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1 Introduction

All theorems are true!. All models are wrong?. And all data are inaccurate.
What are we to do?

We must be sure to remain uncertain. In 1901, the year of Enrico Fermi’s
birth, it was well known that the sun could be only a few years old, inasmuch
as a back of the envelope calculation showed that even if the sun were made
of the highest quality coal, its chemical energy and gravitational energy would
both be exhausted well before the time-scales claimed by geologists. Newton’s
Laws had successfully prophesied the existence of Neptune from irregularities
in Uranus’s orbit, and the planet Vulcan had been observed (between Mercury
and the sun) which might explain irregularities in Mercury’s orbit. While Nep-
tune is still with us, Vulcan was, perhaps, a misinterpreted sunspot. Through-
out Fermi’s lifetime, astrophysical phenomena and physical experiments, often
by his hand, repeatedly did things which could not happen, at least according
to the “Laws of Physics” of the day. An unshakable belief in the applicability
of those laws would have made progress impossible.

What has this to do with nonlinear dynamics and the analysis of time series?
Nonlinear time-series analysis often resembles an experimental science: some
technique is applied to a data set, an interesting observation is made, and a
discussion ensues as to whether or not the observation is sound. Are we follow-
ing Le Verrier in naming Vulcan in the hope of bringing Mercury’s orbit closer
into agreement with Newton’s Laws, or are we following him in discovering
Neptune? Is the uncertainty in the available data? or in our current under-
standing of the Physics? In these lectures we will examine methods which aim
to maintain our uncertainty rather than adopt unsubstantiated conclusions.
Applications range from testing the reliability of algorithm by analysing data
of known origin, to propagating uncertainty in an initial condition under fore-
cast models in order to examine the reliability of a particular forecast.

Nonlinearity plays a central role in data analysis, modelling, and predicting
physical systems. We are often faced with questions like:

e Are these two signals related?

e Is there a deterministic/periodic component in this signal?
e Did this data set originate from a strange attractor?

e Is this system chaotic?

e What is the “limit of predictability” of this system?

1Regrettably, their premises are never fulfilled in reality.
2Unless they are “perfect,” in which case they are theorems!.



e Which is the better model for this system?

Our goal will be to examine the feasibility of answering these questions, rather
than to demonstrate the current crop of algorithms for doing so.

Figure 1 shows two data sets with “similar dynamics.” Is there a causal connec-
tion between these two series? Most likely not. Is there a statistically significant
relationship between just these two series? For almost any simple null hypoth-
esis: yes. In these lectures, we will examine methods which attempt to quantify
the significance of a variety of data analysis techniques in the context of non-
linear, perhaps chaotic, phenomena. There are limits, of course, to our ability
to determine whether or not a given observation is significant. Sometimes we
simply must require more data. The important thing is to remain uncertain!
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Figure 1: Simultaneous series of sunspot number (solid) and the fraction of the U.S. Sen-
ators who were Republicans on the day of their election (dot-dashed), from 1960 to 1989.
The sunspot number has been rescaled by a constant.

One useful role for simple models is to help us maintain our uncertainty in the
light of “promising” results. The historical record of sun-spots is one of the
most studied time-series, and we will draw heavily from the work of Spiegel and
Wolf [1], Weiss [2], and Casdagli et al. [3]. A wide ranging report on the rela-
tionship between sunspots and a variety of phenomena can be found in Stetson
[4], which includes a number of interesting (then) out-of-sample forecasts. Fig-
ure 2a shows the sunspot record while Figure 2b is a particular sample from
the stochastic sunspot simulation of Barnes et al. [5], which will be described
in Section 4.1. How can we use this model to inform our uncertainty? Figure 3a
shows a three-dimensional reconstruction of the sunspot data, produced with
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Figure 2: Time-series of (a) annual sunspot number and (b) data from the
stochastic Barnes model of Section 4.1. Up-to-date sunspot data may be found at
http://www.oma.be/KSB-0RB/SIDC/sidc_txt.html.

the techniques of Singular Spectrum Analysis (SSA), which is discussed in ref-
erences [6, 7, 8] and the contribution of Ghil and Taricco to this volume. It has
been observed that this view is reminiscent of the chaotic Rossler attractor: Is
this observation evidence that the dynamics of sunspots are low dimensional
deterministic chaos? To try to find out, we may, for example, repeat the exper-
iment with data from the Barnes model, which we know (by construction) is
stochastic and hence does not display deterministic chaos. The result is shown
in Figure 3b, where again we recover structure reminiscent of the Rossler at-
tractor. We conclude that such structure will occur in the analysis of any
data set that “looks like” those of Figures 2, whether they arise either from
a stochastic or from a deterministic processes; hence this observation provides
little additional information on the dynamical process governing sun-spots.
Our uncertainty is maintained.

In the following section, we introduce the basic framework for nonlinear dynam-
ics. Dimensions and Lyapunov exponents are introduced and it is proven, by
example, that chaos need not be difficult to predict. By chaos I shall mean de-
terministic chaos. A dynamical system is deterministic in the sense of Laplace
when the future trajectory of the system is completely determined by the exact
initial condition and the equations of motion. If the effective growth-rate of
infinitesimal uncertainties is exponential in time, such a system is chaotic. This
exponential-average-growth is reflected by positive Lyapunov exponents,but as
illustrated in Section 2.2.1, positive Lyapunov exponents per se place no prac-
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Figure 3: Three-dimensional trajectories from the SSA principle components of (a) the
observed sunspot record and (b) a 512 year series from stochastic Barnes Sunspot model. In
both cases, the view suggests structure similar to that of the Rdssler attractor, even though
the underlying process generating (b) is known to be stochastic.

tical limits on predictability. Takens’ Theorem is stated in Section 2.4, and the
encouragement it provides for methods of reconstructing dynamics from data
is discussed.

Section 3 contrasts the various meanings of “prediction.” In these lectures we
are primarily concerned with forecasts either from data-driven models or from
full simulations; the difference between developing the best model and ex-
tracting the best forecasts from a given model are explored, as are the extreme
limitations of employing least square error criteria to define the best model.
The initial condition is a different beast from an observation of the initial con-
dition: observational data are never exact. Given the true initial condition of a
chaotic system, the probability of an event is either zero or one. Determinism
yields uniqueness. But given only an (inexact) observation, this probability
may take on other values, even if our model is perfect. For this reason we
are encouraged to make probabilistic forecasts even given good models of de-
terministic systems. If our models are not so good, the situation is even more
interesting. Ensemble forecasts for perfect models, laboratory systems, and the
Earth’s atmosphere are discussed in Sections 3.5, 3.7 and 7.3 respectively. The
relevant probability distribution functions (PDFs) often display complicated
non-Gaussian structure. This makes model evaluation less trivial than taking
the model with the least squared prediction error. Alternatives are discussed
in Section 5.

In practice, it is often the case either that we do not understand the underlying
physics of a system well enough to build first-principles models, or that such
models would be too complex to be deployed. If we are lucky enough to have



a great deal of data from such a system, the techniques of Section 3 can be
used to reconstruct its dynamics directly from the data. But how can we know
that we have “a great deal of data” ? Section 4.1 begins with the presentation
of tests for data sufficiency and the robustness of scaling exponents estimates,
and concludes by suggesting tests for the self-consistency of dynamical models.

There are many applications we pass over without comment, and the nonlinear
filtering of signals [9, 10] was almost one of these. The study of nonlinear sys-
tems, like the systems themselves, has too many interesting degrees of freedom.
It is important to keep the driving question in sight, and distinguish between
the distinct goals of studying a phenomena, testing an algorithm, analysing a
data set and making the best forecast given the current state of the art(s).

For those who read only introductions while scanning figure captions, the gist
of these lectures are (1) that statistics play an important role in helping us
recognise the shortcomings of data analysis, and a dubious role in locating
strengths; (2) that algorithms should be tested to destruction, so that at least
some of their weaknesses are learned; (3) that tests of self-consistency are more
accessible than tests of absolute truth, which is unsurprising if we consider
even the “Laws of Physics” as the analogies of physics while we probe their
limitations; and (4) that truly deep insights can only be supported by data
not considered in the analysis. Until such data are obtained, we must remain
uncertain, if hopeful. Regardless of the level of statistical skill and physical
insight at hand, and regardless of the high level of statistical significance at
which, for example, two data sets can be shown unlikely to be unrelated,
promising results often evaporate given a glimpse of out-of-sample data. In
the case of sunspots and the number of Republicans in the Senate, additional
data can be obtained; contrast Figure 1 and Figure 22. As noted by Robert
Boyle in the quotation that introduces Section 4, this was the case 300 years
ago. And it will most likely be the case 300 years hence. Yet we may hope to
reduce, in both magnitude and number, the disappointment of our expectations
through the careful maintenance of our uncertainty.



2 Preliminaries

There is a fundamental difference between the physical processes which gen-
erate phenomena, the data recorded by measurement, and the models we con-
struct to explore, explain and simulate the phenomena. Yet it is easy to confuse
the map with the territory, especially since it is common to assign the role of
the process to a particular model and then study the data it generates. In this
perfect model scenario, a perfect model does indeed exist (the one which
generated the data in the first place) and improving a given model of the cor-
rect functional form is equivalent to determining the original parameters. With
physical phenomena, we never have access to a perfect model, nor are we privy
to whether or not such a model exists.

Imperfect models are, of course, of tremendous value in suggesting new obser-
vations, evaluating our analysis techniques and testing our algorithms. When
analysing data from a model, we know a priori whether the model is stochastic
or deterministic. Sometimes, we may even know whether it is chaotic. We can
use the model as a straw man, test our algorithm on data generated by it, and
thereby determine whether or not the algorithm works (in this case), estimate
the amount of data it requires, and develop tests of internal consistency for
the analysis.

If a process contains a random element, then it is a stochastic process. The
simplest stochastic process is a series of independent and identically distributed
(ITD) random variables. A wide class of autocorrelated stochastic processes
can be developed by including autoregressive or moving average terms (see, for
example, Chatfield [11]) and their nonlinear generalisations (see Tong [12]). By
definition, chaotic processes are deterministic. Yet many interesting nonlinear
processes contain elements of both chaotic and random nature, those that do
not fall into the linear classification scheme of traditional statistics might be
called aleatoric [13], since they contain both complex deterministic elements
and random elements, like a human hand throwing dice. The SEQUIN model
of Borland [14] suggests a framework within which to build explicit models of
aleatoric dynamics, while the RAP approach of Paparella et al. [15] suggests
a purely data-based alternative. Given only a finite data set, we can never
determine whether the generating process was deterministic or stochastic - or
even know whether or not the data series forms part of a long periodic orbit?.

3Like the ones all digital computer experiments tend to (inasmuch as these computers
are all finite state machines).



2.1 State-space Dynamics

We often envision a deterministic dynamical system as a set of m autonomous
nonlinear ordinary differential equations (ODE)

d

—x = f(x 1

Cx = 1(x) 1)
The components of the vector x define the state space variable (e.g. posi-
tion, velocity, acceleration, ...) in an m dimensional state space. The flow
f: R™ — R™ determines how these variables change with time. Given an ini-
tial condition xg, equation 1 defines the future trajectory x(t) for all time.

The extent to which any physical system truly corresponds to this vision is an
open question, but we are free to define a dynamical system in this way and see
where it leads us. The Moore-Spiegel [16] system evolves in a 3—-dimensional
space

d_x
dt
dy
dt
dz

dt

=Y
= z
= —2—(T-R+R2x*)y—Tx (2)

providing a model for the height z of a parcel of ionised gas in the atmosphere
of a star, where the parcel’s velocity is y and its acceleration is z. In symbols
m =3, x € R? and x = (z,v, ). A survey of several chaotic flows in R? with
quadratic nonlinearities is provided by Sprott [17]. Of course, our models are
not restricted to m = 3, although for m > 3 plotting orbits becomes difficult.
A useful method of visualisation when m = 4 or 5 is to plot a surface of section:
for some component s of x, record the m — 1 other components whenever s
decreases through some particular value, say s = sg. This results in a set of
vectors in R™ !, in this case we have take a section on a plane perpendicular to
one of the coordinate axes, but other surfaces may suffice*. The left-hand panel
of Figure 5 is a 2-D section of the attractor in Figure 4 for z = 0. Practical
considerations in obtaining surfaces of section are discussed by Hénon [18].

Ideally, each point on a surface of section evolves into a new one: the dynamics
resembles a map of R™! — R™!. Since the Moore-Spiegel equations are
deterministic, we know there exists some (unknown) function that maps each
point on the section to a new point after a time ¢(0,y, z). Rather than inte-
grating the equations, or attempting to approximate a true surface of section,
we can write down the equations for a discrete-time map directly and study

4If the system is subject to a periodic driving force, the stroboscopic observations with
the driving period are often used to obtain a section.



MOORE-SPIEGEL

Figure 4: A strange attractor of the Moore-Spiegel system (R = 100,7 = 26). The
planar surfaces separate wedge-like regions, within these an uncertainty would eventually
shrink with time, were the local Jacobian to remain relevant (see Section 2.1.2).

the dynamics of the resulting iterated dynamical system. In such maps, time
takes on only integer values. Numerically, maps can be evaluated more quickly
than surfaces of section. Maps, however, make less robust straw men than true
surfaces of section: there need be no simple functional form for a true section
and the return time in a map is “1” for all points, while the return time (if
any!) on the cross-section of a flow may be of interest in itself.

One of the most studied 2-d maps is the Hénon Map[19]:

Tiy1 = 1—a$12+y1
Yiv1 = bx; (3)

with @ = 1.4 and b = 0.3 (see Figure 5b). Hénon constructed this map with
simplicity in mind. It is the most general quadratic map with constant Jacobian
determinant (= —b), which he considered a welcome property as the natural
counterpart of the constant negative divergence in the Lorenz system[20]. The
map is straightforward to manipulate analytically and thus of great value for
analysis. These same properties make it a weak straw man.

A slightly more robust straw man is provided by the Stiletto Map:
1 1
Tipr = (x4 —)edl2d=1_ — 4
a a

10
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Figure 5: (a) An z = 0 surface of section of the Moore-Spiegel attractor from Figure 4,
and (b) a trajectory from the Hénon attractor.

Yis1 = by — ye” G/ (4)

which, for ¢ = 0, generalises the 1-D Moran-Ricker Map in a manner analogous
to the way in which the Hénon Map generalises the 1-D logistic map. An
attractor of the Stiletto Map with parameters a = 3.0, b = 0.3, ¢ = 0.0 is
shown in Figure 6. While the functional form of equations 4 are much simpler
than either the true surface of the Moore-Spiegel equations, or any map arising
from real data, it may provide a bit more of a challenge to analysis techniques
than the Hénon Map.

2.1.1 Linearized Dynamics of Infinitesimal Uncertainties

Given f and an initial condition xg, the trajectory x(¢) is uniquely determined.
But suppose there is an uncertainty, €, € R™, in the initial condition of a
chaotic system. In this case, the future is uncertain even if we have a perfect
model. For ordinary differential equations, the evolution of an infinitesimal
uncertainty is governed by the linearization of the flow, that is

€= J(x)e (5)
where J(x) is the Jacobian of the flow f at x. For the Moore-Spiegel system

0 1 0
J(x) = 0 0 1 (6)
—(T +2Rzy) —(T — R— Rx?) -1

11
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Figure 6: An attractor of the Stiletto Map (a = 3.0,b = 0.3,¢ = 0). The inset shows a
blow-up of the region near a fixed point. The bars labelled € = 272 and ¢ = 2710 indicate
two characteristic length-scales at which macroscopic “bands” of the attractor are separated,

these length-scales are reflected in the correlation integral (see Section 2.3 and Figure 9).

This gives us a handle on the dynamics of infinitesimal uncertainties, which is
discussed below along with their use in defining Lyapunov exponents. In Sec-
tion 3.5 we will consider the dynamics of more realistic (finite) uncertainties.

2.1.2 Instantaneous Infinitesimal Dynamics

In a flow where the Jacobian is constant, the eigenvalues of the Jacobian matrix
determine the long time behaviour of infinitesimal uncertainties; in particular
if these eigenvalues have negative real parts, all perturbations will eventually
die away. We can determine whether or not this is the case by evaluating the
Routh-Hurwitz criterion for the Jacobian (see [21, 22]). The surfaces in Figure
4 show two thin wedges containing a fraction of the Moore-Spiegel attractor
within which this is the case. Of course, a local Jacobian is only relevant for
an instant in time, since the trajectory is advected past each point. Further,
when a Jacobian matrix is not normal, there may be orientations in which an
infinitesimal perturbation will grow for a finite time[23, 24]. Hence to apply the
above criterion, we find ourselves in need of simultaneously assuming both the

12



limit ¢ — 0 and t — oo as welll The resolution of this dilemma is to consider
not the eigenvalues of the matrix J, but its singular values which are defined
in the next section. As shown below, if the singular values of J are all less than
one, then all infinitesimal uncertainties will decrease (instantaneously). If this
result holds for a finite region of the state space, then all such perturbations
will decrease for a finite time (as long as they remain within that region).
There is no such region for this Moore-Spiegel attractor, however Ziehmann
[25, 22] has shown that roughly 30% of the Lorenz attractor lies within such
a region. Rather than introduce singular values here in the context of the
Jacobian, we first lift the restriction to instantaneous dynamics by defining the
linear propagator in the next section. We will still be restricted to infinitesimal
uncertainties, but at least we will be able to consider their dynamics over a
time interval At > 0.

2.1.3 Finite Time Evolution of Infinitesimal Uncertainties

The evolution of an infinitesimal uncertainty over a finite time At is determined
by the linear propagator M (xg, At) along the trajectory x(t), that is

e(to + At) = M(xo, At)e(to) (7)

where xo = x(to) and, for a flow,

to+AL

M (xo, At) = exp < / J(x(t))dt) . (8)
to

For discrete time maps, the linear propagator is simply the product of the

Jacobians along the trajectory

M(XO, k) = J(Xk_l)J(Xk_g) . J(Xl)J(Xo). (9)

This greatly simplifies the overhead implied by equation 8 ! And it is for this
reason we use maps in the next subsection to dispute the relationship between
Lyapunov exponents and limits to predictability.

M (%o, At) evolves a spherical shell of radius |€g| into an elliptical shell about
x(to+ At), as illustrated in Figure 7. Of course for a finite uncertainty, M only
approximates the true nonlinear dynamics. Figure 7 illustrates this point by
showing the images of a circle under both the linear approximation and the full
nonlinear function. For a fixed At, we can define a maximum linear range
0, such that the error in the linear approximation at t = ty + At is less than
some specific tolerance for any perturbation € with |e| < §. § will, of course,
vary with x.

The linear dynamics are most easily examined through the singular value de-
composition (SVD) of M (see [21, 26]) which indicates the directions at ¢, that

13
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F(x+g) -

F(x) + M(x)e

Figure 7: Schematic of the linear propagator. Under the linearized dynamics a circle of
radius e about the point x is mapped into the ellipse about F(x). Of course for any finite
radius this is only an approximation to the image of the circle under the nonlinear dynamics
of F. The first left singular vector, vy of the linear propagator, M, gives the direction which
will be mapped into the semi-major axis of the ellipse while stretched by a factor o;.

will have evolved into the axes of the ellipse at to+At. In symbols, M = ULVT
where the right (left) singular vectors, v; (u;), form the columns of the orthog-
onal matrix V' (U) and the entries of the diagonal matrix ¥ are the singular
values o; in rank order (i.e. with o; > o0, for ¢ < j). With this ordering, the
first singular vectors correspond to the direction which will have grown the
most between ty and ty + At. While it is tempting to say v is the “fastest
growing direction,” it is also misleading since the SVD of M only indicates to-
tal change over the entire duration At and says nothing as to how this change
came about. The right singular vectors (the v;) are often referred to as “initial
time” singular vectors, and the left singular vectors (the u;) as “final time”
singular vectors, inasmuch as v; are defined at ¢y, and evolve into the u; which
are defined at ¢y + At. Under the action of M, each right singular vector v;,
is rotated into the corresponding left singular vector u; and multiplied by the
factor ;. That is

MVZ' = o;Uu;. (10)

If all the singular values are less than one (07 < 1 is sufficient, since none of
the others are greater than oy) , then all infinitesimal perturbations will have
shrunk at time ¢y + At. Negative numerical estimates for oy in the Lorenz
system were noted by Mukougawa et al. [27], and Nese [28] who examined
variations in predictability discussed in [22].

For a given x and At, the o; define the finite-time Lyapunov exponents,
Ai(x, At) = 3 log, 0y, first discussed by Lorenz [29]° Since the o; are positive,

S5Lorenz works out a numerical example in a 28 dimensional system and illustrates the
variation of finite time exponents with initial state. Using a different nomenclature, of course,
since this paper pre-dates that of Oseledec [30]. Additional discussion may be found in

14



we are free to write o; = e*2*"2 and define \; as an effective growth rate. An

infinitesimal perturbation with orientation v; is often said to grow as
e(At) oc eMAt (11)

For finite At this formulation can be misleading since in this equation ) is a
function of At (as is oy and even v;). Thus Equation 11 holds for any positive
definite function €(At) and does not imply exponential growth.

In other words, while the effective rate would be informative if the growth
of uncertainty were uniform and exponential, nothing needs be growing ei-
ther uniformly or exponentially: effective rates remain well defined for each At
as long the uncertainty remains non-zero and finite, irrespective of how the
uncertainty actually increases with time. Interpreting them with the added
assumption of uniform exponential growth is rarely justified in practiceb, al-
though it is common. It is for this reason that we use the awkward phrase
“average-exponential-growth rate.” Further discussion of this point may be
found in the introductory text of Nicolis [34].

The maximum average-exponential-growth rate over At corresponds to
A1(x, At) and occurs when the initial (infinitesimal) uncertainty is aligned with
vy. In the limit At — oo, A;(x, At) approaches the largest global Lyapunov-
exponent, A, for almost all x and almost all initial orientations €;. We will
define the local orientation of the global Lyapunov vector (LV) at x as
the orientation of vy at x in the limit At — oo. The remainder of (global)
Lyapunov-spectrum, A;,7 = 2,..., M, quantifies the growth of perturbations
in subspaces where the effective rate is less than A;, and are defined in a similar
way, assuming these limits exist (Oseledec [30]). Note that for finite At, one
can write down differential equations for the singular vectors themselves (see
Green and Kim [35]). Also note that in large numerical models, direct manipu-
lation of M is less straightforward; alternative methods for approximating the
SVD in large numerical models are investigated by Barkmeijer [36].

Do positive Lyapunov exponents place an a priori limit on predictability?
It is often argued that, since an initial uncertainty grows exponentially on
average, then the uncertainty will tend to double (increase by one bit) after

the Lyapunov time
1
= — 12
™= (12)
where A; is expressed in bits per second. The uncertainty doubling time,
Taowrte Provides a more direct measure of a prediction time scale through the

average of the minimum time required for an uncertainty to increase by a factor

[31, 32, 22, 33] and references therein.
6Tt is justified in dynamical systems with constant Jacobians, which are rare in practice!
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of two. More generally, define the ¢g-pling time 7,(Xo, €9) as the smallest time
at which the initial uncertainty €3 about x has increased by a factor ¢

7q(Xo, €0) = Ig;igl{t‘ [Fi(x + €0) — Fi(x)[| = gll€ol|} (13)

Whenever an initial orientation of € is well defined for each x, we have

el = (ra(x,€)) (14

where the average is taken over all points x on the attractor. To allow a fair
comparison with Lyapunov exponents, we will define 7., as the limit of
72(||€]|) as ||€|| — O, with the orientation of the uncertainty at x defined in the
local direction most relevant to the first global Lyapunov exponent, specifically
the limiting vy of the SVD of M(x,At) as At — +o00, assuming this limit
exists.

Like the Lyapunov exponents, T, reflects only the dynamics of infinitesi-
mals, but unlike the Lyapunov exponents it reflects the time taken directly,
something an effective rate simply cannot do”. Both finite time Lyapunov expo-
nents and global Lyapunov exponents reflect average rates, not average times;
being effective rates, their definition requires a time-scale be defined a prior: .
In general the inverse of the arithmetic average of the inverse of a variable
yields a poor estimate of the variable!

2.2 Lyapunov Exponents and Predictability

Since it is widely held that positive Lyapunov exponents place a fundamental
limit on predictability, we will prove, by example, that this is simply false. The
failure of Lyapunov exponents to reflect predictability is shown in a system
where the linearized dynamics are exact even for finite uncertainties. Things
will only be more interesting in physical systems.

2.2.1 The Baker’s Apprentice Map

The Baker’s Map, a traditional [37] two-dimensional map of the unit square,
may be written as:

ixi if 0<z; <a

Lit1 =
B (z; — @) a<z <l

"Effective rates and g-pling-times are contrasted in [22].
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ay; if 0<z<a

Yit1 =
a-l—%yi a<z <l

with a = %, B = 2. The name originates from the similarity between the
dynamics under the map and the stretching and folding when kneading dough.
The unit square is stretched horizontally by a factor of 2, and compressed
vertically by the same amount, then cut in half and the rightmost portion is
stacked on top of the left, resulting in an area preserving map. In this case, both
the left and right first singular vectors always point in the horizontal direction
for any At. For any initial uncertainty with this orientation “ = é =p=2
for each 7 and 1

1 nt 1
Ay = lim -1 2) = lim —logy(2") = 1 bit d. (16
1 Jim - ng(g ) Jim_ -~ logy(2") it per second. (16)

Thus 74 = 1. Similarly, 74,u. = 1 for all uncertainties with this orientation.
In this case, the Lyapunov time accurately reflects the limits of predictability.
This follows from the uniform stretching throughout the state space.

The family of Baker’s Apprentice Maps are defined as

ixi if 0<z <a
Liv1 =
B (z; —a) modl a<z <l
(17)
ay; if 0<z<a
Yit1 =
a+ 5(1B8(z;i — )] + ) a<z<l

where o = 21;—;1, B = 22" and | z| denotes the greatest integer less than or equal

to z. Different apprentice maps are defined for each valueof N, N =1,2,3, ...,
and in each case a small fraction (1—a) of the “dough” is stretched a great deal
(22"), before being cut and stacked, while the majority of the initial conditions
are displaced only slightly ().

Each Apprentice Map is area preserving, and all first singular vectors are again
oriented in the horizontal from which we have

A1 = a(logy(1/a) + (1 — a)log, 8 (18)
or, with the choices of o and 8 given above,

Ay =1—alog,a > 1 bit per iteration (19)
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Figure 8: A ensemble of 2!3 initial conditions (upper panel), its image after 4 iterations of
the Baker’s Map (lower left), and the image of the same initial ensemble after 4 iterations of
the N = 4 Apprentice Map. Note that there are regions of relatively high predictability in
the Apprentice Map, even though its Lyapunov exponent is larger than that of the Baker’s
Map.

Since a < 1, logya@ < 0 and Ay > 1 for every N and the Lyapunov time of
each of these maps is less than that of the Baker’s Map. Yet for the majority
of initial conditions, these maps are much more predictable than the Baker’s
Map; the difference is visible in Figure 8. The upper panel of Figure 8 shows an
ensemble of initial conditions while lower panels provide the the fourth iterate
of this initial ensemble either under the Baker’s Map (left) or under the N =4
Apprentice Map (right). The degree of detail remaining in the lower right frame
illustrates the point that, for most initial conditions, the Apprentice Map is
much more predictable than the Baker’s Map.

These results are reflected in 74, for these maps. An infinitesimal uncertainty
in the horizontal direction will grow on every iteration®. Even if the trajectory

remains in the slow stretching region x < «, the horizontal component of the
initial uncertainty will double after j iterations with j = [—@] where [z] is

the smallest integer greater than or equal to z. In other words, j is the smallest
integer such that (1)7 > 2. Summing the fraction of the initial conditions with

8Unlike the Lorenz system which has a region in which all uncertainties shrink, uncer-
tainty always increases under the Baker’s Apprentice Maps, it is only the rate of increase
which varies.
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Table 1: Baker’s Apprentice Properties (approximate)

N|gj Ay Tdouble TA

1 1.500 | 1.0000 0.666
3 1.311 2.3125 0.763
6 1.169 | 4.4096 0.856
1 1.087 | 8.1331 0.920
22 1.044 | 16.0850 0.958
45 1.022 | 32.4931 0.978
89 1.011 | 64.3126 0.989

N O O W N
—_

each doubling time (from 1 to j) we have

i1 PR
' =5
‘ —a

(20)

Tdouble

~

Estimates of 74,1, and 75 for small N are given in Table 1. As N — 00, Tyoupie —
2NV=1 while 74 — 1. Thus the large N chaotic maps are easily predicted (most
of the time) regardless of the fact that the Lyapunov exponent of each is greater
than that of the Baker’s Map.

2.2.2 Infinitesimals and Predictability

As average rates, Lyapunov exponents need not reflect predictability. For this
reason the 7, better quantify the growth of uncertainty; yet if the 7, are com-
puted from infinitesimals, they too will require linear approximation to hold;
the large-scale structure of the flow may either increase or decrease an infinites-
imal “Limit of Predictability” limiting their usefulness. Worse yet, a global
“Limit of Predictability” is only useful on time-scales over which uncertainty
growth is relatively uniform. For the 7, this requires 7,2 ~ 27, for q small
enough that the linearization remains relevant. Even simple chaotic systems
like the Moore-Spiegel system often fail this test for, say, ¢ = 64, implying
we must be able to lose more than 6 bits of information and still consider the
uncertainty infinitesimal.

Realistic bounds to predictability must consider the nonlinear dynamics of
finite uncertainties, a task to which we return with ensemble forecasts in Sec-
tions 3.5 and 7. As long as our uncertainty is infinitesimal, it can hardly pose a
limit to predictability! And once it becomes finite, the linearization, and hence
Lyapunov exponents are, in general, irrelevant to error growth.
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2.3 Dimensions

Over the past decade, a great deal of effort has been devoted to determining the
number of active degrees of freedom in a system by estimating dimensions. This
effort is often justified by the observation that establishing low dimensional
deterministic dynamics proves the existence of a model with only a few degrees
of freedom. In practice, it may be easier to actually construct such a model from
the data than it is to obtain a reliable dimension estimate directly. Some of
the difficulties in obtaining good estimates are discussed below; in general, any
estimate should be treated with suspicion when the remaining uncertainty in
the estimate is not carefully discussed. The significance of dimension estimates
may be investigated using surrogate data, which is discussed in Section 4.1.

Poincaré [38] provides a good discussion of what constitutes a “dimension,”
developing the intuitive idea of dimension inductively in terms of “cuts.” The
topological dimension of a set is one greater than the topological dimension of
the set which can bound it. Here the cuts represent sets which might divide
the set in question into disjoint pieces. Let isolated points have topological
dimension zero. Any segment of a curve is isolated (bounded) when it is cut
by two points, thus a line segment has dimension one. An area can be cut into
isolated areas by a curve, and thus is assigned dimension two. And so on.

Introductions to dimension in the context of chaotic attractors are provided
by Farmer et al. [39], Smith [40] and Theiler [41]. While an entire spectrum
of dimensions, d,, was introduced by Renyi 50 years ago (see Ruelle [42]
and the many references therein), we will focus on the box-counting (fractal)
dimension, dy, and the correlation dimension, ds. dy is most easily defined
through the variation in the number of cubes required to cover the set as a
function of the diameter of the cubes, the correlation dimension d, reflects
how the probability that the distance between two randomly chosen points will
be less than ¢ varies, as a function of /.

Consider a “large” set of points distributed on a circle which itself is embedded
in a 3-dimensional space; if we choose any point and ask, for a sufficiently small
distance £, how the number of points within a distance ¢ varies with ¢, we will
find N o< 2¢; if our “large” set is distributed uniformly on a circular disk,
N o 7f? as long as the chosen point is not too near the edge of the disk. These
illustrations suggest that our intuitive notion of the dimension (1 for the circle,
2 for the disk) is reflected as a power law behaviour of N(¢). They also indicate
obvious effects limiting us to small length scales, and therefore large data sets,
even in these simple examples. The length scale must be small both to avoid
macroscopic structure, due to curvature in the case of the circle, and to avoid
edge-effects?. Macroscopic structure, such as sheets and folds, may have effects

9In line segment, for example, this is required to avoid the transition from growth pro-
portional to (2¢)! to growth proportional to ¢! as £ increases through the distance between
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at length-scales much smaller than the diameter of the set[43].

2.3.1 The Grassberger Procaccia Algorithm

The correlation dimension ds of an infinite set of points may be defined from
the correlation integral:

C5(¢) = Probability(||x; — x;|| < ¢) (21)

where x; and x; are two randomly chosen points in the set. For any finite
collection of points, there is some nearest pair distance, ¢,,; C2(¢{) = 0 for
¢ < lnp, and dy = 0 as expected. Given an infinite set confined to a bounded
region, we expect C3(¢) to be scaling for small ¢, that is

Ca(0) ~ x(€) £* (22)

where x(¢) accounts for both macroscopic effects at large scales and organised
lacunarity effects, if any, at small scales. For the circle and the disk, dy = 1
and dy = 2, respectively, and x(¢) approaches a constant as ¢ — 0. If x(¥) is
not a constant, and for a fractal it need not be, then Equation 22 does not
restrict C3(¢) to a power law any more than Equation 11 implies exponential
growth.

At finite length scales, one can inspect the local slope of log, C»(£) as a function
of log,(¢) for a “scaling range” over which to estimate dy. That is, we may
estimate dy from a linear fit of

logy Ca(¢) = logy x(€) + dalog, ¢ (23)

with the assumption that x(¢) is either constant or rapidly oscillating over
the range of the fit (which, to some extent, can be verified by examination).
This is the approach of the Grassberger Procaccia Algorithm[44]. To obtain
the correlation integral from a finite data set, we assume

N . .
Coll) ~ umber of pairs of points separated by less than /¢ (24)

Total number of pairs of points

for ¢ > ¢,,,. Thus

1 N N
Cy(f) ~ lim ———— O — |x; — x; 25

where close pairs are counted via the Heaviside function, ©(z), which is equal
to zero for negative argument and one otherwise.

a given point and the end of the line segment.
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The Grassberger Procaccia Algorithm has become a widely used tool [45, 46].
The estimated correlation integral will be biased if small spatial separations
between pairs of points simply reflect that they were observed close in time
[47, 48]. In time-series analysis of a finite data set, x; and Xx; are not taken at
random from an infinitely long trajectory, and |i — j| indicates their separation
in time if the sampling rate is constant. To limit the effect of points very nearby
in time, one often restricts the sums over ¢ and j so that |i — j| > W for some
constant W (see [47]). Yet even for 7 >> j, the distance between x;,1 and x;;;
is rarely independent of the distance separating x; and x;; in a chaotic system,
whenever one such pair is sufficiently close, the other pair will be close as well,
giving rise to the “railroad tie” pairing of points often visible in numerically
generated images of strange attractors. This is avoided in Figure 4 by not
selecting the points to be plotted with a fixed sampling time. We return to
these issues in section 2.3.3 after considering limitations which remain even
when points randomly distributed on the attractor are available.

2.3.2 Towards a better estimate from Takens’ Estimators

An alternative to determining the slope of the correlation integral has been
suggested by Takens [49, 50]. Takens’ estimator provides a maximum likeli-
hood estimate, T5(¢), of dy without estimating the slope of the correlation
integral directly. We shall use the fact that the distribution of T5(¢) is known
to determine a coherent estimate both of dy and of the uncertainty in this
estimate.

For a given separation ¢, consider all pairs of points separated by a distance
¢;; less than ¢ and compute the average

a = (log(€;; /1)) (26)

The Takens’ estimate for the correlation dimension is then Tp(¢) = —1.
There remains the choice of £, the implications of which is illustrated in Figure
9 which shows several independent T5(¢) of the Stiletto Map. We will take the
same fixed number of pairs of points for each curve T5(¢); in Figure 9 each
curve is based on 23 pairs. For a given value of ¢, the independent estimates
T»(¢) have a Gaussian distribution with mean equal to the Takens’ estimate for
dy at that length scale, T5(f), and a standard deviation which increases due to
sampling uncertainty as ¢ — 0. As usual, we want to consider an inconvenient
limit: as £ — 0, T5(¢) — dy (neglecting lacunarity effects discussed below),
while the standard deviation of the T5(¢) increases in the same limit. Having
an estimate of the distribution of T5(¢) is of use: we can compute the largest
value of ¢ for which T5(¢) is consistent with the observed distributions at all
smaller length scales. This approach to dimension estimation automatically

selects the best length-scale given the limitations of the data, and provides an

22



Sun Feb 2 19:49:24 1997

Takens n,=33 Stiletto

1 35 T T T I T T T T I T T T I T T T ]

1.3 —

1.25 —

. 1.2 -
= ]
= .

-20 -15 -10 -5
log,e

Figure 9: Takens’ estimators for the Stiletto Map. Note the structure in T (e) at € ~ 273
and € ~ 2719, corresponding to the macroscopic structure visible in Figure 6.

uncertainty estimate as well. Of course, if the uncertainty estimate includes the
embedding dimension, then it places no upper bound on the dimension of “the
attractor”. When the system is known there is, in principle, no fixed upper
bound on the amount of data which can be considered; smaller and smaller
length scales could be examined in search of an internally consistent estimate of
a potentially limiting value. One could then attempt unbiased estimates, using
each point only once! The curves in Figure 10 indicate a step in this direction.
A trajectory is sampled randomly to form two large data-bases of sample of
points; a base point is chosen at random from one of the databases, and its
distances from a small number of points drawn from a the other database are
recorded. The base point is then discarded. Both data-bases are continually
updated by replacement so that there is no intrinsic limit to the number of
independent pairs that can be considered.

Figure 10 shows that at large scales (log, £ &~ —14), the Takens’ estimates T5(¥)
are all in close agreement. This allows a good estimate of T5(¢ = 271%), but
we see from the systematic variation in the Ty(¢) as ¢ decreases that Tp(2714)
is an unreliable estimate of dy. The mean of this distribution increases as ¢
decreases from 27'* to 27'%, making a precise estimate of T5(27'4) irrelevant. At
length scales ¢ < 2716, the distribution spreads out in a manner not obviously
inconsistent with dy ~ T3(27'%) ~ 1.250 + 0.003. And using a t-test, it is is
straightforward to determine whether or not a distribution at some smaller
length scale is inconsistent with this result. Specifically, for a given confidence
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Figure 10: Six independent Takens’ estimators at small scales for the Stiletto Map. Each
Ty(e) curve is based on 235 two-point separations, no two points both being used twice.
Independent data sets are used to compute each curve.

levell® can we reject the null hypothesis that the observed distribution at a
length scale of , say, £ ~ 27220 (where the estimated mean and standard
deviation are 1.31 4 0.05), was drawn from a population with the same mean
as the distribution at £ = 27167 If so, we must accept the less precise (but
potentially relevant) result at the smaller length scale.

2.3.3 Space Time Separation Diagrams

How can we know that we have enough data for reliable dimension estimates?
In general we cannot, just as in Fourier Analysis a continuous spectrum can
result from the analysis of a periodic signal if the data segment has a duration
less than one full period. We can however, often determine with confidence
that we do mot have enough data. One simple test is to construct a space-
time-separation diagram [51, 48].

190ne must take care, of course, in computing significance levels since multiple tests of the
same null hypothesis are being made and, independently, because each individual Takens’
estimator is autocorrelated for similar values of 4.
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Each pair of points on a trajectory is separated by a distance ¢;; in state
space and a distance ¢;; in time; by plotting a scatter diagram of the spa-
tial separation against the temporal separation, we can determine a minimum
time separation for which points from a trajectory might be considered inde-
pendent. The scatter plot of Figure 11 shows the expected behaviour: pairs
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Figure 11: Space-time-separation scatter plot for the Moore-Spiegel system with R = 100
and T' = 36. Each dot reflects the separations of one pair of points in state space, their

separation in time in the horizontal and their separation in state space in the vertical.

which are very close in time have small separations in state space and ini-
tially the state space separation tends to increase with increasing time along
a trajectory. The details in the structure of the space separation with time
separation vary with the initial condition, as indicated by the wide range of
state space separations observed even for small time separations. Structure in
the space-time-separation diagram indicates a time scale at which points have
not “forgotten” their initial condition, the minimum near At = 0.8, for exam-
ple, indicates macroscopic structure in the attractor which results in relatively
near returns for a set a initial conditions after this duration. The definition of
the correlation integral assumes the points constituting each pair are chosen
at random on the attractor, ideally the duration of the observations will be
much greater than any time-scale on which the space-time-separation diagram
reveals significant structure.
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. . . . or s . Wed Feb 5 20:56:18 1997
This technique is also useful for identifying non-stationary processes, or at

least data series whose statistics have not yet converged. Given data from a
nonstationary process in which the only points close in state space are also
close in time, there is no recurrence and thus no evidence for an attractor. If
pairs of points nearby in time are retained then one will detect the dimension of
the trajectory itself, the very bias which led Theiler to introduce the minimum
time separation W in the first place [47, 52, 53, 54] Examples of space-time-
separation (STS) diagrams for such systems are shown in Provenzale et al. [48],
along with those for the Lorenz system. Contours of the STS structure for the
for the Moore-Spiegel system including relatively large time separations are
shown in Figure 12. Note that structure in the central contours (e.g. the mean)
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Figure 12: Space-time-separation diagram (contours) for the Moore-Spiegel system with
R =100 and T = 36. Each contour shows the state space separation within which a certain
fraction of the data falls as a function of time, where the contours correspond to a fraction
of .0001, .01 .1 .25 .5 .75 .9 .99 and 0.9999. For small At all pairs are relatively close in space
as seen in the 0.9999 contour.

take a long time to disappear; long, say, compared with the “Lyapunov time.”
This is not surprising. Recall that Lyapunov exponents reflect the growth of
infinitesimal separations, and as effective rates they need not reflect the growth
of even infinitesimal separations if only a finite time is considered.
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2.3.4 Intrinsic Limits to the analysis of Geometry

There are many limitations to dimension estimates regardless of how they
are made. Even in an optimal case, computing a dimension requires a large
quantity of data. Research based on a number of different assumptions
[43, 55, 56, 57| suggests a rapid increase in the low bound on the data re-
quired with increasing dimension of the set. Some lower bounds consider only
the limitations due to macroscopic structure, while others consider only the
restrictions imposed by a minimal scaling range; unsurprisingly, calculations
with include both effects suggest a larger lower bound[43]. A weak point in all
general estimates of the amount of data required to estimate a dimension is
that they assume some “typical” properties, often a space-filling distribution or
a uniform density. Distributions with these properties are rarely encountered
in practice.

Given two time series from the same dynamical system, the amount of data
required will depend on the measurement function!! chosen. These effects arise
from the macroscopic structure of the embedded data. In the limit of zero
length scales the measurement function is not important, macroscopically it
is. In addition, the “number of points” useful for dimension calculations is
determined by the length of the series in terms of the intrinsic time scale of the
system (e.g. near returns in state space [43, 58]) rather than by the sampling
rate. Space-time-separation diagrams quantify the combination of these two
effects.

Also note that dy provides a lower bound on dy, and what we are usually
after is an upper bound on dy. If the data set is small enough to be recorded,
then obtaining a direct estimate of dy is not significantly more difficult than
estimating dy. For very low dimensional dynamical systems, the number of
degrees of freedom indicated by ds and dy are similar, but then most integers
less than four and greater than one are similar. It is not clear that this relation
will hold for higher dimensional systems.

The fractal nature of strange attractors is reflected in the property that their
dimension(s) may be fractions. Determining whether the dimension is an in-
teger or a fraction can be very difficult since the uncertainty estimates for ds
will often include an integer value. As stressed by Broomhead and Jones [59],
determining the value of the fractional part of the dimension requires observ-
ing the fine structure of the geometry of the reconstruction, which is easily
obliterated by observational noise. If there is sufficient data to probe the fine
scales, it is the characteristics of the noise (which is usually space filling in this
context) which are reported. Alternatively, when highly organised fine struc-
ture is observed, it can contribute to the uncertainty in the dimension itself,
through lacunarity, as in Figure 9.

and the delay time, and so on.
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The lacunarity of a set reflects how gaps (or lacuna) appear as the range of
scales changes. For strictly self similar sets, like the middle thirds Cantor set,
this happens in a (logarithmically) periodic fashion[60, 61, 43, 50] and can
be seen in x(¢). Such regular oscillations are not common in reconstructions
of experimental time series. Yet maps often display similar effects (e.g. the
Zaslavski attractor [62] analysed in the original GPA paper [63]), although this
might only reflect macroscopic structure and have no impact once sufficiently
small length scales are considered. For the Stiletto Map, oscillations in x(¢)
due to lacunarity are observed at length scales analogous to those indicated in
Figure 6 hamper a precise estimate of ds. In general, figures similar to 9 and
10 can indicate whether “sufficiently small length scales” have been reached.
In less organised lacunar sets, the x(¢) associated with the correlation integral
will provide less information on the lacunarity of the set [64]. Yet in the case of
the maps discussed above, at least, lacunarity oscillations reflecting, say, 10%
variations in the estimate remain for some time.

But why are we measuring dimensions? If it is to identify low dimensional
behaviour with an eye toward forecasting, it is more straightforward both to
construct and to evaluate forecast models directly, than it is to verify dimension
estimates. In fact, forecasting may provide a verification scheme for dimension
calculations: if the data are of sufficient quality that accurate dimension esti-
mations are possible, then the fine structure of the attractor is discernible and
this structure must be preserved under the dynamics in order for the dimen-
sion estimate to converge. In this case, any reasonable prediction scheme will
work, out-of-sample. Conversely, if no local prediction scheme works, then the
dimension estimate was not accurate. Thus we have the following conjecture:

A set of observations from a deterministic system which is of suf-
ficient duration and quality that the correlation dimension can be
accurately estimated is also sufficient for the construction of accu-
rate local forecast models.

2.4 Takens’ Theorem

In reality, we never have access to all the state space variables'?. Often only
one component is measured, the position of the gas parcel in the Moore-Spiegel
system, for example. In the absence of observational noise the measurement
will be a function of the state vector x. In this context, each scalar signal
(or observable) s will correspond to some measurement function h(x) which
defines s for each state of the system, that is

s(t) = h(x(t)). (27)

12Nor can we be certain that the underlying process is equivalent to a set of ODEs!
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The measurement function is usually chosen for experimental convenience;
how can we be sure it contains the information we need to reconstruct the
dynamics? And if we measure only a scalar value, how can we construct a
higher dimensional state space in order to mimic the true state space? Enter
Takens’ Theorem [65].

A delay coordinate function H simply builds an m dimensional vector,
y(t) € R™, from m measurements separated by a delay time 74. In symbols

y(t) = H(x(t))
(h(x(t)), h(x(t — 7q)), .., h(x(t — (m — 1)1y)))
= (s(t),s(t —7a)y...,s(t — (m —1)1)). (28)

Takens’ Theorem!® tells us that, given a continuous time dynamical system
with a compact invariant smooth manifold A, such that A

e is of dimension d4,
e contains only a finite number of equilibria,
e contains no periodic orbits of period 74 or 274

e contains only a finite number of periodic orbits of period p74, 3 <p < m

and if the Jacobians of the return maps of those periodic orbits have distinct
eigenvalues, then with probability one, a C' measurement function h will yield
a delay coordinate function H which is a differentiable embedding from A to
H(A) for m > 2d,4.

What does this mean?

The theorem tells us that we do not have to measure all the state space vari-
ables of the system; that in fact almost any one will do. We can then reconstruct
an equivalent dynamical system using delays as illustrated in the next section.
This suggests that the particular measurement function chosen is not crucial,
and neither is the delay time used. Many of the scaling exponents we would
like to measure in the true state space, are preserved in the delay reconstruc-
tion. Note that the theorem applies to the manifold A, not the attractor; the
Lyapunov exponents of the reconstruction H(A) are those of A plus m — d4
“spurious” exponents, which must somehow be identified. The issues involved
are discussed in Darbyshire and Broomhead [32], Parlitz [67] and references
therein.

Of course, the “measurement functions” of Takens’ Theorem are found in a
function space, not the laboratory. Even noise-free real data (observations)

13This summary is taken from Sauer et al. [66] which provides a good introduction.
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when recorded by a digital computer would be truncated, so that real mea-
surement functions are piece-wise constant, they are not continuous and yield
a delay coordinate functions which are many to one. Thus the conditions for
Takens’ Theorem are not met by any real (finite resolution) observations. While
we may draw comfort from Takens’ theorem, it simply does not apply to finite
accuracy observations. We return to this point when discussing quantisation
noise in Section 2.6

2.5 The Method of Delays
Returning to the scalar signal, s(¢) recorded in discrete time, we have
s; = s(i7s) 1=1,2,...,n, (29)

where 7, is the sampling time and each s; is digitised to one of a finite number
of values. A trajectory, x(t), is reconstructed in m dimensions from s(t) by the
method of delays [68, 69] to yield

x(t) = (s(t),s(t — 14),.-.,8(t — (m —1)74)) (30)

where the delay time need not equal 7, (although it must, of course, be an
integer multiple of 7). In fact the m — 1 delays used in defining x(¢) need not
be equal. Methods for choosing 74 vary [70, 71, 66]; it is usually related to the
decay of information in the signal with time, either from linear statistics like
the autocorrelation time (7444,) or information theoretic statistics like mutual
information [72]. When constructing nonlinear predictors, the delay may be
chosen to optimise the predictor and need be neither constant nor uniform
over the attractor, as illustrated in an experimental system in reference [73].

Reconstructions may also be based on the singular value decomposition of
a (SVD) matrix whose rows are delay reconstruction vectors (see [74, 75, 7,
8]). Multi-variate series may also be employed, and often perform well with
significantly less data, in terms of the total duration of the “experiment”. This
is easily understood as multivariate probes can add crucial information on the
state of the system and thus distinguish states which would appear similar to
univariate probes due to projection effects in state space.

As a simple example, let s; equal the first variable of the Stiletto Map and
7s = 1. The method of delays then yields a series of vectors

S @)

The results for m = 2,75 = 1 are shown in Figure 13. If our aim is dimension
calculations, we can repeat the approach of Section 2.3.2, including safety
checks via space-time-separation distribution, using the delay vectors in the
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place of the complete state vectors. The macroscopic structure will change
depending on the measurement function, but our consistency tests remain
valid. When Takens’ Theorem holds, there is a diffeomorphism between the
delay reconstruction and the state space dynamics; hence we can estimate
Lyapunov exponents in delay-space, if we can determine the local linearization
of the dynamics. This is best done by estimating the local dynamics through
a prediction model, the construction of which is taken up in Section 3. Once a
model is in hand, the approach is the same as when the equations of motion
are known (recent advances in determining confidence limits are discussed in
[33]). Before discussing model construction, a few words on noise are in order.
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Figure 13: A delay reconstruction of the Stiletto Map, the similarity with Figure 6 is
apparent. The macroscopic structure in the grouping of the ‘4’ and ‘-’ symbols reflect residual
predictability of a local quadratic predictor, discussed in Section 5.3.3.

2.6 Noise

Thus far we have avoided noise. Let v () be a stochastic process. In general,
we need to distinguish two classes of noise. Observational noise alters the
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observations by introducing a stochastic element into the measurement func-
tion

h,(x(t)) = h(x(t)) + v(t) (32)

but does not affect the state of the system. To the extent that we can obtain
a perfect model, we may use this model to reduce observational noise in a
self-consistent manner[76]. Dynamical noise directly affects the state of the
system, and hence alters the future trajectory of the system. For a map

x(t+1)=1£,(x(t) = f(x(t)) + v(t) (33)

destroying the deterministic framework of the dynamics. This is not just a tech-
nical problem: without additional knowledge of v(t) the question of “removing”
dynamical noise may not be well posed as there may be several distinct and
equally valid solutions to the same inverse problem. Of course, real experi-
ments usually have both observational and dynamical noise, but often provide
some information on the structure of the noise. We take up the question of
whether a given data set should be modelled as a deterministic process with
observational noise, or as a stochastic process in Section 6. Questions regarding
the existence of a general Takens-like Theorem for stochastic systems are of
much interest; one might keep an eye out for progress in this direction [77].

As noted above, most measurements also include quantisation noise (also
called truncation noise), since only a finite number of digits are recorded:
most observational data sets consist of integers. Quantisation noise limits the
application of Takens’ Theorem, and places a lower bound on the length scales
that can be considered in dimension estimates. If macroscopic effects persist at
this length-scale, then the scaling range is inaccessible. Quantisation noise also
plays an interesting role in delay reconstructions. Given a continuous signal
of finite duration which produces a delay reconstruction trajectory of finite
length, a reconstruction in three dimensions will not self-intersect when the
dynamics are high dimensional. In the limit of infinite time, self-intersection
will occur if the embedding space is not of large enough dimension, but for any
finite time dimension 3 is big enough to avoid intersections (almost certainly).
If a signal is quantised, however, then it will self-intersect in finite time even if
m > 2d 4; in this case, finite time self-intersections will occur for any m if the
process is either bounded or stationary.

This ends our discussion of estimating scaling exponents in low dimensional dy-
namical systems. Other gentle introductions can be found Eubank and Farmer
[78] and the books of Nicolis [34] and Ruelle [42], in addition to references
in the text. Low dimensional dynamics provides a nice theoretical structure,
which we can provisionally assume to be true and then test for internal consis-
tency. Either result tells us something about the system. In the next sections
we move on to estimate the dynamics itself, and examine the predictability of
finite uncertainties in nonlinear dynamical systems.
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3 Prediction, prophecy, and pontification

This is only true when small variations in the initial circumstances pro-
duce only small variations in the final state of the system (This implies
that it is only in so far as stability subsists that principles of natural law
can be formulated: it thus perhaps puts a limitation on any postulate of
universal physical determinacy such as Laplace was credited with.). In a
great many physical phenomena this condition is satisfied; but there are
other cases in which a small initial variation may produce a very great
change in the final state of the system, as when the displacement of the
“points” causes a railway train to run into another instead of keeping
its proper course (We may perhaps say that the observable regularities
of nature belong to statistical molecular phenomena which have settled
down into permanent stable conditions. In so far as the weather may
be due to an unlimited assemblage of local instabilities, it may not be
amenable to a finite scheme of law at all.).

James Clerk Maxwell, Matter and Motion, 1877

3.1 Introduction

Prediction forms a vital role in science. In its simplest form, a prediction simply
forecasts the state of a system, sometimes in real time. Prediction may also
play the role of prophecy, as the prediction of the planet Neptune, based on
the observation that the orbit of Uranus was at odds with the forecasts of
Newtonian mechanics. In this section we are more concerned with predictions
as forecasts: if a small initial variation may produce a very great change in
the final state, then how can a forecast model be evaluated? How might we
determine whether or not the weather is amenable to a finite scheme of law?

We first survey the ground rules for a statistically reliable analysis of data,
and discuss the construction of data-based models. The fair evaluation of a
deterministic model requires probabilistic forecasts, a point illustrated with
ensemble forecasts of a fluid dynamics experiment. The Section concludes with
a few comments on the extent to which one should trust the prophesies of a
good forecast model; we delay an example of ensemble weather forecasts to
Section 7.

Of course, any human endeavour is potentially at risk from predictions in the
guise of pontification. Science is more immune that most endeavours, due in
some part to consistency tests, but in larger part to the timely inoculations
provided by out of sample data and the advancement of theory. Between 1859
and 1878 there were a number of reported observations of intra-Mercurial
planets; with Einstein’s general relativity the need for Vulcan vanished.
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3.2 Simulations, Models and Physics

Prediction models come in a variety of flavours. Simple models attempt to
capture the essence of a phenomena within a system of manageable size. Their
merit lies in being interesting while tractable, and in that the origins of their
behaviour are comprehensible. The Moore-Spiegel system extracts the essential
dynamical processes governing the motion of a parcel of stellar atmosphere.
There is no attempt to simulate all the physical processes of a stellar atmo-
sphere in detail. An alternative approach is to build just such a simulation,
including all known physical processes as accurately as possible: a kitchen-
sink model, designed around computational constraints and with little regard
for the comprehensibility of the model as a whole. This is the approach adopted
with some success by modern weather forecasters. Yet another approach is to
construct a model directly from the observations!* (i.e. with no explicit model
of the dynamics). Traditionally, this was the domain of the statisticians who,
for the most part, constructed stochastic models.

The initial choice between a deterministic or stochastic model often hinges on
the background of the person making the choice. Given observations from an
interesting dynamical system, one may assume a stochastic model and bring
the considerable resources of statistical modelling to bear, with the aim of gen-
erating “synthetic data” [79]. Or one may attempt a nonlinear deterministic
model, construct time delay vectors using the techniques of the previous Sec-
tion, and attempt predictions in time via interpolations in this reconstruction
space. This second approach is the primary focus of this Section. In Section
6 we take up the question of how to best make an operational choice between
a stochastic model and a deterministic model, in the presence of observational
uncertainty.

3.3 Ground Rules

There is a basic framework in which we build and verify models. For simplicity,
we will first consider models which predict a fixed prediction time into the
future, 7,. Each point x(¢) on the reconstructed trajectory has a scalar image
s(t + 7,), a model should estimate this image for any x. Prediction is thus
reduced to interpolation, regardless of whether we consider a single global
predictor valid for all x, or a series of local predictors, each based on the
behaviour of points near the particular x of current interest.

A forecast trajectory can be constructed either by direct forecasts using a
different (single step) interpolation model for each prediction time, or with it-
erative forecasts where a single model is used, with model predictions being

14One might even build a computationally more convenient model from the output “data”
of a full simulation, but we will not do so here.
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used recursively as new initial conditions, in order to extend the trajectory.
Nonlinear prediction schemes are extremely flexible, so much so in fact that
they can over-fit the data by finding an interpolation surface which fits the
noise on the signal in addition to the signal itself. When this happens, par-
ticularly small forecast errors are suggested in-sample, while particularly large
forecast errors are observed in practice. Perhaps the most grievous error in
this field is to both construct and evaluate a dynamic reconstruction on the
same observations. To avoid this blunder, the data set may be divided into
two sections: a learning set from which a model is derived and a test set on
which various models are evaluated. This distinction must be maintained for
out-of-sample evaluation of a predictor. While cross-validation may blur this
simple picture of learning and test sets in questions of validating model struc-
ture, out-of-sample data are only out-of-sample once. Repeating runs with the
same “out-of-sample” data set can be deadly.

Out-of-sample testing is the ultimate method of evaluation, and it is doubtful
that the amount of data is “just on the edge” of being sufficient so that the
algorithm only works if all the data are used. It is difficult to place a wager
on the outcome of yesterdays weather, even if one has a very good weather
model; it is in this sense that one should be hesitant to wager the merit of a
research program on an analysis of data previously considered in the course of
that program.

3.4 Data-based models: Dynamic Reconstructions

A wide variety of approaches has been explored with the common aim of ex-
tracting the information contained in the time ordering of points in delay-space.
Examples include references [80, 81, 82, 83, 84, 85, 86, 87, 12, 88, 89, 90]. While
these approaches differ in detail, they all attempt the same task, since in the
context of deterministic analysis, prediction in time is equivalent to interpola-
tion in state space. One determines the future behaviour assuming that it will
be similar to that of a sample of the “nearby” points, this immediately restricts
applications to systems whose trajectories are recurrent in state space. Success
depends both (1) on having a sufficient number of nearby points to satisfy the
smoothness assumptions of the chosen algorithm and (2) on adopting a model
which is capable of reproducing (i.e. fitting) the surface, that is, an acceptable
model structure. In the presence of observational noise, this requirement is in-
creased so that the variations due to the noise may be, in some sense, averaged
out. And in systems with chaotic attractors, predictors must also account for
extreme inhomogeneities in the distribution of the learning set in state space.
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3.4.1 Analogue Prediction

Perhaps the most straightforward method of prediction is to choose an ana-
logue: simply take the point in the reconstruction nearest to the point to be
predicted (its nearest neighbour) and either report the nearest neighbour’s im-
age as the prediction, or report the sum of the nearest neighbour’s forward
first difference and the current value as the prediction. The strengths and
weaknesses of this approach were investigated in the late 60’s by Lorenz [91].
Comparing the quality of results with those of other methods [92, 73] shows
that these deterministic analogue predictors should not be rejected out of hand.

A stochastic variation of analogue prediction is found in Random Analogue
Prediction (RAP) models [15] which select a near neighbour at random, with
the probability of selecting a particular neighbour usually based on the dis-
tance between the prediction point and that neighbour. When the learning
set is very large, the selection probability should be taken to reflect the obser-
vational noise. Given an exceedingly large learning set, quantisation noise will
yield a number of analogues with ezactly the same state space coordinates and
different images for any fixed embedding dimension. Given this ambiguity, a
RAP model forms a single forecast by choosing between these alternatives at
random; another approach is to employ RAP ensembles and form probabilistic
forecasts, as discussed in Section 3.5 below.

3.4.2 Local Prediction

Given k points within a neighbourhood, a local linear predictor aims at the
linear map with the smallest mean square error when interpolating the fu-
ture observation. A local quadratic predictor works similarly, but includes the
quadratic terms. For small data sets, determining the correct size for each
neighbourhood is crucial; if it is too large, higher order nonlinear effects will
be included, while if it is too small the quadratic predictors may over-fit the
data. A major difficulty is that “large” will vary with initial condition. Casdagli
[89, 93] has investigated the variation of predictions with k& using local linear
maps in a variety of circumstances while Smith [90, 94] determines a local value
for k£ based on the local structure of the interpolation surface and the data den-
sity. Deterministic local linear prediction of chaotic systems was initiated by
Farmer and Sidorowich [81], while a parallel local stochastic approach was pro-
posed by Priestley [95]. Local predictors need not be polynomial, of course; the
schemes mentioned below as global predictors may be applied locally.
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3.4.3 Global Prediction

Typically a new local predictor must be constructed for each initial condition,
while global predictors cover the entire domain. The range of popular model
structures for global prediction is varied, running, for the moment, from neural
networks [96] through attempts to extract explicit equations of motion [80] and
on to general, but comprehensible, interpolation methods[83].

Each m dimensional vector, x(t), in the learning set is associated with a (fu-
ture) value to be predicted, s(t + 7,). A predictor is then a map, F(x) :
R™ — R! which estimates s for any x. Radial basis function (RBF) predictors
[82, 83, 97] consider F(x) of the form

F(x) = f:lwnx gl (34)

where ¢(r) are radial basis functions [98]. Typical candidates for ¢(r) include
¢(r) = r* and ¢(r) = e /" where the constant ¢ reflects the average spacing
of the centers c;. F'(x) is constructed about n. centers

¢, Jj=12,...,n5; ¢;ER™ (35)

chosen to cover the region of state space which the reconstruction explores.

Requiring
F(x(t)) ~ s(t+7,) (36)

for all x(t) in the learning set yields the constants A; by solving a linear
minimisation problem. Specifically, the A; are determined from the solution of

b= A\ (37)

where X is a vector of length n, whose j* component is A; and A and b are
given by

Aij = wig(|[xi — ¢l[) (38)
and
wheret=1,...,ny and j = 1,...,n.. The weights w; reflect the observational

uncertainty of each point in the learning set, and may also be used to achieve
a more uniform quality fit across different regions of the state space. This
will always increase the in-sample RMS prediction error and may improve
the model significantly. The performance of RBF predictors is often improved
by including polynomial terms in Equation 34 and increasing the size of A
accordingly, as discussed in the references.

Given the pseudo-inverse of A, which may be computed via SVD, A may
be determined from Equation 37. Thus global predictors are efficient when
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operated in real-time or evaluating large test data sets, since the computational
overhead is done at the outset. A global reconstruction also provides a natural
partition of the state space which can serve many uses, such as estimating
the expected range of out-of-sample forecast errors in each prediction [97]
or allowing parameters like the delay time to vary with location [73]. Local
predictors, on the other hand, are often much faster to construct, are more
easily modified to include new observations (note, however, results by Stark
[99]), and tend to show less systematic bias in the data sparse regions of the
reconstruction.

3.5 Accountable Forecasts of Chaotic Systems

Suppose we have a forecast model and an initial observation. For simplicity,
assume that the observational noise is dominated by quantisation error, each
variable being observed with 6 bit accuracy'®. Placing the observation in our
model yields a prediction: How wunreliable is this prediction?

There are a number of ways this question can be addressed. If 27% ~ 0 then we
can evaluate the linear propagator of our model and characterise the expected
uncertainty growth through that of an infinitesimal uncertainty, as discussed
in Section 2.1.2. At some time, however, the linear approximation will become
irrelevant. An alternative approach is to evolve an ensemble of initial con-
ditions, each of which is consistent with the observation. In this case, each
member of the ensemble would start out in the same quantisation “box” in
state space, it would agree with the observation to 6 bits and differ in the
details which are unknown due to quantisation error. The uncertainty in the
initial condition is then reflected by a distribution of possible future states. But
will this probability density function (PDF) provide an accurate description
of the likely future? The ensemble described above will not, since it assumed
a uniform (isotropic) initial distribution within the quantisation box, while
the true initial condition was on the Moore-Spiegel attractor. If we form an
ensemble of points both within the quantisation box and also on the attractor,
we will have a perfect ensemble. Even a perfect ensemble evolved under a
perfect model will not yield a unique forecast of “the” correct future state, but
it will be accountable: it will reflect the true PDF. Note that, in general, the
path of a maximum of the PDF need not correspond to a realizable trajectory
of either the model or the system. Neither will the path of the ensemble mean,
nor the median.

The accuracy of the PDF will increase as the number of members increases:
the number of unforeseen events or “forecasts busts” (occurrences with low

15This divides the state space into a mesh of m-dimensional boxes; an observation indicates
which box the system is in, but says nothing as to where within that box it is.
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Figure 14: Perfect ensembles evolved under a perfect model of the Moore-Spiegel system.
Each column shows the dynamics of uncertainty as time increases (upwards) as reflected in

the evolution of the probability distribution for the variable x.

(zero) probability in the forecast), should decrease as the size of the ensemble
increases in the expected way. In addition, we should be able to use ensemble
members to determine the accuracy of observation required to obtain a desired
forecast accuracy; this model/observation/ensemble formation scheme is fully
accountable in the sense of Popper[100]. Operationally, perfect ensembles can
be constructed by observing (in this case, integrating) the system and recording
those points on the trajectory which are indistinguishable from the initial
condition given the limited measurement accuracy. The future trajectories of
these points provide a PDF forecast reflecting initial conditions within the
same quantisation box, and also on the attractor.

This defines the optimal forecast scenario: a perfect model of the dynamics, an
exact understanding of the origin of observational uncertainty, and a perfect
ensemble of initial conditions. Figure 14 shows the evolution of perfect ensem-
bles for two initial observations in the Moore-Spiegel system. Time increases
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from bottom to top, in the lowest line in each panel shows the distribution
of values of z consistent with the observation at the initial time. As time
increases, this distribution evolves.

On the left-hand side, the ensemble initiated at t = 11 disperses fairly rapidly
(by t &~ 12). Yet the location of the most likely value of z can be identified much
longer. The actual location of the fiducial trajectory for which the prediction
was made is shown at time ¢ = 16 at the top of the panel, separated by a gap for
clarity. In this case, the forecast PDF was rather disperse. The evolution of a
new perfect ensemble, initialised ¢ = 16, is shown on the right-hand column; it
remains coherent much longer. Yet even in this case, the macroscopic structure
visible at ¢t ~ 17.5 makes infinitesimal prediction measures irrelevant. At ¢t = 21
the forecast PDF is still rather sharp; the distribution above a gap reflects the
location of the fiducial trajectory at ¢ = 21 in full agreement with the forecast
PDF as at t = 16, but this time the location is better identified by the forecast.

And that is the main point of ensemble forecasts. Both the forecasts are perfect:
the forecast PDF at ¢ = 16 and the forecast PDF at ¢ = 21 both accurately
reflect our uncertainty at time ¢ = ¢y + 5, given our initial uncertainty at %,.
But the forecast on the right is much easier to use. And ensemble forecasting
tells us this will be the case at the same time that the forecast is made. In
this manner, we may determine whether the best single forecast is likely to
prove unreliable, and make our plans accordingly. Graphs corresponding to
Figure 14 are available for the Lorenz system [101] and the Hénon Map [102].
The examination of information flow through the evolution of ensembles in
1-dimensional maps dates back at least to Shaw [103]. We must make proba-
bilistic predictions for nonlinear deterministic system, even if the probabilistic
aspect comes only from the uncertainty in observation.

3.6 Evaluating Ensemble Forecasts

Ensemble forecasts can be evaluated by their calibration plots [104] as shown
in Figure 20. These are constructed by dividing the range of s into, say, 64 bins.
For each forecast, the probability which the PDF assigns to each bin is recorded
along with the identity of the bin into which the observation actually fell.
The results of many forecasts are combined by grouping together all the bins
which had forecast probability of, say, between 60% and 70% and computing
the fraction of these in which the observation actually fell. In this case, the
fraction equals 0.65 or thereabouts, for a well-calibrated model.

A calibration plot displays the relative frequency of the observation against
the forecast probability. For a well calibrated model, the forecast probability
will equal the relative frequency. A well-refined forecast, on the other hand,
has many forecast probabilities near either 100% or 0%. A perfect model will
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be well calibrated, but refinement depends on the dynamics of the system and
level of observational uncertainty as well as the model.

What happens at long forecast times? Eventually, any finite ensemble will
become indistinguishable from a set of randomly drawn states!®; this limiting
distribution, ¥ (), is often referred to as the climatology. Once this happens
our forecast is definitely useless!”. Unsurprisingly, the average forecast time
at which this occurs cannot be determined from the Lyapunov exponents.

The optimal forecast scenario is restricted either to those systems which we
construct or to those for which observation over many Poincaré return times
allow the collection of good analogues. But then the entire framework of pre-
diction via interpolation already requires a high degree of recurrence in state
space. Even in low dimensional chaotic systems, the linearized dynamics are of
little use and reliable forecasting requires ensemble prediction. Yet it is inter-
esting to ponder whether this happens even in, or only in low dimensional
systems of ODEs. Thus far our theorizing has been based solely on the output
of our theories, we have examined no real data. To quote Holmes'®: “It is a
capital mistake to theorize before one has data.”

3.7 The Annulus

A favourite system for which no perfect model exists is the thermally driven
rotating fluid annulus [107]. Thermal convection in this cylindrical fluid annu-
lus, differentially heated in the horizontal while rotating about a vertical axis,
provides a laboratory analogue of the large scale circulation of the Earth’s
atmosphere. The experiment has a long history; its complicated, nonlinear
dynamics were cited as motivation by Lorenz in 1963. Laboratory observa-
tions of the annulus hold significant advantages over both numerical models
and meteorological observations. Qualitatively similar difficulties arise here as
in meteorological observations, and these cannot be circumvented serendipi-
tously, as sometimes occurs in numerical studies: the annulus is an infinite
dimensional (fluid) system, imperfectly observed. Yet the physical time scales
over which accurate observations can be made is much greater than the (repre-
sentative) time scales for the atmosphere. We will consider results from several
RBF models constructed from time series of temperature measurements from
a co-rotating probe. While we shall restrict discussion to ensembles over initial
conditions, it is often advantageous to consider ensembles of different model
structures and over different parameter values within a given model structure
[108]. The dataset discussed below was taken in a parameter regime for which

16Tn this case, the projection of the invariant measure under the measurement function.
17The point at which it was last useful depends on the user and may occur well before

the onset of uselessness. A discussion of these issues is given references [105, 101].
18Holmes to Watson in A Scandal in Bohemia [106].
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the flow appears to display baroclinic chaos, and has also been examined by
R. Smith [109].

The ensemble evolutions in Figure 15 are determined from a 5-dimensional
RBF model integrating over a short time scale. The initial imperfect ensemble
had a Gaussian distribution with standard deviation 0.02 degrees and mean
equal to the observed temperature. Every 16" iteration, a new observation is
incorporated, a new ensemble with Gaussian structure is initialised, (a gap is
placed in the figure to mark these locations). The extent to which the pre-
dicted PDF contains the new Gaussian distribution reflects the accuracy of
the prediction.
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Figure 15: The evolution of the probability density functions reflecting ensemble forecasts
of temperature in the rotating annulus experiment. As in the previous figure, time increases
upwards. The gaps are inserted to mark the time of each new observation. With each new
observation, the uncertainty collapses back to a Gaussian distribution.

Overall the ensemble forecasts reflect the evolution of the system fairly well.
The t = 1 ensemble spreads slowly; while its mean value increases slightly,
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there is noticeable probability of decreasing temperature which matches with
the true observation reflected in the initial distribution at ¢ = 2. Ensemble 2
(the ensemble initiated at t = 2) remains roughly Gaussian, indicating slowly
increased temperature and comparing well with the initial location of ensem-
ble 3. Ensemble 3 shows the rapid development of a multi-modal PDF as in
ensembles 4, 11, 14, 15, and 26, among others. It is clear that predictability
varies with the initial condition.

While Ensemble 11 correctly indicates an impending rapid drop in temperature
without specifying when it will occur; this may be contrasted with ensemble
26, which gives a better indication of the timing of the drop as well as reflecting
the initial state observed for Ensemble 27; perhaps this reflects “return of skill”
[110, 111]. Model error is illustrated by ensemble 12, where we have a sharp
well defined PDF which does not reflect the observation at t = 13. Also unlike
the perfect model results, some members of the ensemble diverge immediately
from the range of observations; the small waves travelling to the left (low
temperatures) in ensemble 1 provide an example. In addition, the large time
behaviour of the model does not match that of the system; typically the model
dynamics collapses onto either an attracting fixed point or an unphysical stable
periodic orbits (or “ruts” [86]), neither of which is observed in the system. Thus
the PDF forecast under an imperfect model need not approach ¥ (), even
asymptotically.

It is, of course, impossible for an imperfect model to yield good ensemble
predictions if it cannot reproduce the behaviours of the system. As a last
example with the annulus, we ask whether it is possible for any imperfect model
forecast to remain consistent with the data (i.e. to within the observational
uncertainty) over a given period. If so, we say that the model (-shadows the
observations over this period.

Figure 16 shows several ensemble forecasts over longer time scales. The solid
line reflects the observed temperature as a function of time; the circles reflect
the initialisation of ensembles at times ¢ = 11,17,23, and 29. After each ini-
tialisation, the ensemble is iterated for 6 steps; the distributions of dots reflect
the individual ensemble members. There is good general agreement, and even
an indication of return of skill at ¢t = 13 and 21.

So what is the longest time for which some model trajectory will stay within
the observational uncertainty of the observed temperature? The dot-dashed
line in Figure 16 traces a model trajectory that (-shadows the observations for
26 time steps, first exceeding a distance of 0.2 degrees from the observations
at t = 31. Methods for determining this trajectory are discussed by Gilmour
[112]; we return to use shadowing trajectories in model evaluation in Section
5.2.

Additional discussion of these forecasts is given in [102]. It is clear that these
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predictions will not be accountable: not only is the model imperfect (e.g. En-

semble 12 of Figure 18)"BUf T AT TehdfaliiL B& Mot on the attractor’®.

Since we can take lar(%e ensehai exsefojye Pﬁel%)BFtsmodel we will postpone the
s are: 0.075000 0.075000 0.075000 0.075000 O.

question of selectlng prefered initial orientations to the case of Numerical
Weather Prediction (NWP) in Section 7.
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Figure 16: A temperature time series (solid) from the annulus and a shadowing trajectory
(dot-dashed) from a global, iterated RBF predictor. Each ensemble contains 128 points,
initially within 0.075 degrees of (each component of) the observation delay vector. A new

ensemble is initiated at 6 steps. The data displayed is from an out-of-sample evaluation.

3.7.1 Prophecies

Even good models are rarely reliable in conditions which differ from those under
which the model was constructed. The interpolation models discussed here, for
example, will only rarely predict a value outside the range of the observations,
not just because such a novel event (e.g. a new record high temperature or
flood level) is unlikely, but simply because the model structure constrains most
trajectories to regions well explored in the learning set. Near the (observed)
global maximum all observed trajectories decrease, thus interpolation between
these values will decrease as well. Analogue forecasts can never set new records
for the variable predicted. While in both local and global interpolation models,
the fraction of the forecast ensemble which “turns back” tends to increase too

9Indeed, a few initial conditions in Ensembles 1, 2, 4 for example, are not even in the
basin of attraction!
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rapidly as an observed maxima is approached, and forecast trajectories which
successfully predict the magnitude of new record extremes are rare. This is not
surprising. Interpolation is easier than extrapolation.

Of course, if we have observations at a variety of parameter values, we can
construct RBF models which also vary as a function of this parameter, as
demonstrated by Casdagli [83] in his initial paper on radial basis functions.
If parameter values differ from the range in which we have observations, then
the results must be interpreted with great care, including some comparison
between models with different structural assumptions at the very least. Of
course, the same care is required when interpreting the output of full simulation
models when they are run outside the parameter range in which they have
been tuned. The loss of superposition of solutions in nonlinear systems makes
extrapolation outside the range of observed parameters and initial states rather
adventurous, given anything less than a perfect model. We are more likely to
spot Vulcans than Neptunes.
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4 Aids for more reliable nonlinear analysis

I am very sorry, Pyrophilus, that to the many (elsewhere enumerated)
difficulties which you may meet with, and must therefore surmount, in
the serious and effectual prosecution of experimental philosophy I must
add one discouragement more, which will perhaps as much surprise as
dishearten you; and it is, that besides that you will find (as we elsewhere
mention) many of the experiments published by authors, or related to you
by the persons you converse with, false and unsuccessful (besides this I
say), you will meet with several observations and experiments which,
though communicated for true by candid authors or undistrusted eye-
witnesses, or perhaps recommended by your own erperience may, upon
further trial, disappoint your exrpectation, either mot at all succeeding
constantly or at least varying much from what you expected.

R. Boyle, Concerning the Unsuccessfulness of Experiments, 1673.

The serious and effectual prosecution of experimental philosophy requires con-
sistency tests. In this section we play three variations on this theme. First,
the use of surrogate data to estimate the likelihood of having obtained an ap-
parently interesting result fortuitously. Second, the use of strong straw men
in evaluating algorithms before they are deployed on real observational data.
And finally the use of simple models to estimate lenient lower bounds for the
minimum duration of observation required for a given analysis to converge.

4.1 Significant results: Surrogate Data, Synthetic Data
and Self-deception

It is an empirical fact that only interesting results are tested. Hence our first
task is to estimate whether an apparently interesting result could have been
avoided (and thus really is interesting). If the result could not have easily been
avoided (i.e. if any similar looking data set would yield a similar result), we
may wish to limit our interpretation of the result. Thus one goal is to con-
struct surrogate data which resembles the observations, but contains none
of the desired physics. This may be done through manipulating the observa-
tions themselves, or by using a model to generate surrogate data sets which
“look like” the observations, but are known not to have the property of interest
(e.g. they are not chaotic). We then attempt to establish the insignificance of
our interesting result with the analysis of surrogate data.

A very simple example of the method of surrogate data would be to evaluate
the estimated lag-one correlation coefficient between consecutive points in an
observed time series, s;: is the observed correlation between all pairs s; and s;14
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significantly greater than zero? Suppose the measured correlation coefficient
is . We can construct a surrogate series with the same distribution as the
original data set but in which we know (by construction) that there is no
correlation between consecutive values, by simply shuffling the original data
set. Denote the correlation coefficient of the shuffled data set &. By constructing
a large number of different surrogate series in this way, we can estimate the
distribution of & and then determine the likelihood of obtaining the observed
value a under the null hypothesis that these particular data values were
randomly ordered. Schematically:

i) compute a from the observations,
i1) create a surrogate set z; by randomly shuffling the s;,
i11) estimate & from the z;,
iv) repeat (i) and (iii) to obtain a distribution of &, expecting (&) = 0,
v) estimate the probability of observing o by chance from this distribution.

In effect, we determine the range of values empirically indistinguishable from
zero. When estimating correlation coefficients this might be done with an an-
alytical approach given a few assumptions about the process; when estimating
Lyapunov exponents neither the approach nor the relevant assumptions are
known.

Our hope is that our result is truly interesting; if this is the case then we will
be able to reject the null hypothesis. That is, we will be able to conclude that
there is only a small chance that the observed value of o would have been
obtained if the data were randomly ordered in time. Of course, rejecting a null
hypothesis is only interesting if it was a relevant null hypothesis. And there’s
the rub. While it is straightforward to dream-up an algorithm for testing the
null-hypothesis “not correlated”, no method is known for testing the much
more interesting null-hypothesis “not chaotic.”

Our target, a well formulated null-hypothesis which is also relevant to the
problem at hand, can be difficult to achieve. It is easily achieved if the rele-
vant null is that the data points are independent and identically distributed
(IID) random variables (commonly called white noise due to its flat power
spectrum); but most experimentalists will refine the sampling time until this
null-hypothesis is no longer of interest! An extended discussion of red noise*
null hypotheses in the context of detecting periodic oscillations via Singular
Spectrum Analysis (SSA) is given in [8]. Discussions and examples of the use of
surrogate data in nonlinear dynamics can be found in Theiler et al. [113, 114],
Smith [97], and references thereof.

20 Autocorrelated noise with more power at low frequencies, hence “red.”
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There are two basic approaches to constructing surrogates, we will distinguish
them (in extreme cases) as generation by equivalence or by similarity. Let
us call equivalence surrogates those which are generated by reproducing
some statistic of the data set exactly, such as the autocorrelation function
[115, 113]; these surrogates have the advantage of providing a well framed null
hypothesis, but can be sensitive to the particular choice of statistic and the
quality with which it can be estimated from the data set. This last point is
particularly important with short data sets. Inasmuch as all models are wrong,
it would be surprising if we could not find some statistic with which to reject
any given null hypothesis. That is not our goal. Instead, we aim to gain (or
lose) confidence in conclusions drawn on the evidence of our analysis of the
data set, by seeing whether we might well have obtained similar evidence from
the same analysis applied to a (surrogate) data set for which we know these
conclusions are false.

Relaxing the requirement of a well-formulated null hypothesis may yield a more
relevant null hypothesis. Similarity surrogates can be taken from any model
whose output “looks like” the observations in question, and address the less
formal question of whether a given result should be expected from “any” series
which looks like the observed data. This can place the qualitative results of an
algorithm in context, like the visual appearance of the sunspot reconstruction
in Figure 3.

Generators for similarity surrogates can often be found in the literature on the
phenomena which generated the data set of interest. A good source of stochas-
tic surrogate data for questioning conclusions of deterministic dynamics in
sunspots is provided by the Barnes model [5] which incorporates the structure
of an autoregressive moving average ARMA(2,2) model with nonlinear modifi-
cations to ensure that the signal (1) remains asymmetric and positive and (2)
tends to increase more rapidly than it decreases. These two well known prop-
erties of sunspot number make testing the observational data against simple
“linear stochastic” surrogates futile, since linear stochastic surrogates share
neither of these properties. The Barnes model is

2 = Q12i-1+ P22i2 +a; — 01a;_1 — O2a; (40)

si=7 ol —2,)" (41)

where ¢; = 1.90693, ¢ = —0.98751,60, = 0.78512,60, = —0.40662, oo = 0.03
and the a; are IID Gaussian random variables with zero mean and standard
deviation 0 = 0.4. This rather pedestrian approach to surrogate data has it
benefits. The ease with which 300 year segments of the output from the Barnes
model can mimic the correlation integrals [2] and SVD reconstructions (see
Figure 3) of the observed sunspot series, help us to maintain our uncertainty
in the face of what initially appear to be very interesting results.
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Framing a precise null hypothesis in the case of similarity surrogates can be
quite difficult, just as insuring that equivalence surrogates are are not rejected
for some secondary reason is also quite difficult. Ideally, the two approaches
would converge, but equivalence surrogates often do not resemble the original
data set, while it is difficult to determine what properties similarity surrogates
are reproducing.

Returning to Figure 1, there is without doubt a statistically significant rela-
tionship between the number of sunspots and the Republican fraction of the
US Senate. If we were handed these two time series at random?!, we would be
hard pressed to deny the possibility that some connection existed. Of course,
we were not handed these two time series at random, the time series of Re-
publicans was chosen because of the correlation. Without knowing how many
different time-series were tested and discarded, we simply cannot evaluate the
“significance” of this observation, without more data. This bias is related to
the so-called file-drawer effect in medical statistics: if the same drug is tested
20 times, there is a good chance that one set of test results will be significant at
the 95% level. Publishing that result, while filing the other tests mis-represents
analysis. 22 A similar confusion may arise in the analysis of a time-series, when
evaluating the power contained in each of 40 different frequencies, and then
noticing that one of them is significant at the 95% level. Even when good sta-
tistical tests are correctly employed, correctly setting significance levels may
require information we do not possess. At some level, there is no recourse but
to revert to the method of real data: acquire longer observational data sets
and see if the original hypothesis is supported.

Synthetic data, in the usage of Juneja et al. [79], aims to be indistinguishable
from the true observations. Thus the stochastic models of Juneja et al. provide
excellent generators of surrogate data for evaluating general conclusions of
determinism in fluid turbulence data. To the extent that these models cannot
be rejected we have little support for deterministic dynamics; to the extent
that they can be rejected, the models fall short of the goals of synthetic data.
Either result would be of interest.

In concluding, we stress that the method of surrogate data can only establish
insignificance. We can determine that there is no evidence that an estimated
Lyapunov exponent is greater than zero, for example, by comparing it with
the distribution of estimated exponents from linear stochastic series generated
via phase randomisation[113, 48]. But if our estimated Lyapunov exponent is
significantly different from this distribution, we can say only that it appears
positive with respect to linear stochastic processes. This is a necessary but
not sufficient condition to conclude that the estimated Lyapunov exponent is

211 was first handed these two time series by David Wark of Balliol College, Oxford.
22 Although it has never been clear to me why statisticians, as a profession, are content to
go astray about one time in 20.
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positive. We are often unable to formulate, much less to reject a more rel-
evant null-hypothesis. But it is also true that often we are unable to reject
fairly simple null hypotheses. This is a useful result, as it immediately allows
us to reevaluate our our expectation, thereby reducing the probability of its
disappointment upon further trial.

4.1.1 Surrogate Data and the Bootstrap

Although both involve many of the same manipulations, the aims of the boot-
strap of Efron [116, 117, 118] and surrogate data tests are fundamentally
different. The bootstrap approach makes a variety of assumptions about the
process which generated the data, and then computes the uncertainty of an
estimated statistic by assuming those assumptions are true. Alternatively, the
surrogate data approach selects a process that is not consistent with the type
of process believed to have generated the data, and then attempts to establish
that the value obtained from the observations is unlikely under this null hy-
pothesis. Bootstrapping aims to build a distribution which is consistent with
the true uncertainty in the observed result and thereby gain an estimate of this
uncertainty. The method of surrogate data aims to build a distribution from
a known (surrogate) process and show that the observed result is inconsistent
with this distribution, thereby rejecting the surrogate process and strengthen-
ing the interpretation that the observed result is interesting (or at least, not
wholly insignificant). The manipulations involved are similar, but the aims are
very different.

4.1.2 Surrogate Predictors: Is my model any good?

The discussion thus far has centered on using surrogate data to establish the
insignificance of an estimated statistic; a parallel approach can be taken when
evaluating prediction models. It has two aspects. Surrogate predictors can
be used to quantify the magnitude of forecast errors expected from the most
naive forecasts, the simplest being either persistence or a random choice from
the observed distribution. The idea being that, to be interesting, a predictor
must perform significantly better than these. Examples for the case of the ro-
tating annulus are given in [97]. If we claim that a nonlinear model provides
improved forecasts by successfully capturing a subtle nonlinearity in the data,
we can evaluate the significance of this improvement by contrasting the pre-
diction errors of the nonlinear model with those of a variety of linear models
(out-of-sample, of course) and quantify the extent to which it outperforms
them. It is impressive to observe a nonlinear model predicting out-of-sample
more accurately than a linear model can predict the same data in-sample! The
second aspect falls along the same line: if we re-fit the nonlinear model to data
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generated by a linear surrogate process, for example, this advantage should
vanish.

In comparing linear and nonlinear models, one must immediately confront
the issue of parsimony: how many free parameters should be allowed in the
nonlinear forecast model? Many results are available under the assumption that
the process is linear; for nonlinear systems (and potentially-linear systems as
well, for that matter), there is no substitute for out-of-sample evaluation. A
low order nonlinear process may require a high resolution model if the model
structure does not closely reflect that of the process. Out-of-sample evaluation
can then detect over-fitting. Current computation power eases significant cross-
validation, but some segment of the data should be used for true out-of-sample
tests.

Related issues arise whenever one ignores the smaller elements of a singular
value decomposition [21, 26]. The rank ordering of the singular values assumes
bigger means more important. In the case of SSA this translates into the as-
sumption that high variance implies high information content. In nonlinear
systems this need not be the case: a low order nonlinear process?® may project
into an infinite number of singular vectors; those projections which are small
on average need not be the least important. A similar quandary ensues in de-
termining coefficients of radial basis function models when computing the SVD
of the matrix A of Equation 38. It is not obvious how to translate knowledge
of the noise level of the observations into a threshold on the singular values
of A; this threshold links positional uncertainty in state space with structural
constraints in function space. Out-of-sample forecast errors often indicate that
this threshold should be significantly smaller than linear intuitions might im-
ply; less parsimonious nonlinear models often consistently outperform those
determined with higher thresholds, out-of-sample.

4.2 Hints for the evaluation of new techniques
4.2.1 Avoiding Simple Straw Men

Given a new technique, or a new computational code implementing an algo-
rithm, it is tempting to test it on data from well studied dynamical systems.
This often leads to very misleading results, particularly when the “straw man”
of choice has a simplicity lacking in the ultimate application. A classic exam-
ple is to test a prediction algorithm which can fit (any) polynomial function
exactly on noise-free numerical data from the Hénon Map. The source of the
danger here is analogous to that in the examination of surrogate data: failure
to predict the Hénon system tells you a great deal about your prediction al-

230ne which can be described with only a few nonlinearly coupled degrees of freedom.
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gorithm, while success in predicting this quadratic map tells you little about
your algorithm’s prospects in the real world.

To learn more, one may attempt to make the test resemble the application: use
data sets of similar length and noise level. Data from a surface of section, as in
the left panel of Figure 5, will provide a much better test than most maps, but
even moving to something as simple as the Stiletto Map is an improvement over
the Hénon Map. Recall the differences exposed by moving from the Baker’s
Map to the Baker’s Apprentice Map, but we should not forget that neither is
very realistic since the linearized dynamics hold at finite separations in both
cases! Mathematical systems which are generated for their simplicity provide
weak straw men. Perhaps the best straw man is a simulation model of the
system. In this case the effect of varying sampling time, duration and noise
level can be investigated in detail before the data itself is tainted. In all cases,
aim for straw men of steel. It is a capital mistake to theorize without examining
your algorithm’s performance on realistic data of known origin.

4.3 Feasibility tests for the identification of chaos

We conclude with an approach for estimating a “number of data points” re-
quired for some specific application of a specific algorithm. Much has been
written on how to properly analyse “small” data sets; we define a tiny data
set as one which is too small to be properly analysed. Obviously, whether or
not a given data set is tiny will depend both on the system which generated
it and on the algorithm in question. The lower bounds discussed here aim to
reflect necessary conditions, there is no implication that this amount of data
is sufficient.

4.3.1 On detecting “tiny” data sets

In addition to testing new algorithms on data from simple nonlinear models,
we can often use these systems to determine a lower bound on the amount of
data one would expect an optimal algorithm to require. As a specific example,
consider estimating the (local) linear propagator, a task which may be taken
as a precondition for estimating Lyapunov exponents. Recall Figure 7 and the
maximum linear range discussed in Section 2.1.3. About each point in state
space, there is a sphere of initial conditions within which the exact linear
propagator reflects the nonlinear dynamics to within some desired accuracy,
say a one-step prediction error with a magnitude less than 5% the range of the
data. Looking back at Figure 7, this just determines the largest circle such that
points on the ellipse (the image of the circle under the linearized dynamics) fall
within with a specific distance of their image under the full nonlinear dynamics.
Since we are looking for a lower bound, we may assume that our algorithm
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intuits the local linear structure perfectly given just one single observation?*
and ask: How long a string of observations is required before 99% of the initial
conditions are predicted to within 5% ? Since the radius about each point will
be greater than zero, the entire attractor can (usually) be covered in this way.
The choice of 99% threshold is arbitrary, but the magnitude of the datasets
required for any threshold in this ball park is enlightening.

For a 2-D map or a surface of section, it is straightforward to make a figure (not
shown) illustrating the radius about each point along a trajectory. Plotting the
fraction of the attractor covered as the length of the dataset increases is easy
enough even in higher dimensional systems. The result is worth examining.
Note that for reliable Lyapunov estimates, we must consider the error made in
propagating the orientation of an infinitesimal under the estimated linearized
dynamics in addition to the error made in propagating its magnitude. Similar
programs can be constructed to test other algorithms. In this way we can gain
insight into the minimal amount of data we expect to require, and can set
realistic goals for the application of our algorithm.

24In practice, of course, more than one observation is required; the lower bound obtained
in this section provides a necessary condition not a sufficient condition on the size of a data
set.
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5 Building Models Consistent with the Obser-
vations

An ideal model would provide an accurate representation of the system that
generated the data. Imperfections in the structure of the model or inconsis-
tencies between the model-state space and the system’s state space can make
this impossible. In this section we will investigate ways to evaluate imperfect
models, and locate their deficiencies. When estimating the free parameters in
a model, the optimal model parameters are usually defined as those which
minimise a cost function, for example the root-mean-square (RMS) one-step
prediction error[119]. Noting that relatively good models need not yield rela-
tively small cost functions, we venture along other directions of model eval-
uation and improvement. Does a model trajectory exist which resembles the
observations? Are prediction errors large when the predictability of the model
is high? Are these errors distributed in a systematic manner in state space?

5.1 Cost functions

Attempts to minimise an RMS error are ubiquitous. In many applications
where the errors are independent, Gaussian distributed random variables, it
may even be optimal. But evaluation with an RMS error cost function will
systematically reject perfect models of chaotic systems in favour of unphysical
models with trivial asymptotic dynamics (relaxing either to a constant or to a
periodic solution), when the error is evaluated after iterating a perfect model
from an uncertain initial condition. In regions of state space where initial con-
ditions with separations within the observational uncertainty diverge rapidly,
a perfect model will be penalised even at short forecast times.

The Stilleto Map provides a simple example: suppose a trajectory is observed
with about 2-digit accuracy in both x and y. Using these observations as initial
conditions, the RMS prediction error in y of a perfect model increases with
each iteration, until it exceeds the RMS error of simply predicting the mean
values of z and y after a few (= 8) iterations. After this time horizon, an
RMS cost function would reject the perfect model in favour of a model which
predicted ((z), (y)), a point which need not be near the attractor. While this
will in fact result in lower out-of-sample errors, it is much more difficult to
improve a model with this kind of structure.

The analogous model in weather forecasting is one which “relaxes to the cli-
matology.” In the Stiletto Map, nonlinear noise reduction might break the
analogy, but in practice, RMS cost functions are so deeply embedded in model
fitting (when evaluating both data and estimating parameter values) that this
may go unnoticed. What we would like is a method to evaluate the model,
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given the uncertainty in the initial conditions. (-shadowing provides a step in
this direction.

The use of cost functions often assumes that the distribution of expected pre-
diction errors is the same for all initial states, or at least known for each.
When model error varies in state space, minimising a cost function may well
distort a relatively good fit, in the attempt to reduce prediction errors which
are unavoidable due to the structure of the model. This may reduce the simi-
larity between model trajectories and system trajectories in regions where they
might have been similar, while failing to introduce realistic looking model tra-
jectories in the regions of high, if now somewhat moderated, prediction error.
Variational data assimilation [120] schemes may degrade the accuracy of es-
timated states which are on trajectories which pass through regions of large
model error, but which are not themselves within these regions. Shadowing
trajectories simply stop when the trajectory enters such a region, thereby al-
lowing better assimilation, when it is possible, and identifying the region of
model failure for further study.

5.2 -shadowing: Is my model any good? (reprise)

A model (-shadows the observations of a system if we can find a trajectory
of the model which is consistent with all observations taken over the period
in question. Obviously, a perfect model can always t-shadow the observations,
assuming we have a correct understanding of the observational noise. In fact,
an entire family of imperfect models will do so as well, for any finite set of
observations, and, without additional thought (or information), the choice be-
tween members of this family is arbitrary. In general they need not minimise
any fixed step RMS cost function, and that is one of the reasons they are of
interest to us here.

In Figure 14 the optimal ensemble forecast PDF quickly becomes highly struc-
tured, the evaluation of model quality through RMS error will reflect how well
the model estimates the mean of this distribution. Minimum error criteria will
select models which asymptote to the mean of the distribution of whatever
quantity is being predicted, while all “realistic” models continue to oscillate.
Averaged over predictions based on many different (uncertain) observations,
this can lead to rejection of the perfect model in favour of the unphysical
model: an RMS error criterion would reject the Moore-Spiegel equations as a
good model of the Moore-Spiegel equations!

In practice, we have a series of uncertain observations of a system. In Fig-
ure 17 these are represented schematically by the circles distributed about the
unknown system trajectory (dashed). Typically, low order nonlinear models
are evaluated by starting on the initial observations and computing the RMS
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temperature

prediction error as a function of forecast time; having taken observational un-
certainty into account in tuning the model, we should take it into account in
the initial condition as well. The figure shows the trajectory of an optimal
RMS model (dash-dot). On average, this model will outperform a more real-
istic model if both are started from the current observation (or analysis, see
Section 7.2 below). Does there exist another initial condition consistent with
the current observation(s), for which the forecast of the realistic model remains
within the uncertainty radius of future observations? In this case yes, the solid
line. Of the two forecast systems, which is the better model of the system?

0.05
time

Figure 17: The shadowing dilemma. Given a physical trajectory (dashed), known only
through uncertain observations (circles), an optimal RMS model (dot-dashed) which does
not shadow the physical trajectory to within the observational uncertainty, and a realistic
model trajectory (solid) which does shadow, but on average has a higher RMS error when
initiated from the observations: Which is the better model of the system?

The t-shadowing time [112, 101] is given by that initial condition consistent
with the observational uncertainty which yields the model trajectory passing
within the observational uncertainty of as many consecutive observations as
possible. Contrasting the distribution of these (-shadowing times (over dif-
ferent initial conditions) for each model provides a criteria for judging good
models, longer shadowing times being preferred. Under this criteria the per-
fect model need never be rejected, while the optimal RMS predictor for a given
observational uncertainty would be rejected early on.

A great deal of work has been done in hyperbolic dynamical systems?® to es-

25 An good introduction is provided in [76]. The term shadowing (and Theorem[121, 122])
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tablish conditions under which it can be proven that there exists a trajectory
of the system which shadows a trajectory of a particular model. We are in-
terested in something altogether different, wishing to make no assumptions
regarding the structure of the system (e.g. whether it is hyperbolic, or even
deterministic) or the accuracy of the model. (-shadowing considers the much
more tractable question of whether we can locate a model trajectory which
is consistent with the observations. The (unknown) properties of the system
are not considered. Rather, we quantify how well imperfect models reflect the
observed behaviour of physical systems given operational observational un-
certainties: the shadowing of physical observations by imperfect models. This
provides a new perspective for choosing between, refining, and combining the
forecasts of distinct, operational nonlinear forecasting systems.

Inasmuch as determining the initial condition which will (-shadow requires
a knowledge of the future, real-time forecasts may not be improved. On the
other hand, if the perturbations required to shift the current operational initial
condition to the “model-correct” value contained some systematic structure,
this structure could be employed to improve future forecasts.

5.2.1 Casting infinitely long shadows (out-of-sample)

Contrasting the distribution of shadowing times provides a useful approach
for comparing different models and evaluating model “improvements” made
using other cost functions. As a word of warning, we would note that one must
take care with parameter selection via shadowing: there is one map which can
shadow any set of observations.

Given a data set s;,i = 1,..., N where the s; € [0,1] and are recorded to an
accuracy of @) bits. The map

R(z) = 2%z mod 1 (42)

will .-shadow any set of observations! It will reproduce the first ) bits of each
observation given the initial condition

To=80+2 % +...+27@ +...+2 V9sy (43)

Equation 42 might be called the Russell Map, as it resembles an argument
illustrating the futility of basing a definition for determinism upon an equa-
tion of the form z(t) = f(z,t) [128]. It reflects a fundamental limit on the
interpretation of shadowing, and nicely questions even (blind) out-of-sample
evaluation!

is invoked in parameter estimation for perfect models (see, for example, Jansen and Kriegel
[123] and references therein), and the evaluation of computer orbits [124, 125, 126, 127].
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5.3 Distinguishing Model Error and System Sensitivity

Even if all prediction errors are equal, some are more erroneous than others.
By observing where in state space the errors occur, we can identify (1) regions
where the observed errors are at odds with the model sensitivity, and (2)
regions of coherent residual predictability which indicate systematic model
€ITor.

5.3.1 Forecast Error and Model Sensitivity

In addition to attempting to minimise a cost function like the one-step predic-
tion error, we can also consider where in state space they occur. If large errors
only occur in regions where the model is sensitive to uncertainty in the initial
state, then the model is at least internally-consistent. If these uncertainties are
sufficiently small, their growth can be approximated through the Jacobian (or
linear propagator) of the model; if not, then nonlinear ensembles are required.
In either case, the basic idea is simple: if the model sensitivity reflects that
of the system, then large forecast errors will only occur in regions where the
model sensitivity is high. A large forecast error in such a region is unsurprising.
If, on the other hand, a large forecast error occurs in a region where the model
is relatively insensitive to the uncertainty in the initial state, then we have
evidence for model error. For a given model, these are precisely those regions
of state space in which we expect (-shadowing to fail. Having identified such
regions, the model may be refined either by including additional observations
corresponding to these regions or by increasing the weight given to existing
observations. This allows recursive improvement of an imperfect model, fo-
cussed on regions where its forecast errors are internally inconsistent. While
the one-step prediction error will increase, shadowing times (and multiple-step
prediction errors) may improve.

5.3.2 Accountability

Many models may have a trajectory consistent with the observations. But the
majority of these t(-shadowing models will not have such trajectories in the
correct proportions. While imperfect models will not be accountable, studying
how given models fail can yield insight into how to improve them, and whether
to consider ensembles over different models, as well as ensembles of different
initial conditions.

5.3.3 Residual Predictability

Consistency tests on the time series of prediction errors, often called the residu-
als, provide an alternative to investigating model sensitivity. Ideally, the resid-
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uals are independent, identically distributed (IID) random variables, or at least
indistinguishable from a sample of IID random variables, and there are a num-
ber of more traditional [11] and more modern [129] tests to evaluate this null
hypothesis. A widely applied test for IID series using the GPA has been devel-
oped by Brock et al. [130, 131]. Here we will consider a simpler test for residual
predictability[90].

In the nonlinear prediction paradigm of Section 3, prediction in time becomes
interpolation in model-state space. For each deterministic model, there will be
a specific surface, optimal in the least square sense, which most closely matches
the expected value of the process. Even with the additional assumptions that
the process is deterministic, the embedding dimension is sufficient and the
data are noise free, this surface defines a perfect model only if the expansion
in model basis functions converges for a finite number of terms. The main
point of this subsection is that the smooth variation of these two surfaces will
result in systematic prediction error - correlated not in time but with location
in model-state space. This is indicated in Figure 18 which shows the x = 0
slice of the prediction surface from an RBF model for the Stilleto Map along
with that of the true map.

Assume that there is no residual predictability, that is, assume that the resid-
uals are IID. Every IID sequence must remain IID under any blind rearrange-
ment, an observation dating back, at least, to von Mises [132]. An example:
given two IID variables, there is a 25% chance they will both be greater than
the median of the distribution, a 25% chance they will both be less than the
median, and a 50% chance one will be less and the other greater. The test of
residual predictability simply finds nearest neighbour pairs of observations in
the model state space, and tests whether the corresponding pairs of residuals
are distributed in a manner consistent with the residuals being IID in the first
place. If there are significant correlations, then the residuals were not IID, and
additional predictability may be present. Tests for residual predictability are
discussed at greater length in reference [94].

Figure 13 illustrates a simple test in 2-dimensions: at each point in the delay
reconstruction, a ‘+’ denotes a positive residual, while a ‘-’ denotes a negative
residual. Forming nearest neighbour pairs, one may easily evaluate the null
hypothesis that these symbols are randomly assigned. In this case, the correla-
tion is visible by eye, in many regions there are clusters of ‘+’ symbols. In this
case there is residual predictability. This is often the case, even when predict-
ing relatively simple numerical systems, except in cases where, for example,
when one attempts the equivalent of predicting the Hénon Map with a local
quadratic map!

The test is easily generalised (1) to consider more than two points at a time, (2)
to more than two types of error, and (3) to higher dimensions, where visual in-
spection may be difficult. The test also provides an indication of where in state
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Figure 18: A one-dimensional slice at £ = 0 of a two dimensional delay embedding of the
Stiletto Map. The one step ahead prediction f(zg,z1) is shown for zy = 0 as a function of
z; for the the perfect model (solid) and two global RBF models using 64 centers (dotted)
and 128 centers (dash-dotted).

space the model is systematically wrong. Such locations can be contrasted with
regions where the model in unable to t-shadow, or where the model sensitivity
appears to be to small; this suggests a method of constructing an improved
model by introducing additional freedom to the fit in these regions.

The residual predictability test can locate model error, even when one cannot
reject the IID null hypothesis for the time-series of residuals on their own,
because it includes information relative to their location on the prediction
surface. Of course, the deterministic modelling paradigm assumes from the
outset that such a surface exists. If the underlying process is stochastic, then
this assumption fails. Testing for the existence of this surface with ensemble
predictions provides a test for operational determinism, as discussed in the
next section.
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6 Deterministic or Stochastic Dynamics?

If the equivalent of the perpetual motion machine exists in time series analysis,
it must be the algorithm which can distinguish deterministic dynamics and
stochastic dynamics. Attempts abound.

Earman [133] provides a primer on determinism, while discussions within the
context of nonlinear dynamics given in references [131, 78, 134]. In this section
we will discuss the lesser goal of deciding whether a system is best modelled
deterministically or stochastically given a particular data set. Hence our aim
is to determine if a system is operationally deterministic, while remaining
agnostic regarding its true nature (and ready to refine its operational status
given more data or new insight).

To be useful, any test for operational determinism must be robust in the face
of observational noise. For simplicity, we will limit the discussion to two one-
dimensional systems, one deterministic and one stochastic. Contrast the de-
terministic system

Tip1= (44)

% for a<z<1
—a

with the stochastic first order autoregressive, or AR(1), system:

i1 = ag; + " (45)

where & = (2a — 1), 0 < a < 1, %" is a normally distributed random variable

with mean zero and standard deviation one and the superscript dyn stresses
that this noise term influences the dynamics. It is interesting to note that, since
the autocorrelation functions of Z and g are identical, it is impossible to dis-
tinguish these series via any analysis which is based upon their autocorrelation
function.

The dynamical system of Equation 44 is chaotic; at each iteration an infinites-
imal perturbation will grow by a factor of either % or (1;), “on average” by
er? with the Lyapunov exponent A = —alog,(a) — (1 — a)log,(1 — a), al-
though no actual perturbation ever grows by this amount (see Shaw [103]).
Initial perturbations in the value of y, on the other hand, will decrease with
time under the stochastic system of Equation 45, given the same realization of

dyn
Vi

We adopt the same measurement function for each system and the same level
of observational noise:

where the observational noise, v;, is a normally distributed random variable
with mean zero and standard deviation o,; z; represents our state variable,
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which for the moment is either Z or . Equation 46 yields two series of observa-
tions: z; = h(%;) and y; = h(g;). Due to observational noise, exact prediction
is impossible for either system. In both cases, as more and more observa-
tions become available, the optimal RMS error predictor should issue forecasts
approaching the estimated local mean value of the conditional distribution
P(si41|s:), regardless of whether the process is stochastic or deterministic?.

Deterministic ensemble forecasts strive to reflect this distribution. For an oper-
ationally deterministic process, this is exactly what is desired; for a stochastic
process, the expected value may be defined quite precisely, and still bear no
relation to the observed value. This is the distinction we aim to exploit.
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Figure 19: Observations (-), ensemble predictions (+), and expected values (solid line) for
(a) the deterministic map of Equation (44) and (b) the stochastic map of Equation (45).
Here a = 0.85. The ensembles give a rough indication of the likely distribution of values in

the deterministic case, while this distribution is much to narrow in the stochastic case.

26For the response of an RBF model to data from an autocorrelated noise process see [97].
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6.1 Using ensembles to distinguish the expectation
from the expected

Delay plots for x and y are given in the left and right panels of Figure 19. Also
shown are ensemble forecasts from a deterministic model. A local quadratic
model was employed, in an attempt to reduce the chance of serendipitous
synergy between a locally linear forecast model and either of these locally lin-
ear processes. Since the forecast model is deterministic, the ensemble spread
reflects the uncertainty in the optimal RMS forecast due to observational un-
certainty in the initial condition.

Knowing that the value of s; is uncertain, the uncertainty in s;.; is estimated
simply by making ensemble forecasts under the deterministic model. When
applied to deterministic data this should yield well calibrated forecasts, esti-
mating the uncertainty in the expected value of s;.1, and hence reflecting the
distribution of likely observations. And in the stochastic case? In the stochastic
case our ensemble forecast still returns the uncertainty in the expected value
of s;11, but the uncertainty in the expected value is not the uncertainty in
the future state: for a stochastic process, the expected value may be defined
quite precisely and yet bear no relation to the observed value. To the extent
that a perfect predictor can be approximated operationally, then in a deter-
ministic system the uncertainty in the expected value is the uncertainty in
the prediction. This is simply not the case in the stochastic system, where the
(random) dynamics also makes a direct contribution to the distribution about
the expected value. Contrasting the two panels of Figure 19, we see that the
agreement between forecast spread and the spread in the observations correctly
identifies the left panel as operationally deterministic.

If deterministic ensemble predictions are badly calibrated everywhere in state
space, we adopt an operationally stochastic modelling strategy (e.g. SEQUIN
or RAP). If the failures are localised, then we have a good indication as to
where to look for model error, or physical arguments as to why those states of
system may be extremely sensitive to external influences (or may be improp-
erly embedded). If calibration failures are rare, but appear to be randomly
distributed in state space, then we might argue that the system is determin-
istic, but not isolated: occasional external perturbations being responsible for
the occasional lack of calibration.

Why might we wish to model a deterministic process as operationally stochas-
tic? Ignorance. If we do not have enough data to fit a deterministic data-based
model, and we do not understand the physics well enough to construct a simu-
lation model, then a simple stochastic model may prove a fine choice. Consider
some poorly understood chaotic phenomena: with very little data, a nonlinear,
or locally linear [95], stochastic model proves best; as the duration of observa-
tion increases, we eventually observe a number of near returns in state space
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sufficiently close (e.g. within the linear range) so as to make deterministic
models optimal?”. As still more data are obtained, the suite of deterministic
forecast models improve until we hit forecast errors near the noise level of the
observations; at this point we return to a stochastic model, although here we
may need only assign the probability of the next observation falling into each of
a few quantisation bins. A deterministic process is “operationally stochastic”
either (1) when it is known so poorly that its general properties are uncertain or
(2) when it is known so well that the forecasts are dominated by observational
noise. Nonlinear noise reduction techniques [136] may reduce the observational
noise, but we can never ascertain the ultimate noise-free dynamics from finite
observational data.

We note in passing that the inhomogeneity common in chaotic dynamical sys-
tems suggests that even for a fixed prediction time, the same system may be
best modelled by interpolation (i.e. deterministically) for most initial states,
and by random analogues (i.e. stochastically) for other initial states. The state
space may be mapped out and different schemes used in different regions, just
as different delays were used for different initial conditions in reference [73].
This variation in the quality of a model with location can confound optimisa-
tion schemes based on minimising a cost function. In the Lorenz system, for
example, predicting about one oscillation time ahead with ensembles with a
diameter of =& 0.01, direct local linear prediction usually out-performs RAP
given the same learning data, but the deterministic model goes badly wrong
on a few occasions, which then dominate the total RMS error (and the en-
semble calibration score) of the predictor. Such events contribute to the need
for Olympic-style scoring rules (throwing out the worst 10% predictions when
computing the mean forecast error) adopted by Casdagli[83] when document-
ing how forecast error scales with the size of the data set. The ability to foresee
which initial conditions will yield these large forecast errors was noted by Cas-
dagli; ensemble prediction provides additional information with which we may
act on this foresight. Figures illustrating this effect will be presented elsewhere.

And if the underlying system is stochastic? Wind tunnel data reflecting the
transition to boundary layer turbulence in the experiments of Gaster [137]
provide an example. The data reflect fluid velocity in an open flow which is
perturbed by a sinusoidal forcing of adjustable amplitude. When the forcing
amplitude is small and the prediction time short, the velocity is almost periodic
in time; deterministic models provide more refined ensemble forecasts than
stochastic models, although both local linear ensembles and RAP ensembles
are well calibrated. The calibration-refinement graphs for a RAP model are
shown in Figure 20, local quadratic prediction based on the same learning set

270f course, the time required to do this may be longer than the lifetime of the system.
One estimate of the “return time” for the Earth’s atmosphere [135] places it at 10%° years,
significantly longer than the expected lifetime of the Universe.

64



yields slightly less calibrated but much more refined forecasts (more predictions
near 100% and 0%), suggesting that this dataset be treated as operationally
deterministic. (Calibration and refinement are introduced in Section 3.5.) For
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Figure 20: Calibration (lower) and refinement (upper) plots for the wind tunnel data at
moderate forcing. The upper graph shows the number of predictions made clustered into
bins 10% wide. The lower graph shows the relative frequency with which a given cluster of
forecasts identified the outcome; if the vertical bars cross the diagonal, the observed relative
frequency is consistent with the predicted probability, at the 95% confidence level. These
results are for a RAP model.

a longer prediction time and larger forcing amplitude, RAP ensembles remain
well calibrated, while the forecasts of all models become less refined (i.e. fewer
forecasts are made where the PDF is well localised), and deterministic models
are not well calibrated. What does this mean? RAP ensembles simply collect all
relevant analogues. If the data set is large enough (i.e. if it contains relevant
analogues), then RAP ensembles will be well calibrated for any stationary
process. Deterministic forecasts assume that there is additional (accessible)
information in the analogues; if this is indeed the case, then they will provide
ensemble forecasts which are better refined than those of a stochastic model.
That is the essence of operational determinism.
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If deterministic ensemble forecasts give a good account of the observed forecast
errors, then we can make a case for operational determinism. If they disap-
point our expectation, “either not at all succeeding constantly or at least vary-
ing much” from what is expected, then the results should be contrasted with
those of ensembles under stochastic models. Ideally one should make ensemble
forecasts with both deterministic and stochastic models and judge which is the
more accountable. In cases where a single forecast value is required, the choice
is less straightforward.

Given a finite collection of observations, can we determine whether or not the
underlying process is deterministic? In a word: No. The same process may
appear either deterministic or stochastic, depending on how we observe it, and
for how long. Can we decide on the best way to model a process, given a
particular collection of observations? Perhaps.
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7 Numerical Weather Prediction

7.1 Probabilistic Prediction with a Deterministic Model

Ensemble forecasting is now the operational standard at a number of Numer-
ical Weather Prediction (NWP) centers world-wide. Yet even with ensemble
forecasts, operational weather prediction remains difficult for at least three
reasons:

e At some times, an ensemble forecast does not give a unique indication
of what the weather will be;

e At some times, an ensemble forecast gives a unique, but incorrect, indi-
cation;

e And at all times, it requires 24 hours to verify each daily forecast.

When addressing these points, how are limited resources best distributed be-
tween addressing the first point by gathering more data for a better estimate
of the initial conditions and addressing the second either by obtaining a larger
computer and thus getting a better estimate of the forecast probability distri-
bution if it is operationally accountable, or by improving the model itself if the
distribution is unrealistic? These issues were discussed by Thompson in a 1957
paper entitled Uncertainty of Initial State as a Factor in the Predictability of
Large-scale Atmospheric Flow Patterns [138], which evaluates the various fac-
tors that limit predictability and the marginal gain of improving each of them.
Yet the third point is perhaps the most limiting, since arguably [135] the Earth
shall not exist long enough for us to determine whether or not the weather is
chaotic. The time required to obtain two observations sufficiently close that the
linear approximation might be quantified may well exceed the expected life-
time of the Universe. Few can dismiss this as merely a technical constraint,
although many might argue that the question is of only academic interest in
that technically, chaos is irrelevant to operational forecasting inasmuch as it is
defined via Lyapunov exponents.

In any case, there is no question that atmospheric dynamics are nonlinear.
Applying the notions of nonlinear prediction and ensemble forecasting to the
Earth’s atmosphere only requires a generalisation from 3-dimensional dynam-
ics to, say, 10° dimensional dynamics; similar techniques may work, but the
technical (and technological) constraints of finite computers and real-time re-
sults require some consideration. Given unlimited computational power, we
could adopt the approach used to form ensembles for the annulus in Section
3.7: simply sample the model-state space until a good representation of the

67



probability distribution of initial conditions consistent with the current obser-
vations was obtained. Then evolve each of these initial conditions under the
model to obtain a forecast probability distribution at the final time.

There are a number of problems with this approach, even in principle. While
our uncertainty may have a smooth distribution in model-state space, the
relative likelihood of different initial conditions almost certainly does not. If the
model evolves on an attractor, or even a smooth manifold of lower dimension
than the model-state space, then we cannot assign the appropriate weight
to each initial condition without some knowledge of this manifold. Even if
our uncertainty varies smoothly in state space, the set of physically relevant
states does not. The fact that the model-state space differs from that of the
atmosphere only makes matters worse, a point to which we return below. In
short, our ultimate ensemble forecast will not be accountable if the ensemble
is chosen in this way.

In practice, the evaluation of such a large ensemble is not realistic. Opera-
tionally, one may only deploy ensembles of less than 10? members, in a model-
state space with dimension of order 10°. The state-of-the-art is reflected in the
book Predictability [139]. Competing methods of ensemble formation are used
in the operational forecast centers of the US, Europe and Canada. Section 7.3
provides a schematic description of the options available. First we note some
of the boundary conditions on weather prediction.

7.2 The Analysis

In meteorology, an analysis is a point in model-state space. The analysis is our
best guess at the model state which is in turn the best analogy to the state of
the atmosphere. If we define an ideal model initial condition as that which will
best t-shadow future observations, then the analysis may be thought of as the
best approximation to this model state, given the information available at the
time it was constructed. Thus the analysis is a function of the time at which
it was constructed as well as the time at which it represents the state of the
system. If the model is not perfect, then the distinction between the different
model states is important.

Technology also places a severe constraint on the effective spatial resolution of
weather models if, as is often the case, we wish to have the forecast before the
event. Operationally, this translates into an effective horizontal “grid scale,”
although in practice many of the calculations are done spectrally. Within the
model, there is no spatial resolution below this scale, typically tens of kilome-
ters, and all the physics at smaller length-scales must be parameterised. To the
extent that this parameterisation is not exact?®, the weather model cannot be

28No parameterisation is exact?.
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perfect; if the subgridscale structure is important, then there will be a time-
scale after which the model cannot reflect reality: weather models will have
finite (-shadowing times. Even if the (-shadowing time-scale is long compared
to forecast times, the coarse resolution of the model introduces another more
immediate complication: there is no model equivalent of “the temperature at
Heathrow.” Indeed, Heathrow, Gatwick, and a large part of London may all lie
within a single point. How then does one insert an observation into the model?
Or evaluate a prediction?

While this point is particularly clear when the resolution of the model differs
by several orders of magnitude from that of the measuring instrument, the
same problem exists for almost all models: The state space in which the model
evolves (i.e. the model-state space), is fundamentally different from the
“true” state space of the atmosphere-ocean system within which we live and
take measurements. The fact that this system is not isolated adds another
dimension to the problem.

The model state which is judged to most closely correspond to a given set
of observations (which may be distributed both in space and in time) defines
the analysis; a huge effort has been put into determining the best analysis.
In most cases, the analysis is based in part on predictions formulated from
past observations; model predictions make a particularly large contribution
to components for which few (or no) observations are available, for example
small scales and particularly over the oceans. Since different models will have
different model-state spaces, the analysis will depend on both the model and
the observations.

In practice, the quality of a forecast is often evaluated relative to the corre-
sponding analysis, rather than the observations themselves. While something of
this sort is required, since the domain of the model differs from that of the ob-
servations, validation against observations is preferable. Interpreting the anal-
ysis as the target for a forecast introduces model error into the target, thereby
complicating model evaluation: once the model has been used to validate the
observations, it is less clear how to use the “improved” observations to vali-
date or improve the model itself. The movement between “observations” and
“analysis” is a field of its own (see Talagrand and Courtier [120] and references
thereof); those interested in low-dimensional nonlinear dynamical systems can
learn a good deal from what has been achieved (operationally!) within the
meteorological community.

7.3 Constructing and Interpreting Ensembles

Constrained to an ensemble with a relatively small number (~ 2°) of members
distributed in a relatively high dimensional (~ 2%) space: How are the best
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perturbations to be chosen? This is a topic of international debate. The answers
will vary with the goal of the forecast. In particular, they will vary with the
relative weight given to the conflicting design goals of (a) enhancing the prob-
ability of detecting extreme events, and thereby providing better warning of
the “worst case” scenario, (b) obtaining an ensemble member which ¢-shadows
the atmosphere for as long as possible, and (c) reflecting the true probabilities
of different forecasts as accurately as possible. The interpretation of the en-
semble will, of course, depend on the manner in which it was constructed. An
unconstrained ensemble aims to reflect the true PDF of the model, while en-
sembles which selectively sample the more unstable directions often do so in an
attempt to increase the variance of an ensemble with relatively few members.

Constrained ensembles are formed by restricting the ensemble members to
a subspace of the full model-state space. Potential directions to be taken as
components of this subspace include the orientations of:

1 Most likely static displacement, given the moments of the (local) set of
physically relevant states.

2 Fastest growing infinitesimal displacement (instantaneous).

3 Local orientation of the globally fastest growing uncertainty (infinite
past).

4 Fastest growing infinitesimal displacement (fixed finite future time).
5 First infinitesimal displacement past a threshold (variable finite time).

6 Most likely orientation given the variation in measurement accuracy (ob-
servational uncertainty).

7 Orientation in which the dynamics are worst represented (model error).

These seven options restrict orientation only, without suggesting a specific
magnitude, and all these orientations will vary with location in model-state
space. The first reflects the most likely direction due only to the local dis-
tribution of true potential initial conditions (physically relevant states). The
second reflects the fastest growing direction(s) of the local Jacobian, the third
the local orientation of the first global Lyapunov vector (assuming it exists),
the fourth reflects the orientation of the first singular vector determined with
an optimisation time which is independent of the initial condition. Option five
also reflects a singular vector, but here the optimisation time is allowed to vary
with location, reflecting a local 7, where g is chosen to reflect the maximum
magnitude for which the linearized dynamics are deemed to be relevant. The
sixth option accounts for the fact that different components of the model-state
vector are known with different accuracies, while the seventh reflects the desire
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to account for model error, although it is not clear how introducing perturba-
tions in these directions will accomplish that task.

Given an orientation, a magnitude must be selected, ideally this is done so as
to produce an initial condition consistent with the long-term dynamics of the
system (“on the attractor”). The basic difficulty is that while we can compute
the probability of an observation X given both the true state x and the statistics
of the observational uncertainty, we cannot compute the probability of the true
state being x given only the observation and the noise process, since we do not
know the local structure of the manifold upon which the best initial condition
must lie. The selection of initial conditions consistent with the model is a
nontrivial problem, even when the noise process is known.

Note that for options 2 through 5 to be of interest, not only must the models
be fairly good, but the linearizations must agree at length-scales determined
by the observational uncertainty. Recall Figure 7 of Section 2.1.3 and the max-
imum linear range, 6. Even in a perfect model, if the error in the initial con-
dition exceeds the radius at which the linear approximation is accurate, then
the linearized dynamics are irrelevant regardless of how they might be inter-
preted. For an imperfect model, we have the additional constraint that the
linearization of the model be a good approximation of the linearization of the
system. For the relevant time scale, we require (a) that the SVD of the model
dynamics about the model trajectory is sufficiently similar to the SVD of the
true dynamics about the systems trajectory, and (b) that the analysis (the
model initial condition) lies within the the linear range of the model®®, and (c)
that an ideal model initial condition exists and also lies within this radius of
the analysis. We have responded to Maxwell’s warning by assuming not only
that the weather is amenable to a finite scheme of law, but that our approxi-
mation to this scheme is also an approximation of its first derivatives and our
observational errors are sufficiently small that this linearization is relevant.

Ensemble forecasts are made routinely by meteorological centres around
the world. At the European Centre for Medium-range Weather Forecasts
(ECMWF), ensembles are formed based upon initial time Singular Vectors
(SV) with a fixed optimisation time of about 2 days[140, 141, 142]. The Amer-
ican National Centers for Environmental Prediction (NCEP) employs ensem-
bles based on Bred Vectors(BV), which reflect error growth over the recent
past[143, 144, 145]. If the model was perfect and the observational uncertainty
in the analysis was infinitesimal, then the bred vectors would converge toward
the local orientation of the global Lyapunov Vectors (LV). Of course, neither
condition is satisfied and the bred vectors also contain useful information on

29This can be verified to a limited extent by monitoring whether or not the nonlinear
trajectory of each ensemble member still reflects the linear approximation at optimisation
time. If a trajectory fails this test, it suggests itself as the source of a valid alternative
linearization.
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model error. Recent comparisons can be found in references [146, 147]. In the
near future, the Japanese Meteorological Agency (JMA) plans to investigate
bred vectors and singular vectors from the same model. The results should be
enlightening. There are also attempts to construct ensembles without intro-
ducing dynamical constraints [148]. This field is evolving rapidly; two versions
of the current state of play may be found at http://www.ecmwf.int/ and
http://sgi62.wwb.noaa.gov:8080/ens/enshome.html .

7.4 The outlook(s) for today

Once the members of an ensemble are agreed upon, each is evolved under the
full nonlinear model, resulting in a collection of potential realizations of the
weather over the following days or weeks. From the perspective of a week ago
Wednesday, what weather was forecast for today? The ECMWEF’s answer to
this question is illustrated in Figure 21. Here we have 33 forecast maps each
giving a version of today’s weather as determined from an initial condition
consistent with the ECMWF analysis of the state of the atmosphere 10 days
ago. Each of these “postage stamps” shows an equally valid prediction for a
deterministic system; what can we learn from such an ensemble?

First, they are different: for this particular initial condition and initial uncer-
tainty and model, this picture shows that the uncertainty in the 10 day forecast
is large, even if the model was perfect. This simple fact alone is of great util-
ity; if we look back to these 33 forecasts after only 3 days (not shown), we see
they are in rather good agreement. In this way, the postage-stamp maps give
a good indication of the unreliability of the forecast, and to a more limited
extent, an estimate of its reliability. More detailed discussion can be found in
Predictability [139] and the references therein.

7.5 Conclusion

How close are operational weather forecasting models to the ultimate limits
of prediction? It would be interesting to contrast the distribution of the ¢-
shadowing times for operational NWP models. Observing significantly shorter
shadowing times in lower resolution models would immediately address the
dilemma of “higher resolution” versus “larger ensembles”, in favour of obtain-
ing higher resolution, although ensembles with (at least) as many members as
those now in use will always be required simply to resolve the forecast PDF.
In addition, projections of the “shadowing perturbations” into the constrained
subspaces used for ensemble formation might help to resolve the questions as
to how to form the best operational ensemble. In any event, the experiment
would provide an estimate of the true limit of predictability of current oper-
ational models. It is all but inconceivable that either observational accuracy
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Figure 21: Today’s forecast, illustrating the ECMWF ensemble over Europe after 10 days.
Each small contour plot represents one member of the ensemble. In this case, the forecast
PDF at this point in time is a distribution of these fields.

or modelling skill will ever reach a state where one would return to making a
single deterministic forecast. Ensemble forecasts are here to stay.

The preferred strategy for ensemble formation remains an issue of debate even
when the goal is agreed, and resolving the issue for the Earth’s atmosphere
may take some time. Undoubtedly some issues will be resolved, while others are
advanced and refined until their proper resolution remains ambiguous. After
all, we get only one 24-hour forecast a day, and consecutive days are highly
correlated. It is at this point that laboratory systems like the rotating annulus
come to the fore. Not only can we contrast ensembles based on any current
(or future) formation scheme under a wide variety of different models, but
sufficient amounts of data can be collected in order to evaluate these schemes.
This statistical clarity is purchased at the price of considering an analogue
system - from this analysis we can never be certain which approach is optimal
for the Earth’s atmosphere - but the relative strengths and weaknesses of
competing ensemble prediction systems can be determined with a precision
which will never be available for the atmosphere in any case. This insight
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may shed light on the merits of various approaches to forecasting physical
systems, clear of the statistical uncertainties which will remain in atmospheric
prediction for much longer than the current crop of atmospheric models.
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8 Summary

Quantifying uncertainty qualifies the value of scientific knowledge, whether the
uncertainty lies in a forecast of the future state of a perfectly known dynamical
system, an estimated scaling exponent, or today’s weather from the perspective
of 10 days past.

When quantifying predictability, the limitations imposed by considering only
infinitesimal uncertainties in perfect models have led us to the use of ensem-
bles to quantify the dynamics of finite uncertainties under the state-of-the-art
forecast models in systems ranging from laboratory apparatus to the Earth’s
atmosphere. The insight that deterministic nonlinear systems require proba-
bilistic forecasts is a major step forward in our understanding of predictability.
Even in a perfect model, nonlinearity will tend to distort the distribution of un-
certainty (whether it is originally Gaussian or otherwise). This non-Gaussian
structure limits the applicability of least root-mean-square cost functions in
defining and identifying the best model. The distribution of (-shadowing times
offers an alternative approach for contrasting skill between models.

No general “Limit of Predictability” time-scale can be derived from the dy-
namics of infinitesimal uncertainties since an initial uncertainty must grow to
macroscopic scales before it is of practical importance. Thus the predictability-
horizons of a chaotic system may differ greatly from any time-scale defined via
Lyapunov exponents, in either their global or their finite-time incarnations.
Even within the infinitesimal range to which their relevance is restricted, Lya-
punov exponents reflect only an effective rate defined over a fixed time. Un-
certainty g—pling times lift these constraints, but the average 7, suffers from
the inhomogeneity of uncertainty growth in state space. This inhomogeneity
restricts the utility of any “Limit of Predictability.” Nevertheless, chaos can
be arbitrarily predictable as illustrated by the Baker’s Apprentice Maps.

In the absence of any information on the state of the system, the best ensemble
forecast for every initial condition is given by the climatological distribution®’,
oo(x). While an ensemble forecast can contain usable information as long as
it is distinguishable from 1., (z), the question of whether or not a prediction
is “useful” depends not only upon the forecast but also upon the goals of the
user of that forecast. Once the image of the initial ensemble remains indistin-
guishable from 1., (z), then the forecast is definitely “useless”. The onset of
uselessness poses a limit to predictability.

Given a perfect model and any specific ensemble, a well defined limit to pre-
dictability occurs when the ensemble can no longer be distinguished from
Yoo(z). This limit is then a function of both the size of the ensemble and

30This is simply the projection of the invariant measure under the measurement function,
to the extent that it is both well-defined and known.
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the level of observational noise, as well as the initial condition and the sys-
tem in question. Under a perfect model, ensemble forecast PDF's will approach
Yoo(x) as t — oo, while under imperfect models they need never approach
the correct asymptotic distribution. And imperfect ensembles need not do so
accountably, even when evolved under perfect models. A limit of predictability
applicable to both perfect and imperfect models can be constructed in terms of
the distribution of (-shadowing times. In this sense, the only limit on a perfect
model arises from using finite ensembles.

Simple nonlinear systems may be employed to gain strategic insight into the
methods used in physics-based “full” simulations (kitchen sink models). En-
semble forecasting and formation has been illustrated both in perfect model ex-
periments with low dimensional systems, and in imperfect model experiments
with laboratory systems of thermal convection in the rotating fluid annulus
and boundary layer turbulence in the wind tunnel. In an environment which is
data-rich and either knowledge poor or model poor, simple nonlinear models
can contribute directly to our understanding of physical phenomena. Interest-
ing examples include very short-term predictions of the surface temperature
in Berlin in the range from 3 to 21 hours (see Ziehmann [25]) and very long
term predictions of Ice Ages through ice volume (see Casdagli et al. [3]). It
remains to test these results with ensemble forecasts using the same nonlinear
models: if the results withstand this reasonably independent verification, they
hold important implications for investigators attempting the construction of
simulation models from first principles.

Most of the complications nonlinearity brings to analysis and forecasting have
been illustrated to occur even in simple low dimensional examples; it will be
interesting to learn which, if any, happen only in low dimensional systems. In
terms of low dimensional data-driven models, it is often said that the predic-
tions of these models are of limited interest because they “contain no physics.”
I would argue that they contain too much in exactly the same manner that a
photograph of any particular bird may be considered an inferior representa-
tion of that species of bird when compared to the corresponding drawing by
Audubon. The ultimate radial basis function model of the annulus might well
be expected to out-perform a computational fluid dynamics code, as the RBF
model would take into account imperfections in the Oxford annulus, and so on.
The analogy would be too tight: while superb as a forecast model, as an anal-
ogy it may fail to generalise to other parameter values, much less other annuli.
The dilemma becomes a value judgement between defining a good prediction
either as a good forecast or as a reliable prophecy.

It is true, if tautological, that like all analogies the Laws of Physics are reliable
guides as long as they are applied within their range of validity. This makes
them extremely useful both pedagogically and in engineering applications. But
when exploring the frontiers of science, we never know if we are within that
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“range of validity” or beyond it: the success of Newton’s laws in predicting
the planet Neptune from observations of the perturbations from the Newto-
nian orbit of Uranus is often cited; the fact that Newton’s Laws were invoked
to support the discovery of the planet Vulcan - thereby accounting for per-
turbations from the Newtonian orbit of Mercury remains largely unremarked.
Vulcan was, perhaps, a misinterpreted sunspot.

A general lack of faith in the existence of a large “range of validity” for data-
based models is an asset in terms of maintaining our uncertainty in their
results; even more so if it calls into question the range of validity of kitchen
sink models “far” from the conditions for which they were tuned. Studies of
the uncertainty in and limitations of climate models are underway [149].

The chance of reporting fortuitous results which, upon further trial, disappoint
our expectations in that their implications of, say, predictability do not hold
may be reduced by asking: “Would this analysis technique yield similar evi-
dence even if the data had come from an uninteresting system?” We have seen
that, to a limited extent, the probability of this happening can be quantified
through the use of surrogate data. But the design of a relevant null-hypothesis
to be rejected (i.e. the set of uninteresting systems) is non-trivial, and esti-
mation of true significance levels is difficult. One can always perform multiple
analyses on the same data set, but the statistical significance of the result
does not increase very quickly if the tests are in any way related, regardless of
whether or not we can quantify the extent to which they are related. Worse
yet, appropriate significance levels may be inaccessible. Taking the series of
Figure 1 as two randomly selected series of simultaneous measurements, there
is without doubt a statistically significant relationship between the number of
sunspots and the Republican fraction of the US Senate. One would be hard
pressed to deny the possibility that some connection existed; and scientifically,
it is much more interesting to “identify” a physical mechanism, even a poste-
riort , than to remain silent having failed to reject the null hypothesis. These
two time series were not, however, selected at random: the time series from the
Senate was chosen from among untold others because of this correlation, and
thus appropriate significance levels cannot be determined. For these reasons,
among others, it is crucial to think before running hard-won data through a
black box. Data are only out-of-sample data once, and a priori hypothesis are
much easier to evaluate. Luckily, in the case of the Senate the penultimate test
of out-of-sample verification can be applied. Figure 22 shows the same two
time series from 1900 until 1989, the correlation is less striking. We conclude
that the apparently interesting results drawn from Figure 1 are, upon informed
reflection, not so interesting. And so we look for others.

A collection of methods designed to identify the drawing of unwarranted con-
clusions from the nonlinear analysis of nonlinear data has been considered. In
large part, these simply correspond to adopting good statistical practice. We

7



\‘ 4

11111111\1-111

co0 00000
FO R N ®WAOO N

IIIIIIIIIIII\I

900 1920 1940 1960 1980
yvear

Figure 22: Simultaneous series of sunspot number (solid) and the fraction of the U.S.
Senators who were Republicans (dot-dashed) on the day of their election, for the period
1900 to 1989. Note that these figures give the party division after the election that preceded
each Congress, and does not reflect changes in party ratios that may have resulted from the
death, resignation, or change in party affiliation of one or more senators within a Congress.

can use surrogate data to see how easily a desired result would be generated by
chance. And we can employ straw men of steel to test our algorithms in hopes
of identifying their limitations, before applying them in the analysis of data.
And we can test the internal consistency of the failures of our models, out-of-
sample. But front-line research, by design, occurs where our understanding is
the most uncertain. Our best protection is to accept this fact, look closely for
inconsistency and new data, and maintain our uncertainty whenever humanly
possible.
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