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Abstract.

State estimation is an important factor in the production of accurate forecasts. Great effort is
expended in reducing the noise inherent in observations, to produce a ‘best’ estimate of the true
system state. But noisy observations necessitate a probabilistic, not a deterministic, approach to state
estimation. A state’s probabilistic description is rarely Gaussian, and requires information beyond
variance magnitude; the correct distribution is provided by the underlying structure of the system
attractor. The concepts of finite-time stable and unstable sets are introduced and data assimilation-
based methods for their estimation are developed. Four-dimensional variational assimilation proves
adept at finding the finite-time stable set valid at the beginning of assimilation windows while the
ensemble Kalman filter is capable of approximating the finite-time unstable set at any time that an
observation is available. Combining the results of the two schemes produces a probabilistic estimate of

the system state that is superior to either in isolation.



1. Introduction

Improving initial conditions is widely viewed as the primary means for improving forecasts of a
deterministic system. Initial conditions are typically improved by combining model information with
observations to produce a single improved estimate of the system state (Ghil et al., 1997). Alternatively,
one may take a probabilistic approach to state estimation (Evensen, 1994). We show that improved
initial conditions can be obtained through the combination of hitherto distinct probabilistic state
estimation techniques. The systematic tendencies of four-dimensional variational assimilation (4D-Var)
and the ensemble Kalman filter (EnKF) are exploited to improve probabilistic estimates of the true
system state.

Given a perfect model and imperfect observations, to improve forecasts one must improve initial
conditions. If it were possible to produce an initial condition corresponding to the true system state, it
would be possible to produce perfect forecasts. But uncertainties inherent in observations mean that
even given a perfect model it is impossible to produce the “true” initial conditions (Judd, 2000). For
this reason, a probabilistic approach is well suited to both the initial condition estimation problem and
the forecasting problem. If one can determine the correct distribution of possible initial conditions, a
sample from that distribution (i.e. and ensemble) can be propagated forward in time to produce an
accurate description of possible forecast states. In this paper techniques are employed to estimate the
probability density function (PDF) of initial conditions.

In nonlinear dynamics terms, improving estimates of system states is typically denoted “noise
reduction”; noise reduction techniques aim to combine all available information about the state of a
system in an effort to produce the best estimate possible of the underlying true states. Typical noise
reduction techniques include the geometric approaches described in Grassberger et al (1993) and the
variational approach of Davies (1994).

The aim in geophysics is different. Rather than reducing noise in the historical record of
observations, the emphasis is placed on improving the approximation of the true system state, which is
then used an an initial condition for forecasting. Producing improved initial conditions for geophysical
systems is known as “data assimilation”. In the context of meteorology and oceanography, observations
and model equations are combined; both variational methods and direct methods are employed. A
variational approach such as four-dimensional variational assimilation (described in section 3) shifts
state estimates onto a locally stable set of points (defined below), which when evolved forward in time
collapse towards a single system state. A direct approach such as the ensemble Kalman filter (described

in section 4.1) shifts state estimates onto a locally unstable set of points which, when evolved backwards



in time, collapse towards a single system state. By combining results from the two techniques we lesson
the shortcomings of each. Contrary to Pires et al (1996) we demonstrate the ability to exploit local
uncertainty dynamics to produce a reduction in variance along the stable set; this remains possible even
when using only variational data assimilation.

As we are interested in the PDF of noise reduced states, an ensemble approach to noise reduction
is employed: noise is reduced in an ensemble of states consistent with a single observation. A perfect
model scenario is used throughout this work, allowing us to assess the ability of the various noise
reduction techniques without the added complication of model error. It is appreciated that some noise
reduction techniques are better suited to scenarios where system dynamics are not well known; both
of the noise reduction techniques highlighted in this work are critically dependent on an accurate
dynamical representation of the system.

Stable and unstable manifolds are introduced in section 2, along with generalisations to finite-time
dynamics. It is shown that for the finite-time case it is possible to produce a greater degree of noise
reduction than is suggested by a simple interpretation of the infinite-time theory. Four-dimensional
variational assimilation is introduced as a method for finding the finite-time stable set in section 3,
while methods for finding the finite-time unstable set, the ensemble Kalman filter and nonlinear noise
reduction, are discussed in section 4. Combining the estimates of the finite-time stable and unstable
set leads to improved initial conditions and forecasts, as shown in section 5. Section 6 provides a brief

statement of conclusions.

2. Forecasting Nonlinear Systems

In a chaotic system, error in initial conditions will often (but need not ever) grow exponentially
with forecast time, strongly motivating attempts to reduce initial uncertainty. Observations are often
used in efforts to improve estimates of initial conditions (analyses), but measurement error will frustrate
all attempts to obtain exact initial conditions. While measurement errors are generally assumed to
be drawn from a Gaussian distributions, no such distribution can be assumed for analysis errors. A
system’s true state will lie on the system’s attractor; the distribution of possible initial conditions
should be consistent not only with the magnitude of the expected analysis uncertainty, but also with
the attractor’s local structure in state space, leading to highly non-Gaussian distributions.

Insofar as attractor structure is related to the evolution of the system, one approach for obtaining
initial conditions that reflect local attractor structure is to utilise time series of observations called an

“assimilation window”, such an approach is used in section 3. By defining a model trajectory which



minimises the misfit between observations and model states, it is generally felt that the resulting
analysis will evolve towards the manifold that contains the system attractor. This approach aims
for analyses which are consistent with attractor structure at the final time, the final position in the
‘assimilation window’. The states at the beginning of the window can suffer from problems with
unconstrained regions in cost function space; regions in which significantly different states yield nearly
identical cost function values. Further, the states at the beginning of the window do not reflect the
local attractor structure, but rather the structure of the system’s relevant local finite-time stable set, a
concept discussed below.

In a hyperbolic system ! (Hirsch and Pugh, 1970) a set of states exists whose trajectories converge
to the trajectory of a given “true” state, x!(t), as t — oo. This set of points is the stable manifold, W,

formally defined as the set of points satisfying
x € W,(x") & lim ||%(t) —x'()|| = 0, (1)
t—o0

where * = %(0) and x* = x%(0). Note that the superscript ¢ denotes ‘truth’ while the parenthetical ¢
denotes time. Similarly, there exists a set of states, W,, whose trajectories converge to that of any true
state, x!(t), on the attractor as t — —oo. This set is called the unstable manifold,

% e Wa(xt) & lim [|%(t) —xt(t)]| = 0. 2)

t——o0

It is unlikely that any system (or model) of geophysical interest would be hyperbolic, and further,
the relevance of stable and unstable manifolds is extremely limited when dealing with finite-lengthed
trajectories. While sets of states will exist that collapse towards specified trajectories, these sets may
not define manifolds 2. Further, the well-known properties of stable and unstable manifolds unfold over
an infinitely long trajectory; we will, of course, be using finite-lengthed trajectories in this paper. Over
finite time, for example, all uncertainties may decrease, even in a chaotic system (Smith et al., 1999).
For these reasons we now introduce the concept of finite-time stable and unstable sets.

Finite-time stable and unstable sets can be defined in a number of ways, and several are discussed
in Appendix A. Fortunately, this is not a liability; the property that is of interest is independent of the
definition employed. We are interested in the set of points that, when integrated forward/backward

to 7 collapse toward the true state at that time, x!(47); these sets are then denoted the finite-time

1A system in which stable and unstable manifolds always have transverse intersections (Arrowsmith
and Place, 1990).

2Manifolds require, amongst other things, the properties of continuity and differentiability.



stable and unstable sets, respectively. The definitions employed are;
% € Wy(x,7,¢) & [|X(1) —x(7)]| <€ (3)
(e > 0 and 7 > 0) for the finite-time stable set, and
% € Wa(x,7,6) & [[%(—7) —x'(-7)[ < e (4)

for the finite-time unstable set. In general both Ws and Wu will have the dimension of the state space,
while W, and W,, will have a lower dimension. Alternative definitions and a convergence property are
given in Appendix A.

Methods for finding points in T/IZ(xt) and ﬁ/\;(xt) are demonstrated using the Ikeda system (Ikeda,

1979), a non-hyperbolic system described by the equations:

ZTiv1 = 1+ p(z;cos(t) — y;sin(t)) (5)

Yir1 = p(zisin(t) +y; cos(t)) (6)
b

L e U W | @

where typical values of a, b and p are 0.4, 0.6 and 9.0, respectively. The global structure of the Ikeda
system is shown as the black points in figure 1 (the curved line in the figure is discussed in section 3).

Given a time series of observations, to find I/Iﬁ/i,(xt) one can search for initial conditions which
yield trajectories consistent with the observations and their associated uncertainty over some specified
window in time. “Consistency” is a subjective term; if one defines consistent to mean ‘within four
standard deviations’, then one searches for initial conditions that produce trajectories that are as long
as possible given the constraint that the model state is never farther than 4o from each observation.
Such a trajectory is said to t-shadow the observations (Gilmour and Smith, 1997).

Initial conditions that «-shadow (are elements of WA/Z(X’S)) are shown as a function of trajectory
length, 7 in figure 2a. A circular uncertainty isopleth with radius r = 0.055 is placed around the point
of interest and each of its 10 subsequent images. The area bounded by the isopleth is filled uniformly
with 219 points. Each of these points is integrated forward, and those that are inconsistent with
future observations (those that fall outside of a future point’s expected uncertainty) are sequentially
eliminated. The traditional view (Pires et al., 1996) is that as the number of observations is increased,
the consistent points at initial time will collapse onto the local stable manifold; this view is at odds
with figure 2a. Such a view implies that if one is considering only trajectories forward in time it is
not possible for initial points to be noise reduced along the stable manifold; once the stable manifold

has been reached, there is no information in the observations which will shift those points along the



manifold towards the true system state. As a result, the noise reduced points will still span the original
uncertainty magnitude but will do so only along the local directions of the stable manifold. Note that

the definitions of stable and unstable manifolds do not explicitly consider finite-lengthed trajectories of
observations, they require that points on the stable/unstable manifold collapse onto the same point as

t — +oo.

When finite-lengthed time series of observations are considered, it is possible to achieve contraction
along the finite-time stable/unstable set. The t-shadowing results of figure 2a demonstrate this
contraction (the other panel of figure 2 is discussed elsewhere). The outer-most grey points in figure 2a
are those which were consistent at initial time, but inconsistent with the uncertainty associated with
the system state after one step. The outer set of magenta points are those which became inconsistent
after two steps. Notice that the points which are consistent after two steps do not simply result in
a greater constriction along the major axis defined by the points which are consistent after one step;
their major axis has a different orientation. This direction change, coupled with the inclusion of the
one-step information, produces a set of consistent initial conditions which have effectively experienced
contraction along the stable manifold. Points made inconsistent by steps 3, 4, 7, 8, 9, 10 are shown in
green, yellow, red, dark green, purple and dark blue respectively. The inner-most light blue points are
those which are still consistent after ten steps.

An explanation for the time-dependent orientation of the W’Z(xt) seen in figure 2a can be found
through an examination of the system’s linearised dynamics. Initial singular vectors (see, for example,
Strang (1988)) define directions in which infinitesimal perturbations will experience maximum growth
after a specified time-scale. Figure 4 plots the initial singular vectors constructed over one step,
two steps and ten steps for the same initial condition used to construct figure 2. The svy (dashed)
represent growing directions, while the sve (dash-dotted) represent shrinking directions, the number
in parentheses specifies the optimisation time used in the singular vector construction. The second
initial singular vector (the shrinking direction) for the one step optimisation time, sva(1), is oriented in
the same direction as the major axis of the set of points in figure 2a which are consistent at one step.
Notice the large rotation between the leading one step singular vector, svq(1), and the leading two
step singular vector, svy(2). Again, the second initial singular vector from the two step optimisation
time, sva(2), is oriented in the same direction as the major axis of the set of points in figure 2a which
are consistent after two steps. The local dynamics of the attractor are such that the short time-scale
uncertainty behavior is independent of the long time-scale uncertainty behavior. The details of such

behavior is, of course, both system and state dependent, but the general picture is not unusual (e.g. see



Smith et al (1999) and McSharry (1999)).

Ultimately, we wish to capture the underlying structure of the system’s attractor; information
that is contained in the W, (x!). The WZ(xt) does not directly provide information on the attractor
structure, but any W,(x!) will contain elements of W;(xt) and W, (x!). The elements of W, (x!) will
eventually be stretched along the W, (x*). Thus attractor structure information is provided at the end

of the trajectory instead of the beginning.

3. Noise reduction onto the stable set: Four-dimensional variational
assimilation

First we consider a noise reduction method that approximates the I/I’\/;(xt). Four-dimensional
variational assimilation (4d-Var) is a familiar and operationally feasible method of noise reduction in
geophysics (see Ghil et al (1997) and references therein). It utilises information in both space and time
to blend observations and model dynamics in an effort to produce a superior estimate of a system’s
state. 4d-Var takes trajectories of observations and their associated uncertainty information into
account in its effort to produce initial conditions. This is accomplished through the minimisation of a
cost function which measures the misfit between the model state and observations. Initial conditions
produced by 4d-Var need not ¢-shadow. Consistency is not a constraint in the 4d-Var minimisation;
trajectories which are inconsistent with observed states are not overly penalised (although consistency
checks can be performed): the variational approach assumes an (-shadow (i.e. a consistent trajectory)
exists. Variational approaches to noise reduction appear in many independent fields; a discussion of the
standard method for variational noise reduction in nonlinear systems can be found in Davies (1994),
where all available observational information is included in the minimisation process. The application
of 4d-Var differs from such an approach in that minimisation occurs over short assimilation windows
rather than across all available data. This is often justified on computational grounds, but becomes an
even greater issue when one accepts the inevitability of model imperfections; no model exists that can
shadow our complete record of weather observations, for example.

Using the notation of Ide et al (1997), the 4d-Var cost function is defined as

1

Jix(to)] = 5(x(to) —x"(to))" By " (x(to) — x"(t))
+% > (Hilx(t)] - 99) "Ry (Halx(t:)] — v9), ®)

=0
where x(to) are the model initial conditions, x”(#o) is the first guess, or background state produced by

the model (typically as a short-term forecast), and By ! is the inverse of the background error covariance



matrix. The second term calculates the misfit between observations, y?, distributed over the time
interval [tg,t,] and the model state expressed in observation space, H;[x(¢;)], weighted by the inverse
of the observational error covariance matrix, R;l. The H; operator is a map between model space and
observation space, and in this work is the identity matrix. By locating a minimum of the cost function,
one finds initial conditions which produce a model trajectory through the available observations which
minimises the distances between model states and observed states. Note that in using this cost function
one is assuming the model is perfect.

The application of 4d-Var is now illustrated using the same initial condition and ten successive

210 points is constructed around

images of the Tkeda map used in section 2. A Gaussian distribution of
each point such that 40 = 0.055. This distribution is treated as a probability density function (PDF)
of likely observations. 4d-Var is applied to each of the 210 initial conditions, each using a time series of
observations with its own realisation of the observational noise®. This produces a new, noise-reduced

PDF at the beginning of the assimilation window. In short, the analyses are obtained by minimising

sl = 50e(t0) = x4(60)) "B (x5 (t0) — x4 (t0))
by S (1)) — o) "R (Bl ()] — v5), G = 1,2, ©
=0

where the xg(to) are the first guess initial conditions and the y¢; are re-noised observations at time ¢;
consistent with the uncertainty in y7; as given by R;. A conjugate-gradient minimisation routine is
used (Press et al., 1986). As 4d-Var is dependent on the number of observations considered during an
assimilation, initial PDF's are calculated for each assimilation window length between two points and
ten points, inclusive, that is N, = 2,3,...,10. In this particular application, the background state,
x°(t9) has the same uncertainty characteristics as the observations, B = R; = I. Setting B = I allows
the model dynamics to completely dictate the eventual analysis value; any other choice of Bg will
preferentially weight specific regions of state space. While the method presented here is not restricted
to By =1, this choice allows for an unambiguous interpretation of results.

Figure 2b shows the noise reduced distribution of points at the beginning? of the assimilation
window for each N,. The magenta points show the noise reduced states for N, = 1, when only the

initial condition and its first image are considered. Notice that the major axis of the distribution of

3Tn order to satisfy the assumption that the observations are random variables, noise is added to each
observation before assimilation is performed. See Burgers et al (1998) for theoretical justification.

4Predictions, of course, are launched from the end of the assimilation window.
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points is oriented in the same direction as points consistent after one step in figure 2a, the direction
of the one-step contracting singular vector, sve(2). The noise reduced states for N, = 2 are shown
in green. Again, the major axis is rotated into the direction of the two-step second initial singular
vector, sva(2). As N, is increases from 3 to 4, 7, and 8 (the same step-lengths shown in figure 2a),
the post assimilation distribution of points go through yellow, red, dark green, and purple respectively,
each additional point resulting in a further contraction onto the WZ(xt). The dark blue points are the
analysis distribution for N, = 9. While contraction towards the I/I’Z(xt) continues to be a feature, notice
the scattering of points (centred near (0.3,-0.3)) below the main distribution. This secondary grouping
remains pronounced in the noise reduced distribution of light blue points valid for N, = 10. The main
grouping of points about the true initial condition agree well with the consistent region defined by
t-shadowing. This is not true for the secondary grouping, highlighting one of 4d-Var’s limitations; the
danger of locating localised minima which need not be consistent with future observations (an excellent
discussion of this effect is given in Pires et al (1996)). None of the points in the secondary grouping will
t-shadow beyond four steps.

The localised minimum arises from the dynamics of the W;(x?). The solid line in figure 2b lies on
the W,(x?). Moving to the right from the true initial condition, the stable manifold curves down and
away before reversing direction and passing back through the points grouped in the local minimum. So
the “local minimum” isn’t a local minimum in the traditional sense, but rather an expression of the
states that are unconstrained by the available time series of observations as reflected by the WZ(xt);
the secondary grouping is only disconnected from the primary set of noise reduced points because of
the magnitude of observational uncertainty. For any given realisation of the time series of observations,
the cost function may have a value that is lower in the region of the secondary grouping than in the
primary region; the secondary grouping only becomes a “local minimum” when the cost function is
defined with respect to truth. Figure 1 shows a portion of the initial condition’s W(x?) in the context
of the entire Ikeda attractor. It is not always the case that minima are formed by the W;(x!) folding
back through the area of interest so directly; it is clear from figure 1 that the structure of the Wy(x?)
is such that it may take several large excursions before passing back through the region of the initial
condition. Increasing the length of the assimilation window is likely to increase the number of minima

as the structure of the Wy (x') becomes more complex.
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4. Noise reduction onto the unstable manifold

Both the ensemble Kalman filter (EnKF) and nonlinear noise reduction (NNR) produce noise
reduced states that are consistent with the /T/I\/;(xt). The EnKF, a variant of the extended Kalman
filter (see Jazwinski (1969)), exploits the tendency of model states to collapse onto model attractors.
In the familiar (to nonlinear dynamicists) technique of NNR, the local subspace containing the system
manifold is estimated using a database of past observations and noise is then “reduced” by moving an

observation towards this manifold.

4.1. Ensemble Kalman Filter

The EnKF was first introduced by Evensen (Evensen (1994)). It is a method that is finding
increased application in both oceanography (Evensen and van Leeuwen, 1996) and meteorology
(Houtekamer and Mitchell, 1998). The EnKF is intrinsically probabilistic, making it well suited to
providing analysis PDF results. Instead of performing a separate assimilation operation on each initial
estimate of the system state (as is done for the 4d-Var approach in section 3), the EnKF produces the
uncertainty estimates directly from ensemble integrations. The EnKF is a sequential technique; model
states are integrated forward until an observation is encountered, at which point the model states and
observed state are combined to produce new, improved estimates of the true state of the system.

State estimates are produced through the combination of short term model forecasts, observations
and the associated uncertainty of each. A full description of the method is given in Appendix B. The
remainder of this paragraph describes the EnKF equations in a method analogous to the extended

Kalman Filter. The equations are:

x!(t) = F(x}(t — 1)), fori =1,n (10)

P/(t) = i (AT (1) — M (1) (A7 (1) - M ()" (11)
K(t) = P/ (t)H(t)" (H(OP/ ()H®)T +R(1) ™! (12)
x{(8) = x](t) + K@)y (©) — H(t)x] ()], fori = 1,n (13)
Pe(t) = i T(A() — M* (1)) (A" (t) - M*(¢))" (14)

In equation 10, each analysis value from the previous time-step, x¢(¢t — 1), is propagated forward using
the forecast model, F, to produce a forecast ensemble member, xzf (t) (n is the ensemble size). The

forecast error covariance, P/(t), is defined directly from the forecast ensemble in equation 11. Af(t)

is a matrix made up of each forecast ensemble member, and M7 (t) is a matrix constructed from the
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vector mean of Af(t). The gain matrix, K(t), is calculated in equation 12 using the forecast error
covariance and the observational error covariance, R(t). Here H(t) is simply an operator that maps one
from model space to observation space. Once the gain matrix is in hand, it is possible to produce an
analysis ensemble by “correcting” each member of the forecast ensemble using equation 13. A correction
term is defined by weighting the difference between a forecast ensemble member and an observational
realisation, y?(t), with the gain matrix. Finally, the analysis error covariance, P*(t), is computed in
equation 14 directly from the analysis ensemble. A%(t) is a matrix made up of each analysis ensemble
member, and M®(t) is a matrix constructed from the vector mean of A*(¢). Because we are considering
the perfect model scenario, no model error covariances appear in equations 10-14. There are issues of
independence associated with correcting ensemble members used in the construction of the gain matrix
(see Houtekamer and Mitchell (1998)), but they are ignored in this work.

If desired, a single analysis value can be produced at each time by calculating the mean of the

analysis ensemble:

x“(0) =+ > Xt (0). (15)

Although x*(¢) provides a useful deterministic analysis value for verification, only in the case where the
analysis has a Gaussian distribution (unlikely in nonlinear models) will it provide a maximum likelihood
estimate of the true state. Indeed, the mean of the analysis ensemble can easily occupy a region of
state space where the probability of the analysis PDF is zero. An alternative deterministic analysis is
provided by the most probable member of the ensemble, but again, the trajectory produced by this
member need not be “good”. The most sensible approach is to remain in a probabilistic framework.
The EnKF system begins with an initially Gaussian analysis ensemble, but integrating the
ensemble forward in time allows states that lie off the model attractor to collapse towards it. This
blending of model trajectories and observations produces noise reduced distributions that are far from
Gaussian, as can be seen in figure 3a, where EnKF noise reduction is performed using the same initial
conditions, observations, and realisations of observations used in the 4d-Var experiments of section 3.
The noise reduced points (black dots) appear to cluster onto the /I/I\/;(xt), an estimate of the manifold
containing the system attractor. Some of the noise reduced points lie far from the manifold containing
the attractor; this is due to a combination of observations pulling analyses away from the attractor,

and to the time-scale of collapse onto the attractor being larger than a single integration step.
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4.2. Nonlinear noise reduction

The aim of “traditional” nonlinear noise reduction (NNR) techniques is to produce improved
estimates of the true state of a system (see e.g. Kostelich and Yorke (1988)). Unlike 4d-Var and the
EnKF, NNR accomplishes this using only a database of noisy observations; the system equations are
not required. This is of substantial benefit should a good representation of the system’s dynamics be
unavailable, but when the dataset is long compared to the recurrence time of the system, NNR provides
an attractive alternative, a geometric method for producing /I/I\/_J(xt).

If a system evolves in a space with a dimension greater than the dimension of the manifold
on which the dynamics lie, then it is possible to move an observed point closer to the manifold by
eliminating the observation’s projection into dimensions not populated by the manifold. To accomplish
this, a local estimate of the subspace spanned by the manifold is determined using past observations
that are near the observation of interest. A subspace is defined by the covariance eigenvectors that
account for the majority of the variance of mass in the distribution of points®. Ideally, this gives the
subspace occupied by the attractor, while the remaining eigenvectors define a subspace occupied only
due to noise. An observation is noise reduced by removing its projection into the noise subspace. If
an ensemble of observations are constructed around the point one wishes to noise reduce and each is
noise reduced in turn, an analysis PDF can be constructed which is expected to lie closer to the locally
unstable set. Probabilistic NNR is applied to the Ikeda system by Hansen (1998).

The geometric NNR approach is similar in concept to a technique called ‘normal mode initialisation’
(Daley, 1991) used in atmospheric data assimilation. Instead of locating eigenmodes geometrically they
are determined dynamically, and instead of minimising an analysis’ projection into the noise subspace
one minimises an analysis’ projection into fast time-scale subspaces. The aim is to produce an analysis
that won’t suffer from dynamic ‘shocks’ when propagated forward, but it can also be discussed in terms

of attempting to determine the local attractor structure.

5. Combined probability

The distributions of analyses produced by 4d-Var at the beginning of the assimilation window tend
to lie along the V’[\/;(xt), while the distributions produced by the EnKF at any observation time tend to
lie along the VV\;(xt). In general, their combination produces a state estimate that leads to an initial

condition estimate superior to either in isolation. It is worth mentioning that in the linear, deterministic

5Deciding on the number of eigenvectors to use is typically a subjective exercise.
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context, 4d-Var and the Kalman filtering approach are equivalent (Lorenc, 1986). In nonlinear systems
they are not equivalent. Further, the combined approach aims for probabilistic state estimation; by
combining the distribution obtained at the beginning of the 4d-Var assimilation window and the EnKF
distribution we achieve a distribution that outperforms either in isolation.

The finite-time stable and unstable sets are not co-incident in the region of the Ikeda system shown
in figures 2 and 3, and useful information can be obtained by combining the results from 4d-Var and the
EnKF. Figure 3b shows a re-sampling of points from the N, = 10 4d-Var analysis (figure 2b) retaining
those points which are most likely given the EnKF distribution (figure 3a). This sample was determined
by weighting each point in the 4d-Var analysis ensemble with a probability given by the EnKF analysis;
members with weights greater than zero were retained. The most striking feature of the combined set
is the removal of the local minimum found in the 4d-Var analysis. Further, the combined set exhibits
significant contraction along WZ(xt); the set spans only the range of the local branch of the attractor.

Figure 3b shows only one application of our technique. To demonstrate the robustness of this
approach, experiments were carried out on 1024 initial conditions spread across the attractor. For each
initial condition, a 4d-Var analysis PDF, EnKF analysis PDF and a combined 4d-Var/EnKF PDF was
produced. The quality of the analyses were assessed by determining the area contained within the 90%
contour, the area in which 90% of the analyses reside. A binning procedure was used to estimate the
PDFs’ area, with a resulting bias towards an overestimate of the total uncertainty, but an underestimate
of the impact of local minima, diluting the performance of the combined method. Histograms of the
results normalised by the area of the 90% contour produced by observational uncertainty are plotted
in figure 5; 4d-Var results in panel a), and EnKF results in panel b). A histogram of areas for the
combined approach is not shown, but members would occupy only the first bin in the histograms
shown in figure 5. The 4d-Var analysis areas are, on average narrower than the EnKF analysis areas,
magnitude. In every instance considered, the combined PDF contained truth.

The combination of 4d-Var and EnKF noise reduction gives better analysis distributions than
either of the methods in isolation, but what about its ability to forecast? Recall that the analyses being
produced are constructed around the state at the beginning of the 4d-Var assimilation window. If one
is assimilating data in real time, before a forecast can be run the analysis PDF must be propagated
forward to the end of the assimilation window. When the N, = 10 4d-Var distribution and the
combined distribution are evolved to the end of the assimilation window (the time at which forecasts
are launched), both of the evolved ensembles project strongly onto the /I/I\/;(xt). The 4d-Var ensemble’s

variance along /W;(xt) is larger than that of the combined set; further, the combined set is better centred
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on the true state of the system. A cumulative distribution constructed from the squared distance from
truth of the points in the 4d-Var and combined ensembles (not shown) conveys the same information:
for this initial condition, the combined ensemble has a larger fraction of points near the true state and
a narrower spread than the 4d-Var ensemble. If cumulative distributions for the EnKF ensemble and
observational distribution are included, the three noise reduction methods significantly outperform the
observational distribution, while the 4d-Var and combined ensembles outperform the EnKF ensemble.
Quantitatively, for this initial condition the combined ensemble unambiguously outperforms the 4d-Var
ensemble beyond the 70th percentile, while 80% of the combined ensemble states fall within a radius
that is 33% smaller than that needed to contain 80% of the 4d-Var states.

Figure 6 plots mean errors for 4d-Var, EnKF and combined ensembles as a function of time from
the beginning of the 4d-Var assimilation window. The values are normalised by the error resulting
from an ensemble constructed around an observation at the beginning of the assimilation window
and integrated forward. The negative numbers along the x-axis represent the fact that the combined
analysis is valid at the beginning of the 4d-Var data assimilation window; the 4d-Var and combined
analysis PDF must be propagated to the end of the window before forecasts can be launched. Only
forecast errors are plotted for the EnKF as it uses no ‘window’.

The combined distribution outperforms the 4d-Var distribution both over the 10 step assimilation
window and over the 10 forecast steps considered. This stems primarily from the reduction of local
minima through the inclusion of the EnKF PDF. Values shown are the most likely (the mean value),
which do not necessarily coincide with the most probable (the bin with the highest probability value).
The 4d-Var mean analysis error is 0.0144, compared with a most probable value of 0.0042; the PDFs are
clearly far from Gaussian. For comparison, the combined distribution’s mean analysis error is 0.0011
with a nearly identical most probable value; the structure of the WZ(xt) has significant curvature in
many regions of the Ikeda system. The inclusion of the EnKF information removes curvature that is not
consistent with the local attractor structure and improves the relevance of ensemble mean statistics. It
is important to note that this feature is not unique to the EnKF. Similar information could be obtained
through three-dimensional variational assimilation, or from the states at the final location of the
previous 4d-Var window. The EnKF was chosen for this work because the large number of W (x)-based
localised minima encountered during 4d-Var minimisation resulted in relatively poor Wy (x). It is
important to note that these localised minima problems may be system and/or minimisation routine

specific.



16

6. Conclusions

This paper has introduced an improved method for producing analysis ensembles that relies on
the combination of four-dimensional variational assimilation and the ensemble Kalman filter. The
method presented here takes a probabilistic approach to the problem, producing PDFs of noise reduced
states rather than a single ‘best’ estimate. Given a nonlinear system, a PDF is to be preferred over
any ‘best’ estimate . All experiments were performed in the perfect model context using observations
distributed about truth. While results are illustrated for the Tkeda map, the method is not constrained
to low-dimensional, chaotic systems. Insofar as a dynamical system of interest possesses non-coincident
finite-time stable and unstable sets, the techniques described in this paper are expected to provide
improved analysis ensembles. The limitations of implementation are practical (available computing
power) rather than theoretical.

The distribution of noise reduced points produced by 4d-Var at the beginning of the assimilation
window tend to fall onto the W, (xt), while those produced by the EnKF (which has no window) tend
to fall onto the /I/I\/Z(xt). By combining distributions it is possible to produce a noise reduced PDF that
exploits the benefits of each. As discussed in section 2, the finite-time dynamics of the system render
it possible to obtain contraction along the WZ(xt) using only 4d-Var, contrary to the results of Pires
(Pires et al., 1996). Additional improvement is produced by incorporating the EnKF.

The ability to determine the local structure of a model’s attractor has implications beyond noise
reduction. When an analysis ensemble is consistent with the underlying system attractor, then both
the ensemble members and the true system state are drawn from the same distribution. The same is
true for the ensemble forecasts and associated true states. This results in consistent ensemble forecasts,
that is, events that are forecast to occur 10% of the time will actually occur 1 time in 10. Further,
consistent analysis ensembles provide accurate analysis (and forecast) error covariance information.
Such information can be useful for further noise reduction efforts and for sensitivity (singular vector)

studies.
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Appendix A: Finite-time Stable and Unstable Sets

Broadly, a finite-time stable/unstable set is one which tends to collapse onto a single state as one
propagates the set forward/backward for a time 7. Such sets do not have a unique definition: three are
given below followed by a necessary convergence property.
€ formulation

For € > 0,

% € W,(xt, 7€) & ||R(1) — xi(7)]| < € (A1)
for the finite-time stable set, and
% € Wo(x!,1,6) & ||R(—7) — x'(=7)|| <€ (A2)

for the finite-time unstable set. This is the definition used in this work. It requires that all points in
the WA/;(xt) /ﬁ/:(xt) must lie within a distance € of the true state at 7.
¢ formulation
For § > 0, T
% € W,(x',7,0) & Y [Ix()) —x'(i)]| < 6 (A3)
i=0

for the finite-time stable set, and
% € Wu(x',7,6) & Y [I%()) — x'(i)]| < § (A4)
=0

for the finite-time unstable set. Instead of requiring points to be within some € of the true state at %7,
the § formulations specifies that the sum of the distances between the trajectories between 0 and +7
must be less than some §.

A formulation

For ¢ >0 and A > 0,
% € W(x!,7,¢,)) & [[%(1) = x*(7)|| < cl|%(0) — x'(0)[|e=*" (A5)
for the finite-time stable set, and

€ Wu(x!,7,¢,)) & ||%(—7) — x'(=7)|| < ¢[|%(0) — x*(0)[]e > (A6)

M

for the finite-time unstable set. This definition specified that points in the WA/; //I/I\/_,; must collapse onto
the true trajectory exponentially fast.

Convergence property
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Whichever definition of finite-time stable and unstable sets is employed, it is critical that it satisfy

the following criterion: for all x there exits some 7y such that

xeW,Vr>m & €W, (A7)

and

XEWU,VTST()@:EEWU. (A8)

Equations A7 and A8 state that there exists some trajectory length beyond which the points in the

W, /W, are also in the infinite-time stable/unstable set.

Appendix B: The Ensemble Kalman Filter

The Kalman filter is used to obtain an optimal estimate (in the least-squares sense) of a system
state given a model state and observations. Developed in 1960 (Kalman, 1960), it is a method that is
capable of extracting the maximum amount of information available in an observation. This is achieved
by combining model states and system observations and utilising information about the uncertainty in
each.

A more detailed derivation of the Kalman filter can be found in Jazwinski (1969); only an outline
is presented here. The Kalman filter’s derivation is based on maximum likelihood. As such, both
observational error and model error are assumed to be Gaussian, white noise processes.

A Kalman Filter variant called the ensemble Kalman Filter (Evensen and van Leeuwen, 1996) is
utilised in this work. The EnKF is identical in application to the extended Kalman Filter introduced
below. It differs only in its method for producing estimates of the forecast error covariance matrix
and its handling of model error. Before discussing the EnKF directly, the extended Kalman filter is
discussed.

Consider a model given by

x/ (t) = F(x*(t — 1)) (B1)

and a system

x'(t) = G(x'(t — 1)). (B2)

The model need not be a perfect representation of the system, but it is assumed that any

discrepancy between the model and the system can be expressed as
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G(x'(t - 1)) =F(x'(t — 1)) +n(t) (B3)

where 77 is a Gaussian white noise process that is intended to account for all model error. The expected
value of 7 is taken as zero, E(n) = ¢ = 0, with a model error variance of E(nnT) = Q.

Observations take the form

ye(t) = H(H)x'(t) + € (B4)

where E(e,) = 0 and E(e,el) = R. The operator H(t) provides a transformation from model space
to observation space. It accounts for such things as observation grids which do not correspond to the
model grid and performing the transformation model space to observation space.

The Kalman filter produces an estimate of the system state, x*(t), given a forecast, x/(t),
observations, y°(t) and the associated model, forecast and observational uncertainties. The equation

for the analysis takes the form

x*(t) = x/ (t) + K(t)[y°(t) - H(t)x' (1)]. (B5)

where K(t) is a ’gain’ term specifying the relative weight given to the forecast and the observations.
Assuming the analysis error and the model error are independent, that is, F(ne,) = 0, expressions

can be written for the forecast error covariance, P#(¢) and the analysis error covariance, P*(t)

P/(t) =F'P(t—1)FT +Q (B6)

and

P%(t) = P7(t) — K(t)H(t)P/ (¢) (B7)

where F' is the linearisation of F.

The application of the extended Kalman filter is then as follows

x/ (t +1) = F(x%(t)) (B8)
P/(t) =F'P(t—1)FT +Q (B9)
K(t) =P/ ()H®)" HOP/ HE®)" +R(t) (B10)

x*(t) =/ (t) + K(t)[y° (t) - H(t)x/ (¢)] (B11)
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P(t) = P/ (t) - K()H()P/ (1), (B12)

A forecast of the system state is made from the current analysis (equation BS8), as is a forecast of
the analysis error covariance (equation B9). Using the forecast of the analysis error covariance and the
current observational uncertainty, the gain matrix is calculated (equation B10), and from it and the
predicted model state, the new analysis is determined (equation B11). Finally, using the gain term and
the forecast of the analysis error covariance, the best estimate of the current analysis error covariance
is computed (equation B12).

The ensemble Kalman filter was introduced by Evensen (1994) as a method for avoiding the
expensive calculation of the forecast error covariance matrix (equation B9) necessary for the extended
Kalman filter derived above. Instead of mapping an estimate of the analysis error covariance forward
under a model’s linear uncertainty propagator, the EnKF uses the full model equations to integrate
forward a number of initial conditions from which the error covariances can be estimated. Similarly,
instead of estimating the analysis error covariance with equation B12, its value can be determined from
the analysed states of the ensemble members after an application of equation B11 to each.

In the extended Kalman filter, the model error term, Q, is added to the estimate of the propagated
forecast error covariance. Such a simple treatment of model error is not possible for the EnKF. Model
error must be accounted for in the integration of the ensemble of initial conditions. Evensen argues
that this can be accomplished by forcing the model with “pseudo random fields with specified variance

i

and covariance,” and provides an appendix outlining the construction of such fields. In the current

work, a perfect model is employed and no model error term is necessary.
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Figure 1. The Ikeda attractor and the structure of the ﬁ(xt) for the point in figures 2 and 3. The
Ikeda attractor is seen as the dots on the right side of the picture while the WZ(xt) is shown as the
looping line. The WZ(xt) has a rich structure; each time it loops back through the region surrounding

the point about which it is constructed it will cause a valley in cost function space.
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results and the 4d-Var results of figure 2.
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Figure 5. Distribution of the area containing 90% of the probability in noise reduced analysis PDFs for
a) 4d-Var, and b) the EnKF over 1024 different initial conditions. The areas are normalised by the area
containing 90% of the observational probability. The areas produced by 4d-Var are smaller than those
produced by the EnKF, consistent with the 4d-Var ensembles lying along a line given by the WZ(xt)
while the EnKF ensembles reflect the underlying attractor structure. The combination of the 4d-Var
and EnKF PDFs results results in an improvement of nearly two orders of magnitude. Although the
histogram is not shown, all areas of the combined results would fall into the first bin of panels a) and

b).
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Figure 6. Mean distance between the ensemble mean and truth for N, = 10 4d-Var ensembles (solid),
the EnKF Ensembles (dot-dashed), and the combined 4d-Var/EnKF ensembles (dashed) over 1024 dif-
ferent initial conditions. Analysis ensembles for 4d-Var and combined 4d-Var/EnKF were constructed
and integrated forward 20 steps. The first 10 steps covered the assimilation window, with the next 10
steps being proper predictions. As the EnKF ensembles do not utilise a ‘window’ they were integrated
over only the 10 forecast steps. All errors are normalised by the error that results from performing no
noise reduction and simply constructing an ensemble about an observation. It is seen that the combined

ensemble outperforms the 4d-Var ensemble at every step.



