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Introduction

Chaos is difficult to quantify. The nonlinear dynamic
that gives rise to chaos links forecasting on the shortest
time scales of interest with behavior over the longest
time scales. In addition, the statistics which quantify
chaos forbid an appeal to most of the traditional
simplifications employed in statistical estimation.
Nevertheless, both the concept of chaos in physical
systems and its technical relative in mathematics have
had a significant impact on meteorological aims and
methods. This is particularly true in forecasting.
Chaos implies sensitivity to initial conditions: small
uncertainties in the current state of the system will
grow exponentially-on-average. Yet, as discussed
below, neither this exponential-on-average growth
nor the Lyapunov exponents that quantify it reflect
macroscopic predictability. The limits chaos places on
predictability are much less severe than generally
imagined. Predictability is more clearly quantified
through traditional statistics, like uncertainty dou-
bling times. These statistics will vary from day to day,
depending on the current state of the atmosphere.
Maintaining the uncertainty in the initial state within
the forecast is a central goal of ensemble forecasting
(see Weather Prediction: Ensemble Prediction).
Achieving the ultimate goal of meaningful probability
forecasts for meteorological variables would be of
great societal and economic value. Fundamental
limitations in the realism of models of the atmosphere

will limit our ability to make probability (PDF)
forecasts, just as uncertainty in the initial condition
limits the utility of single forecasts even if the model is
perfect.

Initially, it appears that chaotic systems will be
unpredictable, and this is true in that it is not possible
to make extremely accurate forecasts in the very
distant future. Yet chaos per se does not imply one
cannot sometimes make accurate forecasts well into
the medium range. And perhaps just as importantly,
with a perfect model one can determine which of these
forecasts will be informative and which will not at the
time they are made. As we shall see below, both the
American and the European weather forecast centers
have adopted this strategy operationally, with the aim
of quantifying day-to-day variations in the likely range
of future meteorological variables. Quantifying this
range can be of significant value evenwithout a perfect
model. Although accurate probability forecasts are
likely to require a perfect model, current operational
ensemble prediction systems already provide econom-
ically valuable information on the uncertainty of
numerical weather prediction (NWP) well into ‘week
two’, and research programs on seasonal time scales
are underway.

Why is perfect foresight of the future state of the
atmosphere impossible? First, it should be no surprise
that if our knowledge of the present is uncertain then
our knowledge of the future will also be uncertain; the
question of prediction then turns to how to best
quantify the dynamics of uncertainty. Here the full
implications of chaos, or more properly of nonlinear-
ity, mix what are often operationally distinct tasks:
observing strategy, data assimilation, state estimation,
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ensemble formation, forecast evaluation, and model
improvement. This complicates the forecasting prob-
lem beyond the limits in which classical prediction
theory was developed. First the traditional goal of a
single best first guess (BFG) forecast with a minimal
least-squares error is not a viable aim in this scenario,
nor is a least squares solution desired. Indeed (as
discussed below) this approach would reject the
perfect model which generated the observations!
Second, current models are not perfect. The term
‘model inadequacy’ is used to summarize imperfec-
tions in a given model and the entire model class from
which that model is a member. Model improvement
and the search for a superior model class, along with
the investigation of more relevant measures of model
skill, are areas of active research.

A Mathematical Framework for
Modelling Dynamical Systems

Chaos is a phenomenon found in many nonlinear
mathematical models. While one should never forget
the distinction between the model and the system
being modeled, precise mathematical definitions are
more easily made within the perfect model scenario
(PMS).Within this useful fiction, one assumes that the
model in-hand is itself the physical system of interest.
Before moving back to forecasts of the real world, of
course, one must recover from this self-deception.

Given a model, an initial condition is simply an
assignment of values to all model variables at a
particular starting time. Thus the initial condition
reflects the current state of the model: it is a vector xðtÞ
which specifies the value of every variable in themodel
at time t. For the classical model of a pendulum, the
state consists of two variables (the angle and the
angular velocity). These two numbers completely
define the current state of the model, and so the model
is called two-dimensional, or, equivalently, said to
have a two-dimensional state space. The famous
Lorenz model of 1963 is three-dimensional, as there
are three variables: x ¼ ðx; y; zÞ. These low-dimen-
sional systems shouldbe contrastedwith the state of an
operationalNWPmodel,whichmay consist of over 10
million variables.

The sequence of states a dynamical system passes
through defines the history of the system; this sequence
is called a trajectory. For deterministic systems, any
single state x along a trajectory defines all future states
of the system. For the classical pendulum, these
solutions can be written down analytically; but for
all but the simplest nonlinear systems only numerical
solutions exist. Thus it is difficult to prove that a given

realization of the Lorenz model is chaotic, and even
more so modern NWP models.

Chaos

Mathematically, a chaotic system is a deterministic
system inwhich (infinitesimally) small uncertainties in
the initial condition will grow, on average, exponenti-
ally fast. The average is taken over (infinitely) long
periods of time. Of course, finite uncertainties often
grow rapidly as well, in which case any uncertainty in
the initial conditionwill limit predictability in terms of
a single BFG of the future state, even with a perfect
model. But inasmuch as it is defined by the behaviour
of (infinitesimally) small uncertainties of (infinitely)
long periods of time, chaosper seplaces no limits of the
growth of finite uncertainty over a finite period of
time. Chaotic systems are often said to display
sensitive dependence on initial condition (SDIC), a
technical term for systems inwhich states initially very
close together tend to end up very far apart, eventually.

Suppose the true state of the system is ~xx: what is the
behaviour of a near-by solution x̂xwhere x̂x ¼ ~xxþ e? In
the pendulum, a small initial e grows slowly, if at all. In
a chaotic system, the magnitude of e will grow
exponentially-on-average; yet this does not imply
that the actual magnitude of e ever grows exponenti-
ally in time. Indeed, since e is a distance and jej >0 for
any given value of t, one can always define a value

l ¼ 1

t
log ½jeðtÞj=jeð0Þj�

for any system, chaotic or not! In this case, observing a
value of l >0 for finite t does not even suggest
exponential growth. Statistics like l become interest-
ing only when they approach a constant as t ! 1; by
definition, chaos reflects properties only in this limit.

Clearly, chaos includes special cases where magni-
tude of e is growing uniformly, say doubling every
second; but it also allows the more common case
where the growth of e is a function of the state x and
hence changes with time. In general, the growth will
not be uniform in time. In fact in some chaotic systems,
including the Lorenz 1963 model, there are regions of
the state space in which every e will decrease! Such
regions are said to represent ‘return of skill’ as
forecasts become more accurate in the least-squares
sense as time passes.

For instance, consider the case where, on average,
half the time e is constant and the other half of the time
it grows by a factor of four. This will yield in the same
exponential-on-average growth as doubling every
time step, yet there will be times when prediction is
easy. Or for a more extreme case, consider where e
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shrinks by a factor of two 9 times out of 10, but once in
10growsby a factor of 219 (about half amillion); again
this is exponential-on-average growth equivalent to
doubling every time step. The question, then, is
whether or not these variations of predictability can
be identified in advance. As discussed below, ensemble
forecasts aim to do just that.

The Statistics of Chaos: Lyapunov
Exponents and Doubling Times

Given a deterministic system which remains in a
bounded region of state space, chaos is defined by a
statistic called the Lyapunov exponent. In a one-
dimensional system, the Lyapunov exponent reflects
the logarithm of the (geometric) average growth of
infinitesimal uncertainties. In the limits e ! 0 and
t ! 1, the geometric average of jeðt þ 1Þj=jeðtÞj
defines the Lyapunov exponent, usually called l.
Note that nowhere is there the suggestion that
jeðtÞj � jeð0Þjelt. A system will have as many Lyapu-
nov exponents as the dimension of the state space. The
largest Lyapunov exponent is often called the ‘leading’
Lyapunov exponent, and if the leading Lyapunov
exponent of a bounded deterministic system is posi-
tive, then the system is ‘chaotic’. Hence the three
systems noted above – one in which e doubles every
time step, and the other two in which e sometimes
grows and sometimes does not – each have the same
Lyapunov exponent. Typically, the logarithm is taken
with base two, so that if, for example, the uncertainty
doubles every second, the Lyapunov exponent is one
bit per second, thus the Lyapunov exponent is an
average rate.

Also note that for every statexon the attractor, there
corresponds a unique direction in state space associ-
ated with the leading Lyapunov exponent. If the state
space has a dimension greater than one, then estimat-
ing Lyapunov exponents involves matrix multiplica-
tion along a trajectory.Matrixmultiplication does not
commute, thus when dealing with statistics like
Lyapunov exponents one has to apply multiplicative
ergodic theorems; this makes many of their properties
appear counterintuitive. Many intuitive methods of
statistical estimation fail when applied to chaotic
systems. None of this is surprising, since most statis-
tical intuition is developed in the context of more
familiar ergodic theorems.

If the sumof all the Lyapunov exponents is negative,
then the trajectories will evolve towards a set whose
dimension is less than the dimension of the state space;
this set is called an ‘attractor’. An attractor may be
something as common as a fixed point, a periodic
orbit, or a torus; in such cases the attractor has simple

geometry. Alternatively, an attractor may have a
strange geometry: it may consist of a fractal set of
points in state space, inwhich case it is called a ‘strange
attractor’. Note that being chaotic reflects a property
of the dynamics of the system, while strangeness
reflects the geometry of the set on which the system
evolves, not the dynamics of the evolution itself. Given
a chaotic systemwith a strange attractor, the choice of
initial conditions should reflect the local structure of
the attractor, yet this structure is determined by the
long-time behavior for the system. In this way, chaos
links the longest time scales of the system to the
shortest time scales of interest.

The attractor of the Lorenz 1963model with typical
parameter values is shown in Figure 1. It is believed
that there are parameter values for which the Lorenz
1963 model has chaotic dynamics on a strange
attractor, but, as noted above, such properties are
difficult to prove even in this fairly simple system of
equations.

In meteorology, the doubling time, t2, provides a
more traditional measure of predictability than the

Figure 1 The distribution of uncertainty doubling times on the

Lorenz attractor. Points colored red double in less than one Lorenz

second. Points colored red have a t2o1 Lorenz time step, orange

points t2o2, and so on through yellow, light green, dark green,

blue, and purple. Themauve points on the inner and outer edges of

the attractor for which t2o7. The density of points with t2o5 has

been reduced for clarity. The visible line in the foreground which

separates red points from each of the other colors shows the

locationof pointswhichdouble just as theyenter the region inwhich

all uncertainties decrease, referred to in the text. (Adapted with

permission from Figure 1 of Smith LA (1994) Local optimal

prediction. Philosophical Transactions of the Royal Society of

London Series A 348: 371–381.)
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Lyapunov exponents. It is also a more relevant
measure, although if the growth is not uniform then
the time required for an initial uncertainty at x to
increase by a factor of four will not be twice the
doubling time at x (or, more generally, tq2 6¼ 2tq). In
practice, one just has to look at the statistics. An
average time is a more relevant measure of predicta-
bility than an average rate. Computing an average rate
requires stating the duration over which to average a
priori, while the relevant time scale is itself the
quantity of interest. In fact, one can generate a family
of chaotic systems each of which has a leading
Lyapunov exponent greater than one, yet containing
members with an average t2 as large as desired!
Indeed, estimating a time-like statistic with the inverse
of an average rate is a dubious endeavor. To convince
yourself of this, consider estimating the average value
of a by one over the average of 1=a, when a is
uniformly distributed between zero and one.

In Figure 1, points on the Lorenz attractor are
colored by the doubling time of an infinitesimal
uncertainty aligned initially in the local orientation
corresponding to the leading Lyapunov exponent. The
coloration is neither uniform nor random. Note the
line separating the red points on one side from the
band of each color on the other. The origin of this
demarcationwill be explained in the next section. Red
points have a t2 of less than one second, for orange
points it is less than two, and so on through yellow,
light green, dark green, blue, and purple. The mauve
points on the inner and outer edges of the attractor for
which t2 > 7. This is a clear illustration that predict-
ability will vary with initial condition in an organized
way! Which, in turn, suggests that predictability will
vary in a predictable way: quantifying this in practice
is the goal of ensemble forecasting. Yet evenwithin the
PMS, one is interested in finite initial uncertainties and
forecasts over a finite duration. The accuracy of such
forecasts need not reflect the Lyapunov exponents of
the system in any way. Thus chaos per se places few
restrictions on predictability.

True Limits of Predictability

So what are the limits to predictability of a chaotic
system? The answer depends on the use to which the
forecast is to be put.

Linear prediction theory aims to identify the opti-
mal least-squares predictor: the model which, on
average, yields a BFG future state with the smallest
(squared) prediction error. This is a coherent approach
to Gaussian uncertainties evolved under linear mod-
els, but not when applied to nonlinear systems with
uncertain initial conditions.

If the initial condition is uncertain, then this
uncertainty will evolve nonlinearly. It can be proven
that given a series of uncertain observations of a
chaotic system, there will always be uncertainty in the
current state. This is the case even if a perfect model is
in hand and the observations extend into the infinite
past. Even then, there will be a set of indistinguishable
states, each consistent with the series of observations
and with the long-time dynamics of the system. The
ideal forecast is then an ensemble forecast, where the
members of the ensemble are drawn from the set of
indistinguishable states, and each member weighted
with its likelihood given the available observations. In
the limit of infinitely large ensembles, this forecast can
accurately quantify the relative probability of different
events and the decay of predictability, correctly reflect
the variations in each from day to day.

In practice, ensemble forecasting is a Monte Carlo
approach to estimating the probability density func-
tion (PDF) of future model states given uncertain
initial conditions. An ensemble forecast for the Lorenz
1963 system is shown in Figure 2. The vertical axis is
time, the horizontal axis is the variable x from the
Lorenz system, and each line at constant time repre-
sents the probability density function of x at that time.

At t ¼ 0 the system is near x � 0 and the initial
ensemble consists of 512 initial states, each of which is
both indistinguishable from the true state given the
observations and also consistent with the long-term
dynamics of the system (that is, ‘on the attractor’).
This constitutes a perfect ensemble. While only the
value of the x component is shown, each member of
the ensemble is a complete state of the system, and
corresponding figures could be drawn for y and z.

Initially the distribution spreads out as might be
expected, while the average value of x increases. At
t � 0:4, however, the volume of the convex hull of the
ensemble shrinks, showing a true ‘return of skill’ as the
ensemble enters a region where all uncertainties
decrease! Here a BFG forecast at t � 0:4 is expected
to bemore accurate than the corresponding forecast at
t � 0:2. This is the origin of the discontinuity in
doubling times noted above in Figure 1: red points to
one side of the line double just before entering the
region, while points in the rainbow bands just across
the line enter the shrinking region before they double,
and must wait a finite time to be advected out of the
shrinking region before they might double. Hence the
discontinuity.

Returning to Figure 2, notice that as distribution
returns near x ¼ 0 at t � 0:7, a small fraction of the
ensemble members switch to the wing of the attractor
with negative values of x, while the majority make
another circuit with x >0. Owing to the symmetry of
the attractor, there is a somewhat artificial return of
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skill at t � 1:5. After this, however, the ensemble
members dividemore evenly between the twowings of
the attractor, and the distribution turns blue. The color
here reflects the standard deviation of the forecast
ensemble.

At this point, the standard deviation of the forecast
is greater than that of a set of points taken at random
from the attractor (that is, the climatology). Many
classical measures of predictability would not see the
significant information content that the forecast ob-
viously continues to possess; good skill scores should
reflect the information content of the ensemble. Even
more worrying, the ‘optimal’ least-squares forecast at
t ¼ 2:7 would be near x ¼ 0 where there is zero
probability of observing the system. One important
point illustrated here is that knowing the mean value
exactly is often of much less value than knowing the

likely distribution of values even approximately. A
second point is that tuning nonlinear models with the
aim of a ‘better’ average least-squares error will make
the models worse, as it systematically forces model
parameters away from more realistic, but heavily
penalized, behavior. Such models are expected to be
underactive rather than realistic.

The information in the initial ensemble will slowly
diffuse away, and whether or not the information in
the forecast at any given time is useful depends on the
aims of the user. Eventually, any finite ensemble will
itself become indistinguishable from a random draw
from the climatology. At this point the forecast is
useless, but this time is unrelated to the Lyapunov
exponent, or the doubling time, or any other measure
of infinitesimal uncertainties.

Accountable Ensemble Forecasts

Corresponding to each probability forecast there is
only a single verification; thus no single forecast can be
evaluated. Rather, the quality of a (long) series of
probability forecasts must be considered. And inas-
much as nonlinearity will mix aspects of data assim-
ilation (see Weather Prediction: Data Assimilation),
ensemble formation and model inadequacy, the en-
semble prediction system (EPS) can be evaluated only
as awhole. This should not come as a surprise, since in
a nonlinear system one expects to lose the benefits of
linear superposition.

While the absolute accuracy of the EPS will vary
with the level of initial uncertainty, ensemble forecasts
under a perfect model using perfect initial ensembles
are ‘accountable’: the uncertainty in any forecast
variable computed from this ensemble will reflect the
true value with an accuracy limited only by the finite
number of members in the ensemble. Karl Popper
introduced the notion of accountability for BFG
forecasts in order to illustrate that a good model
should indicate how accurately the initial condition
must be measured in order to guarantee the accuracy
of a forecast at any fixed lead time. The notion is easily
extended to ensemble forecasts, in that an accountable
ensemble forecast system should indicate how large an
initial ensemble should be in order to reflect events
accurately with a given level of probability.

Of course, the detailed shape of each forecast
distribution will differ from day to day, Figure 2
shows the probability distribution for a particular
initial condition and set of observations. Yet if the EPS
is accountable, then as the number of members in the
ensemble is increased, the probability forecast will
growmore accurate in a predictableway. For example,
every time the ensemble size is doubled, the frequency
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with which any particular variable in the verification
will fall outside the ensemble will be cut in half. [In
fact, the ensemble size must be increased from N
members to ð2N þ 1Þ members, since the probability
that the next random draw falls outside the current
range is 2=ðN þ 1Þ.]

In practice, ensembles are not drawn from a set of
indistinguishable states; there are a number of com-
peting methods now used operationally, and other
methods are soon to join them. Current formation
schemes include sampling directions of forecast errors
of the recent past, or the directions of fastest growth in
the near future. Neither approach attempts to sample
the initial uncertainty accurately, and thus accurate
probability forecasts could not be expected from the
raw forecasts, even were the models to be perfect.

Operational ensembles typically consist of between
10 and 100 members, evolved over a duration of two
weeks, although seasonal ensembles are a current
topic of research. Recalling that operational model-
state spaces typically have ten million dimensions
gives an indication of just how difficult sampling the
initial uncertainty may prove to be. Despite the
technical difficulties, the value of operational ensem-
bles is reflected in Figure 3, a 42-hour forecast for 26
December 1999. The three panels in the top left corner
show the low-resolution (control) and high-resolution
(T319) BFG forecasts, and themore colourful analysis
(1 0 5)which serves as the verification. The color in the
analysis reflects the intense winter storm that swept
across Europe. The other 50 panels in the figure each
show a member of the ensemble forecast at t5142
hours. This collection of ‘postage stamp’ maps is
analogous to a single PDF at constant time in Figure 2.
Note that about 20% of the ensemble members
contain storms, and that even though there is no
known way to extract an accountable probability
estimate from this operational forecast, there is
significantly more information than is provided by
the control forecasts. In its present state, this infor-
mation is already of significant societal and economic
value.

Physical Systems and Mathematical
Models

Arguably that, no physical system is ever isolated, and
perturbations from outside the system imply that no
dynamical system can be perfectly modeled as deter-
ministic. What then does one mean by saying that a
physical system is chaotic? Lorenz (1993) suggests a
physical system should be called chaotic if its behavior
would be chaoticwere it to be isolated. This, of course,
assumes there is perfect mathematical description of

the hypothetical isolated system, but it is similar to the
manner in which other mathematical terms are inter-
preted in physics; for example, the definition of
periodicity in a physical system. Periodicity is a useful
concept in physics, although arguably no physical
system is truly periodic. Similarly, chaos may be a
useful concept within physics, even if no physical
system is truly deterministic.

One property that distinguishes periodic and cha-
otic systems is that periodic systems eventually return
to exactly the same state x in state space. While this
never happens in chaotic systems, near returns do
occur for all points on the attractor; the longer is the
duration of the observations, the closer are the nearest
returns. Such systems, like the Lorenz 1963model, are
said to be ‘recurrent’. What does it mean to say a
physical system is recurrent.

At this point one has to leave the perfect-model
scenario behind.Observations of a physical system are
at best uncertain measurements of variables in the
system’s state space (if such a thing exists); in order to
use them in the model the observations must be cast
into a model-state space. Mathematically, a data
assimilation scheme (see Weather Prediction: Data
Assimilation) is simply a projection operator which
accomplishes this task. Whatever the projection oper-
ator may be, the fact that forecasts are made in the
model-state space holds deep consequences for at-
tempts to make accountable probability forecasts.
Estimates of predictability reflect the limitations of our
models, while the underlying physical system is not so
constrained.

Once some method of data assimilation is adopted
so that the observations of the system can be projected
into the model-state space, one can ask if a physical
system is likely to be recurrent within a particular
model-state space. Will two similar states be observed
during the likely duration of the observations? Over
the lifetime of the system? Often the answer is yes.

Many physical systems are also recurrent within the
model-state space over the time of a typical experi-
ment. Near recurrence in the model-state space opens
up many modeling possibilities, the simplest being to
use (local) linear regression (see Data Analysis: Time
Series Analysis). It also introduces the possibility that
we can learn from past mistakes, improving the model
by identifying state-dependent systematic errors. Of
course, doing so may increase the dimension of the
model-state space to the extent that given the available
observations it is no longer recurrent!

Given that the estimated recurrence time of the
Earth’s atmosphere is longer than the lifetime of the
Solar System (longer, in fact, than the expected lifetime
of the Universe!), this remedy is not available
to meteorologists modeling the global circulation.
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Of course, one may be able to exploit recurrence in
building parameterizations (see Boundary Layers:
Modeling and Parameterization) or in applications
on smaller scales over shorter forecast horizons. But
chaos is defined for the system (or model) as a whole.
There is a clear anduseful intuition ofwhat ismeant by
the concept of ‘approximately periodic’, which is
lacking for the phrase ‘approximately chaotic’. Fur-
ther, it is not obvious how to interpret physical systems
as chaotic, if they are not expected to exist over the
time scales required for chaos tomanifest itself in their
mathematical analogs.

Loss of Predictability: Model
Inadequacy and Shadowing

In addition to uncertainty in the initial condition and
uncertainty in parameter values, meteorologists must
contend with ‘model inadequacy’: there are aspects of
the real physical system that our model is simply
unable tomimic.When nomodel in the available class
of models is structurally adequate to duplicate the
observed phenomena, it is unclear what is meant by
the ‘correct’ initial condition or the ‘true’ parameter
values. While the Bayesian agenda provides a princi-
pled scheme for handling uncertainty in initial condi-
tion and parameter value, no systematic approach is
available for handling model inadequacy. Progress
here requires having a good idea.

Recall that in the discussion of ‘uncertainty’ in the
initial condition above, itwas assumed that in addition
to abest-guess initial condition, x̂x, therewas also a true
initial condition, ~xx. The error in the initial condition
was defined as the difference between these twopoints.
When the model is imperfect, there is no ‘true’ initial
condition (even if the model variables have the
same names as the system variables) and the very con-
cept of ‘uncertainty in the initial condition’ has to be
reconsidered.

As an example, note that since the current resolution
of NWP models is at best tens of kilometers, many
different states of the atmosphere (with different
futures) will be mapped onto the same state of the
model. This is but one example of the projection
effects noted above: themodel initial conditions are, at
best, projections of the true system state into the
model-state space. The model cannot, then, be ex-
pected to reproduce the evolution of every atmospher-
ic state, simply because there are more atmospheric
states than model states! Of course, the model may
have trajectories which shadow the observed atmos-
pheric states, remaining indistinguishable from the
trajectory of the atmosphere given the observational
uncertainty. How might meteorologists distinguish

forecast failures due to limitations in the ensemble
formation scheme from those due to model in-
adequacy? One approach is to look for ‘shadowing
trajectories’ within the historical observations.

Given an imperfect model, there may or may not be
a model trajectory that stays close to the series of
observed states, no matter which data assimilation
method is used to translate the observations into
model states. In this context, ‘close’ must be interpret-
ed in relation to the uncertainty in the observations. A
model trajectory that remains near a set of target states
is said to ‘shadow’ the target states. Each analysis will
have an associated shadowing time, just as it has an
associated value of t2. The distribution of shadowing
times reflects the relevance of model inadequacy.

If shadowing trajectories exist, then initial condi-
tion(s) which shadow may be cast in the role of ‘truth’
(that is, the role of ~xx) when computing uncertainty in the
initial condition, at least for forecasts that are short
relative to the duration over which the model can
shadow. This suggests that our very definition of
‘observational noise’ will itself depend on the quality of
the model in hand. Indeed, many data assimilation
schemes are based on the assumption that long shadow-
ing trajectories exist almost everywhere in state space.

If no shadowing trajectory exists on the time scale of
interest, then the model mixes ‘uncertainty in the
initial condition’ and ‘model inadequacy’ to the extent
that the former cannot be unambiguously defined. On
these time scales, all model trajectories differ signifi-
cantly from the observations: the set of indistinguish-
able states is empty, and there is no optimal method of
ensemble formation. Indeed, outside PMS the issue of
model improvement is linked to that of forecast usage;
there need be no unique best way forward. Neverthe-
less, current ensemble forecasts are of great value in
identifying when the forecasts are sensitive to uncer-
tainties in the initial condition, since any single BFG
forecast can be identified, at the time it is issued, as
unlikely to be an accurate anticipation of reality.
Hence they can be expected to provide useful identi-
fication of when the forecast will be unreliable;
empirical studies suggest they are also useful in
identifying forecasts which are likely to have high
skill. In addition, when two members of the same
ensemble lead to radically different forecasts in the
medium range, determining what distinguishes them
at short lead times can suggest valuable observations
for improving the forecast.

In addition to ensembles over initial conditions,
research is underway aimed at determining how
to better include stochastic effects into nonlinear
models. Such stochastic effects are commonly referred
to as ‘dynamical noise’ to distinguish them from
observational noise; the latter alters the observations
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but not the trajectory. A major difficulty here is
formulating a relevant state-dependent dynamical
noise, as the traditional approaches tend to spread
the forecast into unphysical directions. Using multiple
models provides one approach, stochastic parameter-
izations is another.

Current research is also exploring the use of
ensembles over distinct models, or even ensembles
over trajectories each ofwhich uses a variety of distinct
models. Ideally, these models should be independent,
so that they share as few common inadequacies as
possible. Methods for allocating resources among
models, and for the evaluation of the distributions so
obtained as forecasts, provide yet other interesting
areas of current research. The traditional goal of
identifying the ‘optimal’ least-squares predictor need
no longer be a desirable end for any real forecast user.
Modern forecast users, in particular industrial users,
are quite capable of exploiting probability forecasts.

Since the introduction of the electronic computer,
indeed since L. F. Richardson’s computations early in
the last century, weather prediction has been at the
forefront of research into the predictability of nonlin-
ear dynamical systems. One safe forecast is that it will
remain there for the foreseeable future.

See also

Boundary Layers:Modeling and Parameterization.Data
Analysis: Time Series Analysis. Weather Prediction:
Data Assimilation; Ensemble Prediction.
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