulation which creates the so-calledMayer
wavesin the blood pressure signal [14].

IV. DYNAMICAL MODEL

The model generates a trajectory in a three-dimensional (3-D)
state–space with coordinates (, , ). Quasi-periodicity of the
ECG is reflected by the movement of the trajectory around an
attracting limit cycle of unit radius in the (, ) plane. Each rev-
olution on this circle corresponds to one RR-interval or heart-
beat. Interbeat variation in the ECG is reproduced using the mo-
tion of the trajectory in the direction. Distinct points on the
ECG, such as the P, Q, R, S, and T are described byeventscor-
responding to negative and positive attractors/repellors in the
direction. These events are placed at fixed angles along the unit
circle given by , , , , and (see Fig. 2). When the
trajectory approaches one of these events, it is pushed upwards
or downwards away from the limit cycle, and then as it moves
away it is pulled back toward the limit cycle.
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TABLE I
PARAMETERS OF THEECG MODEL GIVEN BY (1)

Fig. 3. Morphology of one PQRST-complex of the ECG.

The dynamical equations of motion are given by a set of three
ordinary differential equations

(1)

where , mod ,
atan (the four quadrant arctangent of the real parts of the
elements of and , with atan , and is the
angular velocity of the trajectory as it moves around the limit
cycle. Baseline wander was introduced by coupling the baseline
value in (1) to the respiratory frequency using

(2)

where mV.
These equations of motion given by (1) were integrated nu-

merically using a fourth-order Runge–Kutta method [15] with a
fixed time step where is the sampling frequency.

Visual analysis of a section of typical ECG from a normal
subject was used to suggest suitable times (and, therefore, an-
gles ) and values of and for the PQRST points. The times
and angles are specified relative to the position of the R-peak as
shown in Table I.

A trajectory generated by (1) in three dimensions corre-
sponding to ( , , ) is illustrated in Fig. 2. This demonstrates
how the positions of the events, , , , act on the
trajectory in the direction as it precesses around the unit
circle in the ( , ) plane. The variable from the 3-D system
(1) yields a synthetic ECG with realistic PQRST morphology
(Fig. 3). The similarity between the synthetic ECG and the real

Fig. 4. Power spectrumS(f) of the RR-interval process with a LF/HF ratio
of � =� = 0:5.

ECG may be seen by comparing Fig. 3 with Fig. 1. Note that
noise has not been added to the model at this point.

By contrasting the dynamical model (1) with the mechanisms
underlying the cardiac cycle, it is obvious that the time required
to complete one lap of the limit cycle is equal to the RR-in-
terval of the synthetic ECG signal. Variations in the length of
the RR-intervals can be incorporated by varying the angular ve-
locity .

The effects of both RSA and Mayer waves in the power spec-
trum of the RR-intervals are incorporated by generating
RR-intervals which have a bimodal power spectrum consisting
of the sum of two Gaussian distributions

(3)

with means , and standard deviations, . Power in the
LF and HF bands are given by and , respectively, whereas
the variance equals the total area , yielding an
LF/HF ratio of . Fig. 4 shows the power spectrum
given by , , , . and

. The Gaussian frequency distribution is motivated
by the typical power spectrum of a real RR tachogram [7].

An RR-interval time series with power spectrum is
generated by taking the inverse Fourier transform of a sequence
of complex numbers with amplitudes and phases which
are randomly distributed between 0 and. By multiplying
this time series by an appropriate scaling constant and adding
an offset value, the resulting time series can be given any re-
quired mean and standard deviation. Suppose that repre-
sents the time series generated by the RR-process with power
spectrum . The time-dependent angular velocity of
motion around the limit cycle is then given by

(4)

In this way, the series of RR-intervals of the resultant synthetic
ECG will also have a power spectrum equal to ; this will
be demonstrated in Section V.
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Fig. 5. ECG generated by dynamical model: (a) 10 s and (b) 50 s.

V. RESULTS

The synthetic ECG (Fig. 5) illustrates the modulation of the
QRS-complex due to RSA and Mayer waves. Observational
uncertainty is incorporated by adding normally distributed
measurement errors with mean zero and standard deviation
0.025 mV [Fig. (6a)], yielding a similar signal to a segment of
real ECG from a normal human [Fig. (6b)].

In order to illustrate the dynamics of the RR-intervals ob-
tained from this synthetic ECG, peak detection was used to iden-
tify the times of the R-peaks. In the noise-free case, a simple
algorithm which looks for local maxima within a small window
is sufficient. For ECGs with noise and artefacts it may be nec-
essary to use more complicated methods [2], [3]. A compar-
ison between the continuous process with power spectrum
given by (3) and the piecewise constant reconstruction of the
RR-process obtained from the R-peak detection (Fig. 7) illus-
trates the measurement errors that arise when computing HRV
statistics from RR-intervals.

The RR-intervals [Fig. (8a)] and corresponding instantaneous
heart rate [Fig. (8b)] in units of bpm for a mean of 60 bpm
and standard deviation of 5 bpm display variability due to both
RSA and Mayer waves. A spectral estimation technique for un-
evenly sampled time series, the Lomb periodogram [15], [16],
was used to calculate the power spectrum [Fig. (8c)] from the
RR tachogram, derived from 5 min of data as recommended by
[7], [10]. Despite the loss of information in going from the con-
tinuous process to the piecewise constant reconstruction, a com-
parison between Fig. 4 and Fig. (8c) illustrates that it is still pos-
sible to obtain a reasonable estimate of the power spectrum.

An increase in the RR-interval implies that the trajectory has
more time to get pushed into the peak and trough given by the R
and S events. This is reflected by the strong correlation between
the RR-intervals and the RS-amplitude as shown in Fig. 9. A
technique for deriving a measure of the rate of respiration from
the ECG has been proposed [5], [6]. This ECG-derived respira-
tory signal (EDR) is of clinical use in situations where the ECG,
but not respiration, is recorded. The synthetic ECG provides a
means of testing the robustness of such techniques against noise
and the effects of different sampling frequencies.

Fig. 6. Comparison between (a) synthetic ECG with additive normally
distributed measurement errors and (b) real ECG signal from a normal human.

Fig. 7. Reconstruction of RR-process from R-peak detection. The underlying
RR-process generated using (3) (black line) and the RR-interval time series
obtained using R-peak detection of the synthetic ECG (grey line).

Fig. 8. Analysis of RR-intervals from R-peak detection of the ECG signal
generated by the dynamical model (1) with mean heart rate 60 bpm and
standard deviation 5 bpm. (a) RR-intervals. (b) Instantaneous heart rate.
(c) Power spectrum of the RR-intervals. Note the two active frequencies
belonging to RSA (0.25 Hz) and Mayer waves (0.1 Hz).
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Fig. 9. RS-amplitudes versus RR-intervals for the synthetic ECG.

Fig. 10. QT-intervals versus RR-intervals for the synthetic ECG.

As a consequence of constructing the model with a variable
angular frequency , the time taken to move from the Q
event to the T event, known as the QT-interval, varies with the
RR-interval on a beat-to-beat basis. The relationship between
the QT-interval and the RR-interval is linear as shown in Fig. 10.
Such a linear relationship has been reported for real ECGs and
has been used to calculate a corrected QT-interval [4]. It is inter-
esting that this relationship is a direct consequence of the model.
Furthermore, it may be possible to use the model to assess how
much of the variation in the QT-interval is due to RR-interval
variability so that this effect can be factored out.

VI. CONCLUSION

A new dynamical model has been introduced which is ca-
pable of replicating many of the important features of the human
ECG. Moreover, many of the morphological changes observed
in the human ECG manifest as a consequence of the geomet-
rical structure of the model. Model parameters may be chosen to
generate different morphologies for the PQRST-complex. The

power spectrum of the RR-intervals can be selecteda priori and
used to drive the ECG generator. This allows the operator to pre-
scribe specific characteristics of the heart rate dynamics such as
the mean and standard deviation of the heart rate and spectral
properties such as the LF/HF ratio. In addition, the average mor-
phology can be controlled by specifying the positions of the P,
Q, R, S, and T events and the magnitude of their effect on the
ECG.

Having access to a realistic ECG provides a benchmark for
testing numerous biomedical signal processing techniques. In
order to establish the operational properties of these techniques
in a clinical setting, it is important to know how they perform
for different noise levels and sampling frequencies.

A number of applications and simple extensions of the model
are possible.

1) By fitting (see [17]) the model to the morphology of
a particular subject’s ECG and the power spectrum
of their RR-intervals, a database of realistic ECGs
could be created. This database could be employed
for statistical hypothesis testing. Furthermore, it may
be possible to derive a corrected QT-interval which is
independent of the heart rate.

2) The synthetic ECG could be used to assess the effec-
tiveness of different techniques for noise and artefact
removal. These could be evaluated by adding noise
and/or artefact onto the synthetic signal and then com-
paring the original with the processed signal.

3) Abnormal morphological changes with time could be
introduced by using a parameter to control the posi-
tion of any of the P, Q, R, S, or T events. This exten-
sion would be particularly useful for testing techniques
which aim to detect ST depression or elevation by de-
creasing or increasing theposition of the T wave over
time. Similarly, QT prolongation could be replicated by
moving the T point away from the Q point in the (, )
plane (increasing ).

4) The model could be used to produce multilead ECG
signals by introducing a measurement function which
maps from the (, , ) model space to the ECG signal:

. Different lead configurations and mod-
ulations due to respiration and movement of the cardiac
axis could be modeled using time-dependent functions
for .

5) Abnormal beats, such as ectopics, can be simulated by
modifying the position of the R-peak for one cycle of
the dynamics.

The new model presented here reflects a data-driven approach
to modeling the electrical activity of the heart. Key physiolog-
ical features have been incorporated using motion of a trajec-
tory throughout a 3-D state–space. The quasi-periodicity of the
cardiac cycle is represented by attraction toward a limit cycle.
The model produces QT-intervals and R-peak height variation
(RSA) which vary linearly with the RR-intervals as has been
found in real ECGs [4], [6]. It is hoped that this model will pro-
vide a valuable tool for testing biomedical signal processing al-
gorithms applied to ECG signals with different sampling fre-
quencies and levels of noise and/or movement artefact.
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