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ABSTRACT

The problem of assessing the quality of an operational forecasting system that produces probabilistic forecasts
is addressed using information theory. A measure of the quality of the forecasting scheme, based on the amount
of a data compression it allows, is outlined. This measure, called ignorance, is a logarithmic scoring rule that
is a modified version of relative entropy and can be calculated for real forecasts and realizations. It is equivalent
to the expected returns that would be obtained by placing bets proportional to the forecast probabilities. Like
the cost–loss score, ignorance is not equivalent to the Brier score, but, unlike cost–loss scores, ignorance easily
generalizes beyond binary decision scenarios. The use of the skill score is illustrated by evaluating the ECMWF
ensemble forecasts for temperature at London’s Heathrow airport.

1. Introduction

Operational weather forecasters now recognize that
uncertainties in the initial conditions used to initialize
numerical weather prediction (NWP) models, as well as
errors in the models themselves, lead to uncertainty in
the forecast. Many forecast centers now attempt to es-
timate the impact of these uncertainties in the initial
conditions by generating ensembles of forecasts (Mol-
teni et al. 1996; Toth and Kalnay 1997). The ensemble
forecast members usually differ in initial conditions,
although research is under way into generating ensem-
bles that reflect model error (Houtekamer et al. 1996;
Buizza et al. 1999; Stensrud et al. 1999; Evans et al.
2000), and such methods are now becoming operational.
The best method to construct these ensembles is the
subject of current research (for a review, see Palmer
2000). Ensemble forecasting is a Monte Carlo approach
to sampling the forecast probability distribution function
(PDF); explicit calculation of this function in the state
space of a modern NWP model is computationally im-
possible, and possibly ill defined (Smith et al. 1999).
Computational limits determine the size of the ensem-
bles generated.

Users of weather forecasts may benefit significantly
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from the greater amount of information contained in a
probabilistic forecast than in a single deterministic fore-
cast (Smith et al. 2001; Richardson 2000, 2001; Rouls-
ton and Smith 2002). To ascertain this benefit to a par-
ticular user one should create a cost function that takes
into account the decisions that the user can make, and
the utility associated with possible outcomes. The result
will be specific to that particular user.

The question of how to assess the general quality of
probabilistic forecasts is a subject of current research
in the weather forecasting community. Currently used
methods include the Brier score (Brier 1950), ranked
probability score (Epstein 1969; Murphy 1971), relative
operating characteristics (Swets 1973; Mason 1982),
rank histograms (Anderson 1996; Hamill and Colucci
1996; Talagrand et al. 1997), and the generalization of
rank histograms to higher dimensions (Smith 2000).

Information theory provides a useful theoretic frame-
work to understand and quantify weather and climate
predictability (Leung and North 1990; Schneider and
Griffies 1999; Kleeman 2002). It was suggested by
Leung and North (1990) that a relative entropy type
measure might be used as the basis of a skill score for
deterministic forecasts. Information theoretic measures,
such as entropy, have been used in previous studies to
quantify ensemble spread (Stephenson and Doblas-
Reyes 2000). In these studies the entropy of the prob-
abilistic forecast was suggested as a predictor of forecast
skill, rather than as a measure of forecast skill.

In this paper, we propose a wider role for a logarith-
mic scoring rule (Lindley 1985) by showing how it fits
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into the context of information theory. Under this scor-
ing the ‘‘best’’ forecast would be one that leads to the
highest level of data compression when describing truth;
this forecast would also yield the highest expected return
if used to place proportional bets on the future. The idea
of using data compressibility as a measure of model
quality has philosophical appeal (Davies 1991), while
the correspondence with gambling returns has some rel-
evance to insurance and weather derivative pricing ap-
plications, or any other industry with the option to take
action based on a forecast.

2. Ignorance defined

The aim is to develop a forecast skill score that mea-
sures the quality of the forecast PDF. The forecast PDF
should be assessed on how similar it is to the true PDF.
In this paper, the phrase ‘‘true PDF’’ means the PDF of
consistent initial conditions evolved forward in time un-
der the dynamics of the real atmosphere (Smith et al.
1999). This initial PDF is the product of the distribution
of observational uncertainty and the distribution of
states on the atmospheric attractor (if one exists).

Consider two PDFs, defined by the vectors p and f.
Let the ith component of these vectors define the prob-
ability of the ith outcome occuring; hence, S pi 5 S f i

5 1. One measure of ‘‘distance’’ between p and f is the
relative entropy given by

D(p | f ) 5 (p log p 2 p log f ). (1)O i 2 i i 2 i
i

Relative entropy is not a true distance; it satisfies neither
the requirement of symmetry nor the triangle inequality
(Cover and Thomas 1991). A scoring rule, based on
optimal data compression and closely related to relative
entropy, will now be described.

Classify every event into one, and only one, of n
possible outcomes. A model generates a probabilistic
forecast of the outcome of any event: the probability of
the ith event according to the probabilistic prediction
system is f i (where i 5 1, . . . , n). Before the event
occurs, a data compression scheme to encode the actual
outcome is designed. The simplest encoding scheme
would assign log2n bits to each outcome, since this is
the number of bits required to encode n integers. This
encoding scheme, however, would not be the most ef-
ficient. Greater compression can be achieved by as-
signing fewer bits to the most likely outcomes and more
bits to the less likely outcomes. A fundamental result
of information theory says that, if the probabilities of
the n outcomes are given by the f i, then the optimal
data compression scheme assigns B i bits to outcome i,
where Bi is given by (Shannon 1948)

B 5 2log f .i 2 i (2)

The details of the encoding scheme are not important
for this argument; the existence of such a scheme merely
provides a philosophical basis for the skill score.

Note that if f i 5 0 then, according to Eq. (2), an
infinite number of bits is assigned to the ith outcome.
This is because an optimal compression scheme would
have no way of encoding any outcome deemed impos-
sible a priori. This raises the interesting issue of whether
reporting 0 forecast probabilities can ever be justified,
especially if the forecast probabilities are estimates ob-
tained from finite ensembles and imperfect models.
Forecasters should replace 0 forecast probabilities with
small probabilities based on the uncertainties in the fore-
cast PDF. Not to do so means reporting the improbable
as the impossible. This would violate ‘‘Cromwell’s
rule,’’1 which warns against assigning 0 probability to
an event unless it is truly impossible (Lindley 1985).

The information-based ignorance score has a simple
interpretation. Suppose that person A and person B are
both in possession of the probabilistic forecast defined
by f i (i 5 1, . . . , n). Person A knows what the actual
outcome is and he is going to send a message to person
B, telling her this outcome. They have agreed to use an
optimal data encoding scheme defined by the f i. How
many bits must A send to B? If the actual outcome is
j, then the number of bits that A must send is IGN 5
2log2 f j. This, therefore, is the information deficit, or
ignorance, of person B when she had the probabilistic
forecast but before A sent her the message telling her
the actual outcome. This value of ignorance is for one
forecast and realization; thus, it is a scoring rule (Mur-
phy 1997). It should be averaged over a verification
dataset of T forecast–realization pairs. That is,

N1
^IGN& 5 2 log f (k) , (3)O 2 j(k)T k51

where f (k) i is the probability of outcome i according to
the probabilistic forecast k and j(k) is the corresponding
actual outcome. This is the number of bits that A must
send to B to describe the true outcome, averaged over
all the verification forecasts.

Let the true PDF be represented by p i. This PDF is
generally unknown. The expected value of the igno-
rance, E[IGN], of a particular forecast is given by

n

E[IGN] 5 2 p log f . (4)O i 2 i
i51

The relative entropy of the true and forecast PDFs can
thus be written as

D(p | f) 5 E[IGN] 2 H(p), (5)

where H(p) is the entropy of the true PDF given by
n

H(p) 5 2 p log p . (6)O i 2 i
i51

As stated, the true PDF will be unknown so the H(p)

1 ‘‘I beseech you, in the bowels of Christ, think it possible you
may be mistaken.’’ (Oliver Cromwell in a letter to the General As-
sembly of the Church of Scotland, 3 August 1650.)
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term in Eq. (5) cannot be calculated. Therefore, there
is no way to know when a perfect model [D(p | f) 5 0]
has been obtained, although since D(p | f) cannot be
negative no model will have a lower value of E[IGN]
than a perfect model. It can be shown that E[IGN] has
a single minimum at f i 5 pi; this is equivalent to the
statement that H is the minimum number of bits required
to describe the data (Shannon 1948). Furthermore, if a
forecaster’s best estimate of pi is f i, and the forecast
they intend to issue is gi, then the predicted expected
ignorance of the forecast is

n

Pred(E[IGN]) 5 2 f log g . (7)O i 2 i
i51

The minimum value of Pred (E[IGN]) occurs only when
gi 5 f i; thus, ignorance is a strictly proper scoring rule
(Lindley 1985; Murphy and Daan 1985; Winkler and
Murphy 1968): forecasters cannot expect to reduce their
ignorance score by issuing a PDF different from their
best judgment. The predicted expected ignorance when
gi 5 f i is thus

n

Pred(E[IGN]) 5 2 f log f 5 H(f ). (8)O i 2 i
i51

This quantity is the entropy of the forecast, which has
been suggested as a predictor of forecast skill (Ste-
phenson and Doblas-Reyes 2000). Equation (8) shows
the relationship between H(f) and predicted skill, as
measured by ignorance explicitly. It suggests that, av-
eraged over many forecasts, the ignorance should be the
same as the average entropy of the forecasts. Satisfying
this consistency condition, however, does not imply that
the forecasts have the minimum possible ignorance: cli-
matological forecasts would satisfy the condition.

3. Relationship between ignorance and forecast
quality

The ignorance score makes no assumptions about the
shape of the PDF. Nevertheless, to illustrate some of the
properties of the ignorance score it will be assumed that
the variable in question, x, is continuous and that both
the true PDF rtruth and the forecast PDF rfcst are normal
distributions. That is, rtruth and rfcst are defined by

21 (x 2 x )truth
r (x) 5 exp 2 and (9)truth 2[ ]2ss Ï2p truthtruth

21 (x 2 x )fcst
r (x) 5 exp 2 . (10)fcst 2[ ]2ss Ï2p fcstfcst

The expected ignorance can thus be calculated:
1`1

E[IGN] 5 2 r (x) lnr (x) dxE truth fcstln2
2`

2 21 s 1 (x 2 x )truth truth fcst25 ln2p 1 lns 1 .fcst 2[ ]2 ln2 sfcst

(11)

Using Eq. (11), it can be seen how the ignorance is
affected by conventional aspects of forecast quality
(Murphy 1997). Bias in the forecast, ( truth 2 fcst), caus-x x
es an increase in E[IGN]. Greater uncertainty of reality,
struth, also leads to greater expected ignorance. The ef-
fect of sharpness, sfcst, on ignorance is not monotonic;
in particular, there is a unique minimum in E[IGN] when

5 1 ( truth 2 fcst)2. Thus for an unbiased2 2s s x xfcst truth

forecast the minimum ignorance is obtained when the
variance of the forecast equals the variance of the perfect
forecast PDF, but if the forecast is biased then the ig-
norance is minimized by increasing the forecast variance
to partially compensate for the bias. Note that a forecast
with a smaller bias will still have a lower ignorance for
any given value of sfcst. The ignorance measures reli-
ability in that it is a minimum if, and only if, truth is
picked from the forecast PDF. The skill of the forecast,
that is, its accuracy relative to other forecasts, can be
calculated by simply calculating the difference of the
ignorance of the forecasts that are being compared. This
is because ignorance is an information and information
is an additive quantity. Each bit of ignorance represents
a factor-of-2 increase in uncertainty.

4. Relationship between ignorance and cost–loss

There is a direct correspondence between data com-
pression and gambling returns (Kelly 1956; Cover and
Thomas 1991). If a gambler can bet an arbitrary fraction
wi of their wealth on outcome i (Si w i 5 1) then, to
maximize their expected return averaged over sequential
bets, gamblers should bet proportionally, that is, bet a
fraction f i of their wealth on the ith outcome occurring.
If this strategy is adopted, the ratio of the gamblers’
wealth after the bet to that before the bet has an expected
value of 2W, where

n

W 5 p log o wO i 2 i i
i51

n n

5 p log w 1 w log o (12)O Oi 2 i i 2 i
i51 i51

and oi is the odds (wealth multiplier) assigned to out-
come i. To maximize the expected return, averaged over
sequential bets, gamblers should bet proportionally and
set wi 5 f i. If the house sets odds based on a forecast
probability distribution gi by setting oi 5 1/gi, then Eq.
(12) becomes

W 5 E[IGN] 2 E[IGN] .house gambler (13)

Thus, gamblers can only expect to make money if they
have lower ignorance than the house.

When considering the economic value of forecasts,
the binary cost–loss scenario is commonly used (Katz
and Murphy 1987, 1997). In this scenario there are two
outcomes (e.g., not freezing and freezing). The user can
make a decision to protect or not to protect (e.g., to grit
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the roads or not to grit the roads). This protection has
a cost C but, should the user choose not to protect and
adverse weather occurs, the user sustains a loss L. Let
the probability of it freezing be p1 5 p, and the prob-
ability of it not freezing be p2 5 1 2 p. The wealth
multipliers o i associated with each outcome are o1 5 L/
C 2 1 and o2 5 1. However, in the simple cost–loss
scenario, the users cannot spread their wealth arbitrarily
between the outcomes. Since the potential loss the users
can suffer is L, this is the amount of wealth they can
bet on the outcomes. Effectively they must either bet
w1 5 0, w2 5 1 or w1 5 C/L, w2 5 1 2 C/L. They
would choose the latter if p is greater than C/L. If p is
less than C/L, the user could replicate the proportional
betting strategy (by gritting a fraction pL/C of the roads,
if this is possible). The cost–lost score is parametric; it
depends on the value of C/L. If a uniform distribution
of C/L ratios is assumed, it can be shown that the mean
cost–loss score is equivalent to the Brier score (Murphy
1966; Richardson 2001). The advantage of ignorance
over the cost–lost score is that ignorance easily gen-
eralizes beyond the binary decision case; indeed igno-
rance can be defined for a continous distribution r(x)
as IGN 5 2log2r(xa), where xa is the actual outcome.
It can be shown that ignorance is equivalent to the cost–
loss score averaged over a distribution of cost–loss ra-
tios that is weighted toward values of C/L close to 0
and unity (see the appendix).

5. Relationship between ignorance and Brier score

The Brier score is a common skill score for assessing
probabilistic forecasts (Brier 1950). It will now be
shown that a forecast scheme with a lower expected
Brier score than another forecast scheme may not nec-
essarily have a lower value of expected ignorance. In
the simple two-outcome case, ignorance is a double-
valued function of Brier score. It shares this property
with the cost–loss value for a single coss–loss ratio
(Murphy and Ehrendorfer 1987).

Consider an event with n possible outcomes. Let f i

be the forecast probability of the ith outcome. Let j be
the actual outcome. The Brier score BS is given by

n1
2BS 5 ( f 2 d ) , (14)O i ijn i51

where dij 5 0 when i ± j and dij 5 1 when i 5 j. Thus
the Brier score of forecast f i if the outcome is j is

n1
2BS 5 f 2 2 f 1 1 . (15)O i j1 2n i51

If the true probability distribution is pi, then the ex-
pected value of the Brier score, E[BS], is given by

n n1
2E[BS] 5 p f 2 2 f 1 1O Oj i j1 2nj51 i51

n n1
25 f 2 2 p f 1 1 . (16)O Oi i i1 2n i51 i51

Consider the case when there are two possible out-
comes. Let the true probability distribution be given by
(p, 1 2 p). Let the model probability distribution be
given by ( f , 1 2 f ), where f 5 p 1 D. Equation (16)
gives the expected Brier score, E[BS]:

2 2E[BS] 5 (1/2)[(p 1 D) 1 (1 2 p 2 D)

2 2p(p 1 D)

2 2(1 2 p)(1 2 p 2 D) 1 1], (17)

which can be simplified to give
2 2E[BS] 5 D 2 p 1 p. (18)

From Eq. (18) it can be seen that there are two models
that have the same expected Brier score. The D values
of these models are given by

2D 5 6ÏE[BS] 1 p 2 p 5 6 |D |. (19)

The expected ignorance of each of these models is
given by

E[IGN] 5 2p log (p 1 D)2

2 (1 2 p) log (1 2 p 2 D). (20)2

The difference between the expected ignorance for these
two models is thus

E[IGN] 2 E[IGN]1 2

p 2 |D | 1 2 p 2 |D |
5 p log 2 (1 2 p) log .2 21 2 1 2p 1 |D | 1 2 p 1 |D |

(21)

From Eq. (21) it can be seen that the two values of D,
corresponding to a single value of the expected Brier
score, give two different values of the expected igno-
rance. The two branches merge when D 5 0, ( f 5 p),
demonstrating that a perfect model will always have
both a lower expected Brier score and a lower expected
ignorance than any imperfect model. If p 5 0.5, the
branches are coincident, so in this case a lower expected
Brier score implies a lower expected ignorance. When
p ± 0.5, however, the branches are distinct. The branch-
es correspond to f underestimating and overestimating
the value of p, respectively. Thus if model A and model
B lie on different branches, it is possible that model A
may appear better than model B if judged by Brier score
but that model B will be deemed better if ignorance is
used instead. Given the relationship between ignorance
and gambling returns, this result means that a house
setting odds based on a minimum Brier score model
will be expected to lose money to a gambler using the
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FIG. 1. A plot of expected ignorance against expected Brier score
for a binary event with p 5 0.25. The curves are parameterized by
the forecast probability f . The curves intersect when f 5 p. Model
A has f 5 0.05, and model B has f 5 0.475.

model with the lower ignorance. An example of two
such models is shown in Fig. 1.

Ignorance is a double-valued function of the expected
Brier score because, while the expected Brier score is
symmetric in f , ignorance is asymmetric, as is the cost–
loss value for a fixed cost–loss ratio.

6. Ignorance and continuous forecast variables:
An example

Rank histograms are often used when the forecast
variable is continuous on one dimension. Suppose there
is an ensemble of N forecasts of the variable X. If the
ensemble members have been picked from the true PDF,
truth is equally likely to fall between any two members
of the ensemble. Therefore, the forecast PDF is often
approximated by a uniform distribution between each
ensemble member. Let the ensemble members be
ranked: X i (where i 5 1, . . . , N). The forecast proba-
bility density between Xi and X i11 is

1
f 5 , (22)i (N 1 1)DXi

where

DX 5 X 2 X 0 , i , Ni i11 i

DX 5 X 2 X DX 5 X 2 X , (23)0 1 min N max N

where [Xmin, Xmax] is the a priori interval on which X is
expected to be. If truth lies in the jth interval, then the
ignorance, which is the number of bits required to spec-
ify truth, is given by

IGN 5 log (N 1 1) 1 log DX .2 2 j (24)

The first term on the rhs of Eq. (24) is the number of
bits required to specify between which two ensemble
members truth lies. The second term is the number of
bits required to specify where in this interval truth ac-

tually lies. The expected ignorance is the expected value
of the number of bits that will be required. This will
clearly depend on the choice of Xmin and Xmax since truth
will sometimes fall outside the ensemble. Calculation
of ignorance from rank histograms assumes that the user
requires the same resolution of forecast in the interval
[Xmin, Xmax]. If this is not the case, categorical forecasts
should be used to evaluate the ignorance score instead.
The categories of a continous forecast variable can be
based on climatology. They can be chosen so that each
category is equally probable according to the climatol-
ogy. If this is done, then, if there are n categories, the
ignorance of a forecast based on climatology will be
log2n. The fractional ignorance can then be defined as

log f2 j
IGN 5 2 , (25)

log n2

where f j is the probability that the forecast system as-
signed to the actual outcome. If IGN , 1, then the
forecast contains more information than the climatol-
ogy. If IGN 5 1, then the forecast is no better than a
forecast based on climatology. If IGN . 1, then the
forecast actually contains less information than the cli-
matology. This can happen if the forecast is more precise
(i.e., confident) but less accurate than a climatological
forecast (e.g., a forecast PDF that is narrow but in the
wrong place). In this situation it is not unreasonable to
describe the forecast as worse than useless; the forecast
could cause a user to make a decision less optimal than
the decision made based on climatology alone.

7. Using ignorance: Temperature at Heathrow

To illustrate the use of the ignorance skill score, a
simple example is presented. Figure 2a shows the ob-
served temperature at London’s Heathrow airport for
almost two years, starting from February of 1999. The
thick line is an average seasonal cycle. Consider the
simple binary forecast of whether the temperature will
be above or below average for the time of year. In the
absence of any forecast, a person’s ignorance concerning
this question is 1 bit. With the European Centre for
Medium-Range Weather Forecasts (ECMWF) ensemble
forecast a probabilistic forecast can be constructed by
simply counting the fractions of ensemble members that
are above or below the seasonal average. An extra, fic-
titious, ensemble member can be split equally between
the two possibilities as a simple way to account for
uncertainty due to the finite ensemble size. If there are
N ensemble members, n discrete outcomes (in this case
n 5 2), and the number of ensemble members with the
ith outcome is Qi, then the values of f i, with the fic-
titious ensemble member included, is given by

Q 1 (1/n)if 5 . (26)i N 1 1

In Eq. (26), it can be seen that an extra ensemble mem-
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FIG. 2. (a) The observed temperature at London’s Heathrow airport
(thin line) and an average seasonal cycle (thick line). (b) The average
ignorance of probabilistic forecasts of whether the temperature will
be above or below the seasonal average. The daily forecasts were
constructed using operational 51-member ECMWF ensembles.

ber has been equally distributed over all the bins. This
is a crude method to account for the finite ensemble
size; more sophisticated approaches that incorporate cli-
matology are possible. Let f be the forecast probability
that the temperature will be above average. If the tem-
perature is indeed above average, the ignorance of the
forecast is 2log2f . If the temperature is not above av-
erage, the ignorance is 2log2(1 2 f ). Figure 2b shows
the ignorance for the ECMWF ensembles of temperature
at Heathrow averaged over the period shown in Fig. 2a.
Out to 3 days ahead, the average ignorance is about 0.63
bits. This represents a substantial improvement over the
1 bit of ignorance without a forecast. If you were offered
even odds of the temperature being below average and
you bet your wealth proportionally according to the
forecast, you would expect to increase your wealth by
29% per bet. Not suprising, the average ignorance in-
creases with lead time and reaches 1 bit at 9 days. This
means that the 51-member ensemble forecast contains
information up to day 8; beyond day 9, however, it
cannot be distinguished from climatology.

8. Summary

A skill score for assessing probabilistic forecasts
based on the information deficit (or ignorance) given
the forecast has been presented. This skill score is di-
rectly related to the level of data compression that could
be achieved using the forecast to design the compression

algorithm. The relationship between data compression
and gambling returns implies that this skill score cor-
responds to the expected returns of a gambler placing
optimal (i.e., proportional) bets on the possible out-
comes. The relationship of ignorance to gambling is not
generally equivalent to the cost–loss score, which is
used in simple studies of the economic value of fore-
casts. The correspondence between gambling returns
and ignorance only holds if the user is free to adopt the
optimal proportional (‘‘Kelly’’) betting strategy. In the
cost–loss scenario this is not the case. Also, ignorance
easily generalizes beyond binary decision scenarios.

The ignorance score does not indicate what effects
are contributing to the loss of skill (e.g., greater ensem-
ble spread or because truth is lying outside the ensem-
ble). No skill score that attempts to summarize proba-
bilistic forecast skill in a single number can describe
such effects. If such a single number summary is re-
quired, however, the ignorance has advantages over oth-
er scores such as the Brier score and the cost–loss ratio.

Ignorance also has a more robust philosophical jus-
tification than the Brier score. Ignorance directly mea-
sures the average information deficit of someone in pos-
session of a particular forecasting model. Using igno-
rance naturally connects the problems of practically
evaluating real forecasts to the information-theoretic
framework for weather and climate prediction, which
has been constructed by other workers in the field
(Leung and North 1990; Kleeman 2002).

The ignorance can be calculated either for categorical
forecasts constructed from ensembles or from rank his-
tograms by considering how much information is re-
quired to specify the location of truth in the ordered
ensemble.

Given its advantages over other skill scores, it is like-
ly to prove a particularly useful tool in future evaluation
of probabilistic forecasts, which is a relatively neglected
aspect of current meteorological research.
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APPENDIX

Skill Scores and Cost–Loss

This appendix derives the relationships between cost–
loss scores and the quadratic (Brier) and logarithmic
(ignorance) skill scores.

The cost–loss score is the realized loss of users at-
tempting to minimize their expected loss. Let the users’
cost–loss matrix for a binary event be

Event happens Event does not happen

User acts
User does not act

C
L

C
0
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where C is the cost of acting, and L is the loss incurred
if action is not taken and the event occurs. If the forecast
probability of the event is f , then, to minimize their
expected loss, the user should act if f $ C/L. If the
actual probability of the event is p, then the expected
loss U of the user will be

C when f $ C/L
U 5 (A1)5pL when f , C/L.

If u(a) is the density of users with a cost–loss ratio of
a 5 C/L, then the expected loss, averaged over users
and normalized in units of L, is

f 1

^U& 5 au(a) da 1 p u(a) daE E
0 f

f ∈ [«, 1 2 «], (A2)

where « is the uncertainty in f that should usually be
included. Differentiation w.r.t. f gives

d^U&
5 u( f )( f 2 p). (A3)

d f

The expected quadratic (Brier) score is given by
2 2^BS& 5 p[(1 2 f ) 1 (1 2 f ) ]

2 21 (1 2 p){ f 1 [1 2 (1 2 f )] }
25 2p 2 4pf 1 2 f . (A4)

Differentiation of Eq. (A4) w.r.t. f gives

d^BS&
5 4( f 2 p). (A5)

d f

A comparison of Eqs. (A3) and (A5) shows that the
expected Brier score is linear with the average expected
loss if u(a) is uniform (Murphy 1966; Richardson 2001).

The expected logarithmic (ignorance) score is given by

^IGN& 5 2p log f 2 (1 2 p) log(1 2 f ). (A6)

Differentiation gives

d^IGN& f 2 p
5 . (A7)

d f f (1 2 f )

Comparing Eqs. (A3) and (A7) indicates that the ex-
pected ignorance is linear with the average expected loss
if u(a) } [a(1 2 a)]21, where a ∈ [«, 1 2 «]. So, the
ignorance score is linear with the overall cost–loss value
for a distribution of users heavily weighted at cost–loss
ratios close to 0 and unity. The distribution is singular
at a 5 0 and a 5 1. At these values, no decision-making
scenario exists, since a user with a 5 0 would always
act and a user with a 5 1 would never act.
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